
Extending Riemmanian Motion Policies to a Class of Underactuated
Wheeled-Inverted-Pendulum Robots

Bruce Wingo1, Ching-An Cheng1, Muhammad Murtaza1, Munzir Zafar1, and Seth Hutchinson1

Abstract— Riemannian Motion Policies (RMPs) have recently
been introduced as a way to specify second-order motion
policies defined on robot task spaces. RMP-based approaches
have the advantage of being more general than traditional
approaches based on operational space control; for example, the
generalized task inertia in an RMP can be fully state-dependent,
which is particularly effective in designing collision avoidance
bahaviors. But until now RMPs have been applied only to fully
actuated systems, i.e. systems for which each degree of freedom
(DoF) can be directly actuated by a control input. In this paper,
we present a method that extends the RMP formalism to a class
of underacutated systems whose dynamics are amenable to a
decomposition into a fully-actuated subsystem and a residual
dynamics. We show the efficacy of the approach by constructing
a suitable decomposition for a Wheeled-Inverted-Pendulum
(WIP) humanoid robot and applying our method to derive
motion policies for combined locomotion and manipulation
tasks. Simulation results are presented for a 7-DoF system with
one degree of underactuation.

I. INTRODUCTION
Recently a new family of robots, with both dynamic

locomotion capability and high degrees-of-freedom (DoF)
manipulator arms, are growing in prominence [1], [2], [3].
These robots combine progresses made in manipulation with
serial robots [4], [5] and locomotion with inherently unsta-
ble dynamics (such as biped and Wheel-Inverted-Pendulum
(WIP) robots) [6], [7], [8], offering a promising hybrid
platform to achieve multi-objective task specifications.

In this paper, we present a motion planning and control
framework for a class of underactuated WIP humanoids,
leveraging the task prioritization of Whole-Body-Control
(WBC) [9] and the flexibility of Riemannian Motion Policies
(RMPs) [10], [11]. These two techniques have been devel-
oped separately for locomotion and manipulation tasks in
the past. Here we show how to combine these two ideas to
complement each other, so that multi-objective manipulation
tasks can be successfully performed on WIP humanoids
while maintaining dynamic stability for locomotion.

In the WBC framework, different objectives are framed in
their respective task spaces and combined using null space
projections according to a task-prioty hierarchy. A task with
high priority is satisfied by implementing other tasks with
lower priority within its null space. Robot dynamics and
other physical constraints, such as contacts, can be incorpo-
rated by enforcing them as the top-level task. However, WBC

1Bruce Wingo, Ching-An Cheng, Muhammad Murtaza, Munzir Zafar
and Seth Hutchinson are with the Institute for Robotics and Intelligent
Machines at the Georgia Institute of Technology, Atlanta, GA, 30332,
USA. bwingo@gatech.edu, cacheng@gatech.edu,
mamurtaza@gatech.edu, mzafar7@gatech.edu,
seth@gatech.edu

Fig. 1. Golem-KRANG.

suffers from algorithmic singularities when a large number
of tasks are present, as successive null space projections is
often ill-conditioned [12], [13].

RMPs [10] and the associated computational framework
RMPflow [11] provide an alternative for multi-objective task
planning and policy fusion. Individual tasks in RMPflow are
described in their respective task spaces similar to WBC,
but modeled in terms of RMPs (second-order differential
equations and the associated Riemmanian metrics).1 For each
task RMP, the second-order differential equation defines the
motion policy for the task, and the task space is treated as a
manifold with an (non-)Euclidean metric capturing properties
of the aforementioned motion policy. Intuitively one can view
RMPflow as an extension of operational space control [4] to
using full-state dependent inertia matrices, which encompass
a richer class of task behaviors that depends on both a robot’s
configuration and velocity.

