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Abstract
We present an end-to-end imitation learning system for agile, off-road autonomous driving using only low-cost on-board
sensors. By imitating a model predictive controller equipped with advanced sensors, we train a deep neural network
control policy to map raw, high-dimensional observations to continuous steering and throttle commands. Compared with
recent approaches to similar tasks, our method requires neither state estimation nor on-the-fly planning to navigate
the vehicle. Our approach relies on, and experimentally validates, recent imitation learning theory. Empirically, we
show that policies trained with online imitation learning overcome well-known challenges related to covariate shift and
generalize better than policies trained with batch imitation learning. Built on these insights, our autonomous driving
system demonstrates successful high-speed off-road driving, matching the state-of-the-art performance.
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1 Introduction

High-speed autonomous off-road driving is a challenging
robotics problem (Michels et al. 2005; Williams et al.
2016, 2017) (Fig. 1). To succeed in this task, a robot
is required to perform both precise steering and throttle
maneuvers in a physically-complex, uncertain environment
by executing a series of high-frequency decisions. Compared
with most previously studied autonomous driving tasks,
the robot here must reason about minimally-structured,
stochastic natural environments and operate at high speed.
Consequently, designing a control policy by following the
traditional model-plan-then-act approach (Michels et al.
2005; Paden et al. 2016) becomes challenging, as it is
difficult to adequately characterize the robot’s interaction
with the environment a priori.

This task has been considered previously, for example,
by Williams et al. (2016, 2017) using model-predictive
control (MPC). While the authors demonstrate impressive
results, their internal control scheme relies on expensive
and accurate Global Positioning System (GPS) and Inertial
Measurement Unit (IMU) for state estimation and demands
high-frequency online replanning for generating control
commands. Due to these costly hardware requirements, their
robot can only operate in a rather controlled environment,
which limits the applicability of their approach.

We aim to relax these requirements by designing a
reflexive driving policy that uses only low-cost, on-board
sensors (e.g. monocular camera, wheel speed sensors).
Building on the success of deep reinforcement learning
(RL) (Levine et al. 2016; Volodymyr et al. 2015), we adopt
deep neural networks (DNNs) to parametrize the control
policy and learn the desired parameters from the robot’s
interaction with its environment. While the use of DNNs as
policy representations for RL is not uncommon, in contrast

Figure 1. The high-speed off-road driving task.

to most previous work that showcases RL in simulated
environments (Volodymyr et al. 2015), our agent is a high-
speed physical system that incurs real-world cost: collecting
data is a cumbersome process, and a single poor decision
can physically impair the robot and result in weeks of
time lost while replacing parts and repairing the platform.
Therefore, direct application of model-free RL techniques is
not only sample inefficient, but costly and dangerous in our
experiments.

These real-world factors motivate us to adopt imitation
learning (IL) (Pomerleau 1989) to optimize the control
policy instead. A major benefit of using IL is that we can
leverage domain knowledge through expert demonstrations.
This is particularly convenient, for example, when there
already exists an autonomous driving platform built through
classic system engineering principles. While such a system
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Table 1. Comparison of our method to prior work on IL for autonomous driving

Methods Tasks Observations Action Algorithm Expert Experiment

Bojarski et al. (2016) On-road low-speed Single image Steering Batch Human Real &simulated
Pomerleau (1989) On-road low-speed Single image & laser Steering Batch Human Real &simulated

Rausch et al. (2017) On-road low-speed Single image Steering Batch Human Simulated
Muller et al. (2006) Off-road low-speed Left & right images Steering Batch Human Real

Zhang and Cho (2016) On-road unknown speed Single image Steering + break Online Pre-specified policy Simulated

Yang et al. (2018) On-road low/high speed
Single image +

vehicle speed sequence Steering + speed Batch Human Simulated

Yu et al. (2017) On-road low/high speed
Image sequence +

GPS/IMU measurement Steering + acceleration Batch Human Simulated

Our
Method Off-road high-speed

Single image +
wheel speeds Steering + throttle Online Model predictive controller

Real &
simulated

(e.g. (Williams et al. 2016)) usually requires expensive
sensors and dedicated computational resources, with IL we
can train a lower-cost robot to behave similarly, without
carrying the expert’s hardware burdens over to the learner.
Here we assume the expert is given as a black box oracle that
can provide the desired actions when queried, as opposed
to the case considered by Kahn et al. (2017) and Mordatch
and Todorov (2014) where the expert can be modified to
accommodate the learning progress.

In this work, we present an IL system for real-world high-
speed off-road driving tasks. By leveraging demonstrations
from an algorithmic expert, our system can learn a driving
policy that achieves similar performance compared to
the expert. The system was implemented on a 1/5-scale
autonomous AutoRally car. In real-world experiments, we
show the AutoRally car—without any state estimator or
online planning, but with a DNN policy that directly inputs
measurements from a low-cost monocular camera and wheel
speed sensors—could learn to perform high-speed driving
at an average speed of ∼6 m/s and a top speed of ∼8
m/s (equivalently 108 km/h and 144 km/h on a full-scale
car), matching the state-of-the-art (Williams et al. 2017).
A preliminary version of this paper was published as (Pan
et al. 2018) in RSS 2018; the current version compliments
the previous paper with additional details of the setup of IL
problems and the system design.