RMPflow [11] provides a recursive scheme for combining
RMPs associated with different tasks into a single control
policy for the entire robot. This is done by using a differential
geometric operation, pullback, which brings RMPs from
task manifolds to the configuration space (another manifold).
Issues with the null space projections in WBC are no
longer present in this approach, even when the number of
tasks is large. When task policies are generated from a
special subset of second-order differential equations, called
Geometric Dynamic Systems (GDSs)2, the combined policy
after pullback is proved to be Lyapunov-stable [11], [13].

While RMPs and RMPflow have been successfully imple-
mented on serial manipulators and multi-robot systems [11],
[13], it is unclear how they can be applied to robots with

1Technically, an RMP is defined by a second-order differential equation
and its interia, the latter of which in most cases is the same as the
Riemmanian metric; sec [11] and Section II-A.

2A non-Euclidean generalization of spring-mass-damper systems.

underactuated dynamics or non-holonomic constraints. Cur-
rent limitations of this framework stem from the implicit
assumption that every DoF of the robot can be directly
controlled [11]. However, this is hardly ever the case outside
of the serial manipulator arms. RMPs and RMPflow have yet
to be implemented on underactuated systems, like the robot
used in this work, KRANG [12] shown in Fig. 1 (which has
a WIP base with two serial manipulator arms attached on
top, and one degree of underactuation).

In this work, we propose a variant of RMPflow capable
of executing RMPs on a class of WIP humanoids while
maintaining dynamic stability. Our design is based on a
hierarchical control and dynamics separation scheme. The
main idea is to split the dynamics into two parts: the
dynamics of purely actuated DoF and the residual dynamics
that describes the relationship between actuated DoF and
unactuated DoF. A high-level controller based on the residual
dynamics is first designed to guarantee the stability during
locomotion by generating a Center-of-Mass (CoM) trajectory
using planning. Then a low-level RMP-based controller for
the fully actuated subsystem is used to track the desired
CoM trajectory as the top-priority task. Other remaining
manipulation tasks are specified as RMPs and combined
using the pullback operation of RMPflow into a single policy
on the configuration space. This pullback policy is finally
realized in the null space of the top-priority CoM trajectory
tracking task. Overall, our scheme guarantees the dynamic
stability of the locomotion by using the task prioritization
idea in WBC, and uses RMPflow with the remaining DoF
in an attempt to achieve multiple manipulation tasks without
the algorithmic singularity due to successive projections in
WBC. In simulations, we show the efficacy of our approach
by designing motion policies for KRANG in Fig. 1 to solve
combined locomotion and manipulation tasks.

II. BACKGROUND

We review the essence of RMPs and RMPflow, as they
will be used to define and combine the task-space policies
in our framework. Further details can be found in [11], [13]

A. RMPs and RMPflow

Riemannian Motion Policies (RMPs) were first proposed
by Ratliff et al. in [10] as a language to describe motion
policies defined on general task spaces. Its main idea is
to treat the task space as a manifold and model motion
as geodesics (paths with the shortest distance). Using this
correspondence, one can naturally think of motion policies as
generators of these geodesics, and then controls the desired
behavior through designing the manifold’s Riemannian met-
ric; e.g., for a properly selected metric, geodesics can be used
to realize curved trajectories. As such, these motion policies
are suitably named Riemannian Motion Policies [10].

Specifically, for a manifoldM with a coordinate map x, a
motion policy a is defined as the controller of the acceleration
ẍ = a(x, ẋ), which takes the state (x, ẋ) as input and outputs
the desired acceleration a(x, ẋ). An RMP (a,M)M pairs
a motion policy a with an importance weight M, which

Fig. 2. A sample RMP tree for an n-DoF robot.

is a symmetric positive-definite matrix function. For most
applications3, the matrix function M is the coordinate rep-
resentation of the Riemannian metric of M. In [11], the
expression (a,M)M is referred to as the canonical form
of the RMP, and the associated natural form is written as
[f ,M]M, where f := Ma is the (virtual) control force.