2 Related Work
End-to-end learning for self-driving cars has been explored
since the late 1980s. The Autonomous Land Vehicle
in a Neural Network (ALVINN) (Pomerleau 1989) was
developed to learn steering angles directly from camera and
laser range measurements using a neural network with a
single hidden layer. Based on similar ideas, modern self-
driving cars (Muller et al. 2006; Bojarski et al. 2016;
Rausch et al. 2017) have recently started to employ a batch
IL approach: with DNN control policies, these systems
require only expert demonstrations during the training phase
and on-board measurements during the testing phase. For
example, Nvidia’s PilotNet (Bojarski et al. 2016, 2017),
a convolutional neural network that outputs steering angle
given an image, was trained to mimic human drivers’
reactions to visual input with demonstrations collected in
real-world road tests.

Our problem differs substantially from these previous on-
road driving tasks. We study autonomous driving on a fixed
set of dirt tracks, whereas on-road driving must perform

well in a larger domain and contend with moving objects
such as cars and pedestrians. While on-road driving in
urban environments may seem more difficult, our agent must
overcome challenges of a different nature. It is required
to drive at high speed, on dirt tracks, the surface of
which is constantly evolving and highly stochastic. As
a result, high-frequency application of both steering and
throttle commands are required in our task, whereas many
previous work only focuses on steering commands (Muller
et al. 2006; Bojarski et al. 2017; Rausch et al. 2017).
In (Yang et al. 2018), a Convolutional Neural Network
(CNN) + Long Short Term Memory network (LSTM) design
was proposed to predict both steering angle and vehicle
speed. In (Yu et al. 2017), a convolutional LSTM model
is used to predict acceleration commands. However, these
approaches are not exactly end-to-end because a lower-level
control module is required to compute the throttle/brake
commands. Furthermore, (Yu et al. 2017) requires GPS/IMU
measurements which increase the hardware cost. A Dataset
Aggregation (DAgger) (Ross et al. 2011) related online IL
algorithm for autonomous driving was recently demonstrated
in (Zhang and Cho 2016), but only considered simulated
environments and used a rule-based policy as the expert.
In comparison with the previous setups, our system uses an
MPC expert that solves optimal control problems at a high
frequency, rather than a human driver (Bojarski et al. 2016)
or a simple rule-based policy (Zhang and Cho 2016), in order
to provide timely feedback to contend with the stochasticity
in high-speed dirt-track driving. A comparison of different IL
approaches to autonomous driving is presented in Table 1.

Our task is similar to the task considered by Williams
et al. (2016, 2017) and Drews et al. (2017). Compared with
a DNN policy, their MPC approach has several drawbacks:
computationally expensive optimization for planning is
required to be performed online at high-frequency, which
becomes repetitive for navigating the vehicle on a track after
a few laps. In (Williams et al. 2016, 2017), accurate GPS
and IMU feedbacks are also required for state estimation,
which may not contain sufficient information to contend with
the changing environment in off-road driving tasks. While
the requirement on GPS and IMU is relaxed by using a
vision-based cost map in (Drews et al. 2017), a large dataset
(300,000 images) was used to train the model, expensive on-
the-fly planning is still required, and speed performance is
compromised. In contrast to previous work, our approach
off-loads the hardware requirements to an expert. While the
expert may use high-quality sensors and more computational
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power, our agent only needs access to cheap sensors and its
control policy can run reactively in high frequency, without
on-the-fly planning. Additionally, our experimental results
match those in (Williams et al. 2016), and are faster and more
data efficient than that in (Drews et al. 2017).

3 Imitation Learning for Autonomous
Driving

In this section, we give a concise introduction to IL, and
discuss the strengths and weakness of deploying a batch
or an online IL algorithm to our task. Our presentation is
motivated by the realizations that the connection between
online IL and DAgger-like algorithms (Ross et al. 2011)
has not been formally introduced in continuous domains,∗

and that the original derivation is more convoluted and does
not convey important structural properties. Here we simplify
the derivation of Ross et al. (2011) into a compact tutorial,
and extend it to continuous action spaces as required in the
autonomous driving task.

3.1 Problem Setup
To mathematically formulate the autonomous driving task,
we consider a discrete-time continuous-valued RL problem.
Let S, A, and O be the state, action, and observation spaces.
In our setting, the state space is unknown to the agent;
observations consist of on-board measurements, including
a monocular RGB image from the front-view camera and
wheel speeds from Hall effect sensors; actions consist of
continuous-valued steering and throttle commands.

Our goal here is to find a stationary, reactive policy†

π : O 7→ A (e.g. a DNN policy) such that π achieves low
accumulated costs over a finite horizon of length T ,

minπ J(π), J(π) := Eρπ
[∑T−1

t=0 c(st, at)
]
, (1)

in which st ∈ S, ot ∈ O, at ∈ A, and ρπ is the distribution
of trajectory (s0, o0, a0, s1, . . . , aT−1) generated by running
policy π from a fixed initial state distribution. Here c is
the instantaneous cost, which, e.g., encourages high speed
driving while staying on the track. For notation: given a
policy π, we denote πo as the distribution of actions given
observation o, and a ∼ πo as the stochastic action taken by
the policy. Moreover, we denote Qπt (s, a) as the Q-function
(i.e. state-action value function) at state s, action a, and
time t, i.e., Qπt (s, a) = Eρπ [

∑t+T−1
τ=t c(sτ , aτ )|st = s, at =

a]; we denote V πt (s) = Ea∼πs [Qπt (s, a)] as its associated
value function, where Ea∼πs is a shorthand of Eo|sEa∼πo
denoting the expectation of the action marginal given state s.

3.2 Goal of Imitation Learning
Directly optimizing (1) is challenging for high-speed off-
road autonomous driving. Since our task involves a physical
robot, model-free RL techniques are intolerably sample
inefficient and have the risk of permanently damaging the car
when applying a partially-optimized policy in exploration.
Although model-based RL may require fewer samples, it can
lead to suboptimal, potentially unstable results, because it is
difficult for a model that uses only on-board measurements
to fully capture the complex dynamics of off-road driving.

Considering these limitations, we propose to solve for
policy π by IL. We assume the access to an oracle policy
or expert π? to generate demonstrations during the training
phase. This expert can rely on resources that are unavailable
in the testing phase, like additional sensors and computation.
For example, the expert can be a computationally intensive
optimal controller that relies on exteroceptive sensors (e.g.
GPS for state estimation), or an experienced human driver.

We wish to design an IL algorithm that can train a
policy π to perform as well as the expert π? with an error
that has at most linear dependency on the time horizon
of the problem T . Specifically, it is desired that J(π) ≤
J(π?) +O(Tε), where ε denotes potential errors due to
approximation and optimization at each time step. This
requirement is motivated by the long problem horizon in
autonomous driving tasks. Suppose otherwise an algorithm
returns a policy that has performance only as J(π) ≤
J(π?) +O(T 2ε); the applicability of the algorithm to tasks
that involve a long problem horizon would be limited,
because learning imperfection in every time step would
accumulate quickly and hurt the policy performance.

3.3 Admissible Experts
It turns out this linear error dependency is not feasible unless
we make some assumptions on the quality of expert policies.
Therefore, in this paper, we consider a qualification on the
properties of the expert policies below.‡

Definition 1. A policy π? is called an admissible expert
to problem (1) if Cπ

?

= supt∈[0,T−1],s∈S Lip
(
Qπ

?

t (s, ·)
)
∈

O(1) independent of T , where Lip(f(·)) denotes the
Lipschitz constant of function f and Qπ

?

t is the Q-function
at time t of running policy π?.

Let us give some intuition about what Definition 1 means.
Recall by definition Qπ

?

t (s, a) is the accumulated cost of
taking some action a at time t and then executing the expert
policy π? afterwards. The idea behind Definition 1 is that
a reasonable expert policy π? should perform stably under
arbitrary action perturbation, regardless of where it starts.

In the following, we will assume that we have access to
an admissible expert policy in IL. This assumption rules out
the situation of learning from arbitrarily bad expert policies;
in other words, we consider sub-optimal experts that have
at least non-trivial performance with respect to (1). Later
in Section 3.5.3, we will discuss that if the expert is not
admissible, both batch and online IL learning approaches
could incur the non-desirable superlinear error dependency.

∗Before the conference version of this paper (Pan et al. 2018) was published,
DAgger had only been used heuristically in these domains (Ross et al. 2013;
Zhang and Cho 2016)
†While we focus on reactive policies in this section, the same derivations
apply to history-dependent policies.
‡This assumption was implicitly made by Ross et al. (2011) to derive
the linear dependency bound; here we make the assumption explicit, and
define the admissible experts using an uniform Lipschitz constant because
the action space in our task is continuous; for discrete action spaces,
Lip
(
Qπ

?

t (s, ·)
)

can be replaced by supa∈AQ
π?

t (s, a) and the rest applies
(cf. (Ross et al. 2011)). The Lipschitz condition applies only to the expected
behaviors (which makes it more likely to be true), which is supported
empirically by our experimental results.
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However, when the expert policy is indeed admissible,
we will show that the property delineated in Definition 1
provides a guidance for whether to choose batch learning vs.
online learning to train a policy by imitation.

3.4 Performance Difference
As the goal of IL is to bound the performance difference
between the learner π and the expert π?, we need a way
to express the difference J(π)− J(π?). A useful tool is
the Performance Difference Lemma below, which was due
to Kakade and Langford (2002).

Lemma 1. Define dπ(s, t) = dπt (s) as an unnormalized sta-
tionary time-state distribution,§where dπt is the distribution
of state at time t when running policy π. Let π and π′ be two
arbitrary policies. Then

J(π) = J(π′) + Es,t∼dπEa∼πs [Aπ
′

t (s, a)] (2)

whereAπ
′

t (s, a) = Qπ
′

t (s, a)− V π′t (s) is the (dis)advantage
function at time t with respect to running π′.