Representing motion policies as differential geometric
objects allows one to transform them between manifolds
naturally. For example, consider the configuration space of
a robot, C. Suppose that C is an n-dimensional smooth
differentiable manifold and has a global chart (C,q), where
q : C −→Rn. Then motion policies defined on task manifolds
can then be mapped to motion policies on C through standard
differential geometric tools, such as pullback, as they just
correspond to curves on manifolds.

RMPflow [11] is a computational framework that for-
malizes this concept to consistently combine task-space
RMPs into a single motion policy on C. To accomplish
this, RMPflow deploys a tree-structure computational graph,
RMP-tree. A typical RMP-tree for an n-joint robot is visual-
ized in Fig. 2. In an RMP-tree, each node represents an RMP
and its state on a manifold, and each edge corresponds to
operations that transforms RMPs and states between nodes.
In particular, the root corresponds to the configuration space,
and the leaf nodes correspond to the task spaces. These edge
operations are termed RMP-algebra, and consist of three
transformations: pushforward, pullback, and resolve.

B. RMP-algebra

Let us use the sample RMP-tree in Fig. 2 to show how
these operations propagate information across the RMP-tree
and generate a policy on the configuration space C that
combines the RMPs defined on the task spaces. This is done
in three steps for every sampled time instance:

1) calls of pushforward from the root to the leaves
2) calls of pullback from the leaves to the root
3) a single call resolve at the root
For illustration, consider the node Ji in Fig. 2. Suppose
Ji describes an RMP [f ,M]M and state (x, ẋ). In Fig. 2,
Ji has K child nodes T1, . . . ,TK , and its parent node is the
configuration space C. For each child node T j, we suppose
it corresponds to an RMP [f j,M j]

T j and its state (y j, ẏ j).

3[11] shows when the metric starts to depend on velocity, M is equal to
the metric plus a curvature modification (cf. Section II-C).

pushforward is the operation that updates state informa-
tion in child nodes using their parent node’s state. Suppose
these two coordinates of Ji and T j are related through a
smooth map ψ as y j = ψ j(x). Then given (x, ẋ), pushfor-
ward updates the child node with (y j, ẏ j) = (ψ j(x),J j(x)ẋ),
where J j(x) is the Jacobian of ψ j(x), which is a linear
operator that maps tangent vectors form Ji to T j.

On the other hand, pullback is an operation that back
propagates RMPs from child nodes to their parent node. For
Ji, its RMP [f ,M]M is updated as follows:

M =
K

∑
j=1

J>j M jJ j and f =
K

∑
j=1

J>j (f j−M j J̇ j ẋ) (1)

Therefore, in the policy generation process described above,
the recursive calls of pullback at the end will give an RMP
at the root of the configuration space C as [fq,Mq]

C .
The final component of RMP-algebra, resolve, transforms

this RMP from its natural form to the canonical form to
generate the motion policy for robot control. Given the com-
bined policy [fq,Mq]

C , it computes (q̈q,Mq)
C , where q̈q =

M−1
q fq. This vector q̈q represents the desired acceleration that

can consistently trades off different task-space RMPs with
respect to their metric information (encoded as the abstract
inertia). In the following, we will also use q̈RMP = q̈q as an
alias to emphasize the desired acceleration on C computed
by RMPflow.

C. Geometric-Dynamical-Systems (GDSs)

Geometric Dynamical Systems (GDSs) is a family of
second-order dynamics commonly used to specify RMPs
on task manifolds. A GDS on an m-dimensional manifold
M with a global chart (M,x) is defined by a symmetric
positive-definite metric G(x, ẋ) ∈ Rm×m

+ , a positive-definite
damping matrix B(x, ẋ) ∈ Rm×m

+ , and a lower-bounded po-
tential energy function Φ(x) ∈ R:

(G(x, ẋ)+ΞG(x, ẋ))ẍ+ξG(x, ẋ) =−∇xΦ(x)−B(x, ẋ)ẋ (2)

where ΞG(x, ẋ), and ξG(x, ẋ) are curvature terms defined as

ΞG(x, ẋ) =
1
2

m

∑
i=1

ẋi∂ẋgi(x, ẋ)

ξG(x, ẋ) =
x
G(x, ẋ)ẋ− 1

2
∇x(ẋ>G(x, ẋ)ẋ)

(3)

with xi being the ith element of x, gi(x, ẋ) being the ith

column of G(x, ẋ), and
x
G(x, ẋ)= [∂xgi(x, ẋ)]mi=1 being a matrix

constructed by horizontal concatenation of column vectors
∂xgi(x, ẋ). Borrowing analogy from dynamics, one can define
a virtual inertia matrix M(x, ẋ) := G(x, ẋ) +ΞG(x, ẋ). This
inertia matrix corresponds to weight matrix in the RMP
formulation of the GDS (i.e. (a,M)M with a specified by
(2) and M given by G as described above).

It can be shown that RMPflow is stable in the sense of
Lyapunov, when all leaf-node RMPs are specified in the form
of GDSs [11]. In our experiments, the end-effector position
and orientation attractor RMPs were implemented as GDSs.
We will discuss the details in section V.

Fig. 3. A WIP humanoid with a 5-DoF arm mounted on a 2-DoF torso
with 1-DoF locomotion which is underactuated. The blue circle denotes the
CoM location of the robot and the red horizontal line at the end-effector
indicates the orientation of the end-effector.

III. OVERCOMING UNDER-ACTUATION
THROUGH DYNAMICS SEPARATION

RMPflow provides a systematic framework for designing
control policies that can achieve multiple task objectives.
However, one of its fundamental limitations is the assump-
tion of full actuation. This can be seen from the example de-
scribed in Section II-B, which requires the robot to realize the
final acceleration q̈RMP in the configuration space returned
by the last resolve operation call. While this is feasible, e.g.,
for robot manipulators, it is impossible for underactuated
systems (i.e. systems with number of actuators less than the
dimension of the configuration space), including the WIP
humanoids of interest here,

In this work, we overcome this challenge by identifying a
fully actuated subsystem based on the dynamics properties
of WIP humanoids. We show that, under mild assumptions,
these robots, despite being underactuated, can still be con-
trolled by the RMPflow framework through this subsystem.
This insight allows us to directly work with this recent
advancement in policy fusion to design complex behaviors
for WIP humanoids.

A. Dynamics

For a general WIP humanoid with n joints and d-DoF
locomotion shown in Fig. 3, its dynamics can be written as

A
[

ẍ
q̈

]
+h = BΓ (4)

where x∈Rd and q∈Rn are the coordinates of the center of
mass (COM) and the joints, respectively, Γ = [τ1, . . . ,τn]

> ∈
Rn denotes the actuator torques, A ∈ R(n+d)×(n+d) is the
physical inertia matrix (which is symmetric positive definite),
h ∈ R(n+d)×1 describes the combined Coriolis and gravity
effects, and B∈R(n+d)×n is the actuation matrix. The system
overall has n+ d DoF, but the number of control inputs is
only n. Therefore the system is underactuated.

In this paper, we concern especially the set of WIP robots
with an actuated base joint sharing the same control torque
as the wheel base. For these robots, When the platform of the
robot is attached to the ground (i.e. the locomotion coordinate
x simplifies into the horizontal component that is parallel to
the ground), the above equation (4) admits certain structure.
For illustration purpose, we write the planar dynamics of

this class of robots as below (more details can be found in
[12]). In this case, we have d = 1 and x ∈ R, which is the
horizon coordinate (the only DoF left in locomotion after
the simplification to the sagittal plane and the non-floating
assumption). Then the dynamics in (4) can be written as[

Axx Axq
Aqx Aqq

][
ẍ
q̈

]
+

[
hx
hq

]
=

[−1
R e>1

I

]
Γ (5)

where I ∈ Rn×n denotes the identity matrix, e1 ∈ Rn×1 de-
notes the canonical vector (which is 1 in the first coordinate
and zero elsewhere), and R ∈ R+ is the wheel radius. We
recall that, because A is the physical inertia matrix, it satisfies
Axx > 0, Aqq � 0, and Aqx = A>xq.