Lemma 1 gives a closed-form expression of the performance
difference based on structural properties of Markov decision
process. Precisely, it can be read in two ways:

J(π)− J(π?) = Es,t∼dπEa∼πs [Aπ
?

t (s, a)] (3)
= −Es,t∼dπ?Ea∼π?s [Aπt (s, a)] (4)

giving a duality relationship of the performance difference.
First, (3) says that the performance difference is equivalent
to the degree the learner policy π is better than the expert
policy π? in expectation over the states visited by the
learner, because the advantage function Aπ

?

t (s, a) in essence
measures how an action a is better than the expert policy
π? at state s. Alternatively, (4) says that the performance
difference is equivalent to the degree the expert policy π? is
worse than the learner policy π in expectation over the states
the expert visits. In short, these two perspectives show that
the performance difference can be upper bounded in terms of
either the state-action distribution of the learner or that of the
expert. We will show that the choice of perspective, (3) or (4),
is the bifurcation point that leads to the online approach or
the batch approach to IL.

In order to derive upper bounds of (3) and (4), let us review
a basic statistical distance, Wasserstein metric (Gibbs and Su
2002), for distributions with continuous random variables,
because the action space of (1) is continuous. We will use
this distance to derive upper bounds of (3) and (4); we note
that other statistical distances, such as KL-divergence, can
also be adopted naturally. For two probability distributions p
and q on a metric space M with metric d, the Wasserstein
metric DW (·, ·) is defined as

DW (p, q) := sup
f :Lip(f(·))≤1

Ex∼p[f(x)]− Ex∼q[f(x)] (5)

= inf
γ∈Γ(p,q)

∫
M×M

d(x, y)dγ(x, y), (6)

where Γ denotes the family of distributions whose marginals
are p and q. It can be shown by the Kantorovich-Rubinstein
theorem that the above two definitions are equivalent (Gibbs

and Su 2002). For our autonomous driving application, we
suppose the action space A is a normed space with norm ‖ · ‖
and consider the natural metric induced by the chosen norm,
i.e. d(x, y) = ‖x− y‖.

3.5 Two Approaches to Imitation Learning
3.5.1 Online Imitation Learning We first present the
objective function for the online learning approach to IL. We
achieve this by upper bounding the performance difference
using (3) as follows

J(π)− J(π?)

= Es,t∼dπ
[
Ea∼πs [Qπ

?

t (s, a)]− Ea?∼π?s [Qπ
?

t (s, a?)]
]

≤ Cπ
?

Es,t∼dπ [DW (π, π?)]

≤ Cπ
?

Es,t∼dπEa∼πsEa?∼π?s [‖a− a?‖], (7)

where the first equality is simply (3) but with the
advantage function replaced with its definition Aπ

?

t (s, a) =
Qπ

?

t (s, a)− Ea?∼π?s [Qπ
?

t (s, a?)], and the two inequalities
are due to (5) and (6), respectively.

Define ĉ(s, a) = Ea?∼π?s [‖a− a?‖]. Thus, to make π
perform as well as π?, we can minimize the upper bound
in (7), i.e.

minπ Eρπ
[∑T−1

t=0 ĉ(st, at)
]
. (8)

This leads to a new surrogate RL problem in (8), which
we call the online IL problem, as the trajectory distribution
in (8) still depends on π. One can choose to solve (8)
with pure RL techniques (e.g. policy gradient methods);
however, while this new problem might be simpler than
the original one in (1) (e.g. (8) has denser cost functions
than (1)), tackling it directly could still be sample inefficient
due to the necessity of back-propagating information through
trajectories. To circumvent this difficulty, the online learning
approach to IL (Ross et al. 2011; Ross and Bagnell 2014;
Cheng et al. 2019c,b) leverages the structural property of
cost function ĉ in (8) and relies on a reduction from (8) to
online learning problems (Shalev-Shwartz 2012) to optimize
policies. As a result, back-propagating through trajectories
is no longer necessary, and provable performance guarantees
can be achieved (Cheng et al. 2018).

In this paper, we use the meta-algorithm DAgger (Ross
et al. 2011), which reduces (8) to a sequence of supervised
learning problems: Let D be the training data. DAgger
initializes D with samples gathered by running π?. Then, in
the ith iteration, it trains πi by supervised learning,

πi = arg minπ ED[ĉ(st, at)], (9)

where subscript D denotes empirical data distribution. Next
it runs πi to collect more data, which is then added into D
to train πi+1. The procedure is repeated for O(T ) iterations
and the best policy, in terms of (8), is returned. Suppose the
policy is linearly parametrized. When the instantaneous cost
ĉ(st, ·) is strongly convex, running DAgger to solve (8) finds
a policy π with performance J(π) ≤ J(π?) +O(TCπ

?

).
Therefore, when the π? is an admissible expert (i.e. Cπ

?

=

§dπt (s) is an unnormalized time-state distribution of the time-state
distribution 1

T
dπt (s). One can verify that

∑T−1
t=0

∫
s∈S

1
T
dπt (s) = 1.

Prepared using sagej.cls



Pan et al. 5

O(1)), DAgger would achieve our initial goal of linear error
dependency.