The main structure introduced in (5) compared with (4)
is the specific form of B, which shows one degree of under-
actuation. Again, this is because the horizontal movement is
dictated solely by the motors installed on the wheels (here
τ1 results from the net torque of the left and right wheels).
A similar structure shows up in the full 3D dynamics under
the non-floating assumption [12].

B. Identification of Fully Actuated Subsystem

We leverage the structure in (5) to identify a fully actuated
subsystem, on which we can implement RMPflow. The main
idea is based on a simple observation. Suppose we multiply
(5) on the left with a non-singular matrix

P =

[
I 0

−AqxA−1
xx I

]
(6)

We can write (5) equivalently as[
Axx Axq
0 Aqq−AqxA−1

xx Axq

][
ẍ
q̈

]
+

[
hx

hq|x

]
=

[−1
R e>1

I + 1
R AqxA−1

xx e>1

]
Γ

where hq|x = hq−AqxA−1
xx hx. This step is similar to Gauss

elimination. The second row above describes how the torques
in Γ influence the joint acceleration q̈

Aq|xq̈+hq|x = BΓ (7)

where Aq|x = Aqq − AqxA−1
xx Axq and B = I + 1

R AqxA−1
xx e>1 .

Notice that because R> 0, B is full rank; also because Aq|x is
the Schur compliment of Axx in the positive definite matrix A,
Aq|x is positive definite (which can be viewed as a projected
inertia) [14]. In other words, (7) shows that the subsystem
of q̈ in WIP humanoids under the non-floating assumption is
actually fully actuated; we can treat this subsystem just like
the dynamics of any other fully actuated robot dynamics such
as the usual robot manipulator.

We remark that the above trick works mainly because
of structure of the actuation matrix B given in (5). Our
approach can be viewed as a simple abstraction of the work
by Zafar et al. in [12], where the dynamics separation of the
KRANG robot are studied but with much involved algebraic
manipulation.

Thus, to control WIP humanoids, we can view (7) as the
fully-actuated dynamics required in RMPflow, and then view
the locomotion coordinate x as one of the task spaces, which
can be treated in the same way as other task spaces. With

this change of perspective, we can, for example, design a
multi-task controller for WIP humanoids by first specifying
RMPs on the task spaces (including the desired locomotion
behavior) and pulling back these task RMPs to obtain the
desired acceleration for q̈ (as we showed in Section II-B),
from which we can then compute the necessary torque by (7).
In the next section, we detail this procedure. For convenience,
we will write (7) in a different way as

A q̈+h= Γ (8)

where A = B−1Aq|x and h= B−1hq|x.

IV. WHOLE-BODY-CONTROL SYSTEM

We adopt the dynamics separation principle above to
design our WBC system. In short, our system is based on
a combination of null-space control and RMPflow, where
the high-level control aims to maintain the balance through
properly planing the CoM trajectory of the robot. The low-
level control tracks this CoM trajectory as the top priority
task and realizes the remaining multiple objectives of the
robot through RMPflow in the null space.

The merit of this system design is two-fold. First, it
ensures the robot always stays upward; if we were to use
purely RMPflow, this could be difficult to achieve unless
we carefully design the importance weights (i.e. the abstract
inertia) in RMPs, because RMPflow in essence is performing
a soft fusion. Second, our scheme has only one level of
hierarchy, so it is less sensitive to algorithmic singularity
[14] which could easily happen if we were to implement
all the tasks of the robot following the classic hierarchical
control approach [15].

A. High-Level Controller

We use planning to design a CoM trajectory so that
the robot can track this desired motion trajectory of CoM
while maintaining an upright posture. In implementation, our
system replan the CoM trajectory given new information of
the robot’s state.

We realize this planning idea by Differential Dynamic
Programing (DDP) with a simplified dynamics model, which
is set as the inverted pendulum approximation of the full
system (i.e. motion of the upper joints is ignored in plan-
ning). Using a low-dimensional approximate model yields a
simpler planning problem than that of the full system, so the
computation becomes more efficient (DDP scales cubically
with the dimension of the state space), which is especially
critical to online replanning.

We recall that an inverted pendulum is an under-actuated
system, and the system is balanced if the CoM deviates
from the vertical line with an angle θ , within some small
threshold. It is critical that for KRANG, and the class of WIP
robots it represents, θ is completely determined by all the
actuated DoF, i.e. the q. In this high-level planing problem,
the goal is to track a desired horizontal motion trajectory
Xdes = [xdes, ẋdes]> by specifying θ̈ as the control input. The
output of the high-level planner is an acceleration policy for
the CoM angle θ , which we denote as θ̈COM .

Once θ̈COM is computed through DDP, we can find the
necessary torque Γ to realize θ̈COM . Specifically, we use the
the Jacobian matrix Jθ , a function of only q, to relates joint
velocities q̇ and the angular velocity θ̇ . We emphasize again
that Jθ exists because θ is solely a function of q.

With Jθ , we can realize θ̈COM in the standard way as
follows. Let us first choose a torque, say ΓθCOM , to generate
the acceleration θ̈COM . This can be achieved by inspecting
the relationship between torques and θ̈ ,

(θ̈ − J̇θ q̇)+ Jθ A −1h= Jθ A −1
ΓθCOM (9)

which can be obtained by the basic relationship θ̈ = Jθ q̈+
J̇θ q̇ and (8). We want to find ΓθCOM such that θ̈ = θ̈COM . One
can easily verify that a particular solution is given as

ΓθCOM = J>θ (ΛθCOM (θ̈COM− J̇θ q̇)+ J̄θ h) (10)

where Λθ = (Jθ A −1J>
θ
)−1 and J̄θ = (Λθ Jθ A −1)> is a

pseudo-inverse of Jθ .
Setting Γ = ΓθCOM in (10) and applying it to the system in

(8) would render θ̈COM . But since we also want to achieve the
other objectives of the robot, we do not just adopt Γ = ΓθCOM
but consider instead adding a null space component, let

Γ = ΓθCOM +N>θ Γ0 (11)

where Γ0 in a vector that will be chosen in the next section
to realize the remaining task objectives, and

Nθ = I− J̄θ Jθ (12)

is a null-space projection matrix. One can verify that Jθ Nθ =
0 and applying the command in (11) will still gives θ̈ =
θ̈COM . In particular, we note that since we are going to set
Γ0 properly to realize other tasks, the choice of particular
solution ΓθCOM in (10) becomes of no importance. In other
words, one can also choose other solutions that realizes θ̈COM
to replace ΓθCOM in (11), and the final torque command Γ in
(11) will stay the same (as Γ0 will be modified accordingly).

B. Low-Level Controller

We now describe how to choose to the null space com-
mand Γ0 for the other objectives. This is done in two steps:
First, we compute the desired acceleration q̈RMP, which is
done by the standard RMPflow routine by pulling back task
RMPs through using RMP-algebra. Second, we set Γ0 so that
q̈RMP can be realized as close as possible. Note that we may
not be able to realize q̈RMP exactly, because after the high-
level controller is imposed, the effective dynamical system
changes from (8) into

A q̈+h= ΓθCOM +N>θ Γ0 (13)

and N>
θ

by definition is not full-rank (it is a projection).
Thus, q̈RMP must be approximated. But in which sense?