We note here the instantaneous cost ĉ(st, ·) can be selected
to be any suitable norm according the problem’s property
since norms in finite dimensional space are equivalent. In
our off-road autonomous driving task, we find l1-norm is
preferable (e.g. over l2-norm) for its ability to filter outliers
in a highly stochastic environment.

3.5.2 Batch Imitation Learning The batch approach to
IL takes a different viewpoint of performance difference.
Using the other equality in (4), we can derive another upper
bound and use it to construct a different surrogate prob-
lem: define c̃π(s?, a?) = Ea∼πs? [‖a− a?‖] and Cπt (s?) =
Lip(Qπt (s?, ·)), then we can write

J(π)− J(π?)

= Es?,t∼dπ?
[
Ea∼πs? [Qπt (s?, a)]− Ea?∼π?

s?
[Qπt (s?, a?)]

]
≤ Es?,t∼dπ?Ea?∼π?s? [Cπt (s?)c̃π(s?, a?)] . (10)

where the derivation is similar to the one in (7) but the first
equality is instead based on (4). The problem of minimizing
the upper-bound (10) is called the batch IL problem (Rausch
et al. 2017; Bojarski et al. 2017) and can be written
equivalently as:

minπ Eρπ?
[∑T−1

t=0 c̃π(s?t , a
?
t )
]
, (11)

In contrast to the surrogate problem in online IL (8), batch
IL reduces to a supervised learning problem, because the
expectation is defined by a fixed policy π?.

3.5.3 Comparison Comparing (7) and (10), we observe
that in batch IL the Lipschitz constant Cπt (s?), without π
being an admissible expert as in Definition 1, can be on the
order of T − t in the worst case. Therefore, if we take a
uniform bound and define Cπ = supt∈[0,T−1],s∈S C

π
t (s), we

see Cπ ∈ O(T ). In other words, under the same assumption
in online IL (i.e. (10) is minimized to an error in O(T )),
the difference between J(π) and J(π?) in batch IL actually
grows quadratically in T due to error compounding. This
problem manifests especially in stochastic environments.
Therefore, in order to achieve the same level of performance
as online IL, batch IL requires a more expressive policy class
or more demonstration samples. As shown in (Ross et al.
2011), the quadratic bound is tight.

Therefore, if we have access to an admissible expert
policy π? that is stable in the sense of Definition 1, then
online IL is preferred theoretically. This is satisfied, for
example, when the expert policy is an algorithm with certain
performance characteristics. However, on the contrary, when
the expert is not admissible (i.e. Cπ

? ≥ Ω(1)), online IL
would also lead to a superlinear error dependency. This
could happen when human demonstrators are adopted within
online IL to perform off-road driving tasks. Because the
human drivers depend heavily on instant feedback from
the car to overcome stochastic disturbances, the frame-by-
frame labeling approach Ross et al. (2013), for example, can
lead to a very counter-intuitive, inefficient data collection
process and effectively result in an inadmissible expert
policy. Overall, when using human demonstrations, online
IL can be as bad as batch IL (Laskey et al. 2016), simply due
to inconsistencies introduced by human nature.

4 Design of Algorithmic Expert
We showed that if an admissible expert is available then
online IL (e.g. DAgger) provides a learning framework
that can achieve the desirable linear error dependency. Due
to the dynamic nature of our high-speed driving task, we
consider algorithmic experts, because human experts might
not be able to provide stable and consistent high-frequency
feedbacks while the learner is driving the car.

More precisely, we recall that online IL requires action
demonstrations on the trajectories generated by running
the learner’s policy. For high-speed driving, this means
that human experts need to provide action demonstrations
(desired steering and throttle commands here) when the
vehicle is being autonomously controlled by the (suboptimal)
learner’s policy. Deprived of the usual sensory-motor
feedback, human drivers often provide poor feedback:
for example, we have observed that human drivers tend
to overcompensate when providing steering when faced
with unexpected vehicle dynamics (under the control of
the learner’s policy). This inconsistency can introduce
bias into the demonstrated actions, in the worst case,
effectively creating an inadmissble expert policy for IL (see
Section 3.5.3).

By contrast, a natural candidate with such stability
property would be the optimal policy of (1). Specifically,
suppose the dynamics of (1) is known, an expert policy
can be obtained by solving problem (1) via Dynamic
Programming, and its value function is the solution to the
Bellman equation

V π?t (st) = min
at∈A

c(st, at) + Est+1∼pst+1|st,at

[
V t+1
π? (st+1)

]
(12)

where ps′|s,a denotes the distribution of vehicle dynamics
(i.e. the state transition).

However, in practice, the above idealistic approach faces
two main challenges: 1) the transition probability ps′|s,a is
hard to obtain due to the complexity of vehicle dynamics
at high-speed in off-road conditions. 2) Solving (12) for
all s ∈ S is computationally intractable due to the curse
of dimensionality of Dynamic Programming. In this work,
we address these two challenges using a probabilistic
dynamics model and trajectory optimization. We describe
these techniques in the following and they will be used as the
foundation to design the algorithmic expert in our IL system,
as later described in Section 5.1.

4.1 Probabilistic Dynamics Model
Under normal driving conditions, a planar single-track
vehicle model derived from Newtonian physics (Kong et al.
2015) and an empirical tire model (Rajamani 2011) are
widely used and usually sufficient for control design. In
contrast, controlling a race car in aggressive maneuvers, e.g.,
cornering at the limit of tire-road friction, requires more
sophisticated techniques to estimate the tire-road friction
coefficient (Laurense et al. 2017). In our case, the friction
changes rapidly due to the uneven dirt surface, which makes
it more challenging to estimate the coefficient. In practice,
physics-based models do not capture the aforementioned
dynamics effects well, and neural networks (NNs) have been
used for vehicle dynamics model identification (Rutherford

Prepared using sagej.cls



6 Journal Title XX(X)

and Cole 2010; Williams et al. 2017). However, NNs
typically do not adapt to rapidly changing road conditions in
real-time. In addition, NNs do not provide estimates of model
uncertainty given limited amount of training data, which
can hamper accurate long-range prediction. Motivated by
these challenges, we consider learning a probabilistic model,
Sparse Spectrum Gaussian Processes (Lázaro-Gredilla et al.
2010) (SSGPs) from data to approximate the vehicle
dynamics, and Bayesian inference to predict the vehicle’s
future states.

4.1.1 SSGP Regression Gaussian process regression
(GPR) (Williams and Rasmussen 2006) is a principled
way to perform Bayesian inference in function space.
Consider the task of learning function f : Rd → R (the
vehicle dynamics model in our case, and we treat each
output dimension independently) given a dataset D =
{(xn, yn)}Nn=1 that are sampled according to

yn = f(xn) + εn, εn ∼ N (0, σ2), (13)

where ε is an independent additive zero-mean Gaussian
noise with covariance σ2. Data collection details will
be provided in section 6.3. GPR reasons about potential
candidates of the latent function, under the assumption
that f has a prior GP distribution f ∼ GP(m̄, k), with
mean function m̄ : Rd → R and covariance function k :
Rd × Rd → R. That is, for any x, x′ ∈ Rd, E[f(x)] = m̄(x),
C[f(x), f(x′)] = k(x, x′), and for any finite subset {xn ∈
Rd}Kn=1, {f(xn)}Kn=1 is Gaussian distributed. Using the
dataset D, the inference problem of GRP computes the
posterior distribution of the latent function f . Without loss
of generality, we assume m̄(x) = 0 a priori.

While theoretically sound, the exact inference problem
of GPR is challenging for large datasets due to its
O(N3) time and O(N2) space complexities (Williams and
Rasmussen 2006), which is a direct consequence of storing
and inverting an N ×N Gram matrix. Many approximate
techniques have been proposed to tackle this challenge,
including using random Fourier features (Lázaro-Gredilla
et al. 2010), degenerate priors (Snelson and Ghahramani
2006), variational posteriors (Titsias 2009; Hensman et al.
2013; Cheng and Boots 2017; Salimbeni et al. 2018). In this
work, we adopt the approach by Lázaro-Gredilla et al. (2010)
for its implementation simplicity.

To reduce the complexity, Lázaro-Gredilla et al. (2010)
use approximate GP models, SSGPs, which are a class of
GPs with prior covariance function in the form:

k(x, x′) = φ(x)>φ(x′) + σ2δ(x− x′), φ(x) =

[
φc(x)
φs(x)

]
,

φc(x) =
[
φc1(x) . . . φcm(x)

]>
, φs(x) =

[
φs1(x) . . . φsm(x)

]>
,

φci (x) = η cos(ω>i x), φsi (x) = η sin(ω>i x), ωi ∼ p(ω),

where function φ : Rd → R2m is an explicit finite-
dimensional feature map¶, η is a scalar scaling coefficient,
δ is the Kronecker delta function, and vector ωi is
sampled according to some spectral density p(ω) function.
Based on Bochner’s theorem, it can be shown that SSGPs
can unbiasedly approximate any continuous shift-invariant
kernels if p(ω) is constructed properly with respect to the
original covariance function (Lázaro-Gredilla et al. 2010).

Because of the explicit finite-dimensional feature map φ,
each SSGP is equivalent to a Gaussian distribution over the
weights of the features w ∈ R2m and has a prior distribution
of weights w as N (0, I) (Lázaro-Gredilla et al. 2010).
Given a fixed feature map, the posterior distribution of w
conditioned on the data D = {xn, yn}Nn=1 is

w ∼ N (α, σ2A−1), (14)

α = A−1ΦY, A = ΦΦ> + σ2I, (15)

which can be derived through Bayesian linear regression.
In (15), the column vector Y and the matrix Φ are
specified by the data D, in which Y =

[
y1 . . . yn

]>
and Φ =

[
φ(x1) . . . φ(xn)

]
. Consequently, the posterior

distribution over the output y in (13) at a test point x is
exactly Gaussian

p(y|x) = N (α>φ(x), σ2 + σ2‖φ(x)‖2A−1). (16)

in which the posterior variance explicitly captures the model
uncertainty in predicting f(x).