To this end, we leverage the metric information given
in RMPflow. Recall, when q̈RMP is computed by resolve,
a virtual inertia matrix Mq defined on the joint space is
also computed. This matrix Mq, as shown in [11], acts as a
directional importance weight that trades off different motion

policies collected by pullback. Borrowing this idea, we use
Mq as an importance weight to select Γ0. Namely, we set Γ0
as a solution to the weighted least-squares problem,

min
Γ′

‖q̈− q̈RMP‖2
Mq

s.t. q̈ = A −1(ΓθCOM −h+N>θ Γ
′)

(14)

where ΓθCOM is computed from (10). We note that, because
Nθ is singular, the solution to this problem is not unique.
Nonetheless the value N>

θ
Γ0 is uniquely determined. In

practice, we can choose Γ0 as the minimal norm solution to
the above problem, which can be computed in closed-form
in terms of Moore-Penrose pseudo-inverse. Because of the
parameterization in (11), the final policy will always achieve
the desired CoM balancing and horizontal motion behavior,
while the role of Γ0 is to realize other control tasks using
the remaining DoF.

V. IMPLEMENTATION AND RESULTS

We verify the proposed control framework in Section IV in
MATLAB simulation on a simplified4 2-D KRANG model
(Fig. 3) that has a 2-DoF torso mounted on a rigid wheel
and a 5-DoF serial manipulator arm. This system has one
degree of locomotion, which is underactuated as described
in Section III-A. The high-level controller generates the CoM
angle trajectory using the MPC-DDP optimizer implemented
in [16] for KRANG. The low-level controller is generated
by RMPflow as discussed in Section II-C. Two task RMPs
based on GDSs are implemented to maintain desired end-
effector position and orientation. Details on the attractor
implementation can be found in Appendix-A.

The simulation task is for the robot to move forward
5 meters while maintaining the end-effector position (with
respect to the body frame), and orientation in the global
frame (holding the end-effector at 90 degress measured from
the horizontal axis). A sequence of frozen frames of the 2-D
simulation is shown in Fig. 4. As a verification of controller
stability, the robot’s CoM position and orientation along with
the CoM linear velocity and angular velocity are also plotted
in Fig. 5. The convergence behavior shown in Fig. 5 indicates
that the overall controller is indeed stable. However, from
Fig. 4, it is clear that there are some overshoot present in
end-effector position tracking. This is because the parameters
for the attractor GDSs were only roughly tuned by hand.
Further fine tuning can improve the task performance.

VI. CONCLUSION

In this work, we extend the range of applicability of
RMPflow to the set of WIP-humanoids whose base joints are
actuated by the induced wheel torque. This unique feature
allows us to perform dynamics separation to identify a fully
actuated body subsystem dynamics. A hierarchical controller
was then developed for this subsystem, capable of both
balancing the CoM during locomotion and tracking joint
acceleration policies generated by RMPflow. To apply our

4The full 2-D KRANG model has a pair of 7-DoF arms mounted on a
3-DoF torso, and 1 degrees of underactuation.

Fig. 4. Snap shots of the 2-D simulation, axis unit in meters.

Fig. 5. (a) CoM horizontal position plot, time in seconds [sec] and x in meters [m], (b) CoM linear velocity plot, time in [sec] and xdot in [m/sec], (c)
CoM angle with respect to vertical axis, time in [sec] and th in radiance [rad], (d) CoM angular velocity, time in [sec] and dth in [rad/sec].

proposed framework on another robot, it is essential to
perform dynamics separation, as described in section III,
which may or may not be possible depending on the specific
dynamics of that robot.