We use this SSGP framework to model the state transition
of the unknown vehicle dynamics (i.e. the latent function
f : S× A→ S that determines the change of state ∆st :=
st+1 − st given a concatenated state-action pair (st, at) as
input ). We assume each output dimension is conditionally
independent‖ and use a SSGP model for each output
dimension. The hyper-parameters σ, η are optimized via
maximizing the GP marginal likelihood (Williams and
Rasmussen 2006).

4.1.2 Incremental Update In order to cope with rapidly
changing dynamics (e.g, caused by stochastic road condi-
tions), when a new vehicle state is available, we incorporate
it to incrementally update the posterior distribution over
weightzw in (14) of the SSGP dynamics model. We note this
can be done rather efficiently without storing and inverting
theAmatrix explicitly. Instead we keep track of its Cholesky
factor R where A = R>R and perform rank-1 update given
a new sample (Gijsberts and Metta 2013). The computation
requires O(m2) time and can be performed in real-time if
m is moderate. To cope with time-varying dynamics, we
employ a forgetting factor λ ∈ (0, 1) such that the previous
samples’ impact decays exponentially in time (Ljung 1998).
Details are omitted.

4.1.3 Multi-step Prediction We need to be able to perform
multi-step prediction in order to use the SSGP dynamics
model inside a trajectory optimization algorithm. We
provide the details of information propagation across SSGP
dynamics models in the following. At time t, suppose the
distribution at the current state st is distributed according to
p(st) = N (µt,Σt) and the current action is at. We wish to
compute the state distribution p(st+1) at time t+ 1, which is
related to the current state st through

st+1 = st + f(st, at) + wt, wt ∼ N (0, σ2), (17)

¶φ is obtained by concatenating m random features into a vector form.
‖We assume that, for outputs in different dimensions ya and yb,
p(ya, yb|x) = p(ya|x)p(yb|x).
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where f is a random function given by the SSGP model.
As in general p(st+1) can be quite complicated, in this
work, we approximate the predictive distribution with
a Gaussian distribution p(st+1) ≈ N (µt+1,Σt+1) through
linearizing the predictive mean function of the SSGP model.
The moments of this approximate Gaussian predictive
distribution can be represented as follows (Pan et al. 2017):

µt+1 = µt + E[∆st] (18)
Σt+1 = Σt + Var[∆st] + Cov(st,∆st) + Cov(∆st, st).

Equivalently, we can write the propagation of statistics
in (18) in terms of the belief of state st. Define the belief
as bt = [µt vec(Σt)]

>, where vec(Σt) is the vectorization of
Σt, and denote the space of all beliefs by B ⊂ R. We can
write (18) in a compact form as

bt+1 = F(bt, at), (19)

whereF : B× A→ B is the effective map by (18). This new
equation corresponds to the belief-space representation of
the dynamics; below we introduce a trajectory optimization
method to obtain optimal actions based on the belief-space
dynamics model in (19).

4.2 Trajectory Optimization
Solving (12) globally is notoriously difficult, requiring
discretization of the state space S and incurs exponentially
large complexity. In order to solve the optimal control
problem efficiently, we use a trajectory optimization method,
Differential Dynamic Programming (DDP) (Jacobson and
Mayne 1970), which approximates the solution to (12)
locally around a trajectory. To control the vehicle under
model uncertainty, we use the belief-space dynamics model
in (19). The instantaneous cost function l : B× A→ R
defined as l(b, a) = Es[c(s, a)|b] where the cost c(s, a) is
designed to 1) keep the car close to the middle of the track, 2)
travel at a target speed, 3) stabilize the car from slipping, and
4) minimize throttle, brake and steering efforts. The details
will be described in Section 6.1.

DDP is an iterative method. At each iteration, it creates
a local model along a nominal trajectory in the belief
space including: 1) a linear approximation of the dynamics
model; 2) a second-order approximation of the value
function. Denote the belief and control nominal trajectory as
(b̄1:T , ā1:T ) and deviations from this trajectory as δbt = bt −
b̄t, δat = at − āt. The linear approximation of the belief
dynamics along the nominal trajectory is

δbt+1 = Fbt δbt + Fat δat. (20)

where Fbt ,Fat are Jacobian matrices and the superscripts
denote the variables involved in the partial derivatives∗∗.
Given the closed-form expression of F , these derivatives
can be evaluated efficiently without using numerical
differentiation techniques. To propagate the value function,
we construct a quadratic approximation of the instantaneous
cost function l along the nominal belief and control
trajectory, i.e.,

l(bt, at) ≈ l0t + (lbt )
>δbt + (lat )>δat (21)

+
1

2

[
δbt
δat

]> [
lbbt lbut
lubt luut

] [
δbt
δat

]
,

where l0t = l(b̄t, āt). Given the above local approximations
of dynamics (20) and cost function (21), DDP creates a
quadratic model of the value function

V π
?

t (b) = min
at∈A

(
l(bt, at) + V π

?

t

(
F(bt, at)

))
(22)

≈ V 0
t + (V bt )>δbt +

1

2
δb>t V

bb
t δbt. (23)

In order to compute V 0
t , V

b
t , V

bb
t , we define the term inside

the min operator in (22) as the Q-function

Qπ
?

t (bt, at) = l(bt, at) + V π
?

t

(
F(bt, at)

)
.