APPENDIX

A. End-effector position and orientation attractor RMPs

Attractor RMP for end-effector position control is straight-
forward. Define the task-space coordinate x = xcurrent −
xtarget , where xcurrent and xtarget are the current and the target
end-effector position, respectively. We chose attractor RMP
candidates in the form

ẍdes =−∇xΦ̃(x)− B̃(x, ẋ)ẋ−M(x)−1
ξM(x, ẋ) (15)

[11] shows that with an appropriate choice of M, the attractor
RMPs of this form can be written as GDSs (2).

In our experiments, an η-scaled softmax over ‖x‖ and
−‖x‖ is chosen as the potential energy function. Φ̃(x) =
‖x‖+ 1

η
log(1+ e−2η‖x‖) for some positive η . Its gradient

can be derived as ∇xΦ̃(x) = (1−e−2η‖x‖

1+e−2η‖x‖)
x
‖x‖ . For this choice

of potential, [11] also shows one of its compatible metric
is a isotropic metric in the form Muni = w(x)I, with weight

function w(x) = e−
‖x‖2

2σ2 wu +(1− e−
‖x‖2

2σ2)wl , for some σ ∈ R,
and 0≤wl ≤wu <∞. The curvature induced by this metric is

given by ξM(x, ẋ), which satisfies −M−1
uni ξM(x, ẋ)= 1

2‖x‖
2(I−

2 ẋ
‖ẋ‖

ẋ>
‖ẋ‖)∇xlog(w(x)). Finally we define the damping matrix

B̃ = εI, for some ε ∈ R+.
The orientation attractors are implemented in the same

way as the position attractors, except for the task space
definition. For 2-D orientation, a single angle measurement is
sufficient to characterize the orientation of the end-effector.
Thus, for the 2-D MATLAB simulation, we used the task-
space coordinate x = αcurrent − αtarget , where αcurrent and
αtarget are current and target orientation angles, respectively.
Task space definition for 3-D orientation is more involved,
but similar idea can be realized through quaternions.

REFERENCES

[1] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” IEEE
International Conference on Robotics and Automation, 2009.

[2] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous Robots, 2016.

[3] S. R. Kuindersma, E. Hannigan, D. Ruiken, and R. A. Grupen, “Dex-
terous mobility with the ubot-5 mobile manipulator,” International
Conference on Advanced Robotics, 2009.

[4] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, 1987.

[5] J. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion planning
as probabilistic inference using gaussian processes and factor graphs,”
Robotics: Science and Systems, 2016.

[6] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames,
“3d dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics,” IEEE
International Conference on Robotics and Automation, 2016.

[7] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE Transactions on Automatic
Control, 2003.

[8] F. Grasser, A. D’arrigo, S. Colombi, and A. C. Rufer, “JOE: a mobile,
inverted pendulum,” IEEE Transactions on Industrial Electronics,
2002.

[9] L. Sentis, “Synthesis and control of whole-body behaviors in hu-
manoid systems,” Ph.D. dissertation, Stanford university USA, 2007.

[10] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Rie-
mannian motion policies,” arXiv preprint arXiv:1801.02854, 2018.

[11] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots,
and N. Ratliff, “RMPflow: A computational graph for automatic
motion policy generation,” Workshop on the Algorithmic Foundations
of Robotics, 2018.

[12] M. Zafar and H. I. Christensen, “Whole body control of a wheeled
inverted pendulum humanoid,” IEEE-RAS 16th International Confer-
ence on Humanoid Robots, 2016.

[13] A. Li, C.-A. Cheng, B. Boots, and M. Egerstedt, “Stable, concurrent
controller composition for multi-objective robotic tasks,” IEEE Con-
ference on Decision and Control, 2019.

[14] D. S. Bernstein, Matrix mathematics: theory, facts, and formulas.
Princeton University Press, 2009.

[15] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of
Humanoid Robotics, 2005.

[16] M. Zafar, S. Hutchinson, and E. A. Theodorou, “Hierarchical op-
timization for whole-body control of wheeled inverted pendulum
humanoids,” IEEE International Conference on Robotics and Automa-
tion, 2019.