Then we expand it up to the second order in δb and δa along
b̄t, āt.

Qπ
?

t (b̄t + δbt, āt + δat) ≈ Q0
t +Qbtδbt +Qat δat

+
1

2

[
δbt
δat

]> [
Qbbt Qbat
Qabt Qaat

] [
δbt
δat

]
,

(24)

and find an optimized control law by minimizing (24), i.e.,

δât = arg min
δat

[
Q(b̄t + δbt, āt + δat)

]
= −(Qaat )−1(Qat +Qabt δbt).

(25)

The quadratic model (22) of the value function V 0
t , V

b
t , V

bb
t

can be computed in a backward pass by inserting the
optimized control law ât = āt + δât into (24), see (Jacobson
and Mayne 1970; Tassa et al. 2008) for details. Once the
optimized control law along the entire nominal trajectory is
computed through the backward pass, it is applied to the
dynamics (19) to generate a new nominal trajectory in a
forward pass. This backward-forward scheme is repeated for
multiple iterations until convergence.

Unlike Quadratic programming (QP)-based approaches
(Borrelli et al. 2005), our DDP-based approach is self-
contained and does not rely on an external optimization
solver. Compared to sampling-based method (Williams et al.
2017; Wagener et al. 2019) that uses massive forward
simulations, our approach is more efficient as it exploits of
the structure of the dynamics model (19).

5 The Autonomous Driving System
Building on the previous analyses, we design a system
that can learn to perform fast off-road autonomous driving
with only on-board measurements. The overall system
architecture for learning end-to-end DNN driving policies is
illustrated in Fig. 2. It consists of three high-level controllers
(an expert, a learner, and a safety control module) and a
low-level controller, which receives steering and throttle
commands from the high-level controllers and translates
them to pulse-width modulation (PWM) signals to drive the
steering and throttle actuators of a vehicle.

On the basis of the analysis in Section 3.5.3, we assume
the expert is algorithmic and has access to expensive sensors
(GPS and IMU) for accurate global state estimates†† and

∗∗We will use this superscript rule for dynamics and cost-related terms.
††Global position, heading and roll angles, linear velocities, and yaw rate.
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Figure 2. System diagram.

resourceful computational power. The expert is built on
multiple hand-engineered components, including a state
estimator, a dynamics model of the vehicle, a cost function
of the task, and a trajectory optimization algorithm for
planning (see Section 5.1). By contrast, the learner is a
DNN policy that has access to only a monocular camera and
wheel speed sensors and is required to output steering and
throttle command directly (see Section 5.2). In this setting,
the sensors that the learner uses can be significantly cheaper
than those of the expert‡‡; specifically on our experimental
platform, the AutoRally car (see Section 5.3), the IMU
and the GPS sensors required by the expert in Section 5.1
together cost more than $6,000, while the sensors used by the
learner’s DNN policy cost less than $500. The safety control
module has the highest priority among all three controllers
and is used to prevent the vehicle from high-speed crashing.

The software system was developed based on the Robot
Operating System (ROS) in Ubuntu. In addition, a Gazebo-
based simulation environment Koenig and Howard (2004)
was built (see Fig 4) using the same ROS interface but
without the safety control module. Due to the limitation
of the Gazebo simulator in terms of graphics quality and
physics engine, we do not use simulated data to pre-train
our control policy. The simulator was used to evaluate the
performance of the software before real track tests.

5.1 Algorithmic Expert: Model-Predictive
Control

We have introduced the algorithmic expert in section 4.
This algorithm is able to approximate the solution to the
original problem (1). However, in practice the task time
horizon T may be very long (e.g., 1 minute) therefore solving
the optimal problem (1) in a single pass is computationally
inefficient and not robust to long-term prediction errors
(given the fact that we never have enough data). Therefore we
apply the algorithmic expert in a Model Predictive Control
(MPC) fashion, which solves a shorter time horizon optimal
problem at every sampling time: at time t, the expert policy
π? is a locally optimal policy such that

π? ≈ arg minπ Eρπ
[∑t+Th

τ=t c(sτ , aτ )|st
]

(26)

where Th is the length of horizon it previews. The
computation is realized by the algorithm introduced in
section 4, and iSAM2 Kaess et al. (2012) is used to estimate
the vehicle states. Upon convergence, the algorithm returns a

locally optimal control sequence {ât, ..., ât+Th−1}, and the
MPC expert executes the first action in the sequence as the
expert’s action at time t (i.e. a∗t = ât). When a new vehicle
state is available from the state estimator, the state-control
pair is incorporated to perform incremental regression
as described in section 4.1.2. In order to ensure fast
convergence, we use a ‘warm-start’ approach that initializes
the nominal trajectory with the optimal control sequence
obtained at the previous step. Empirically the trajectory
optimization algorithm converges within 3 iterations with
warm-start.

In view of the analysis in Section 3.2, we can assume
that the MPC expert satisfies Definition 1, because it
updates the approximate solution to the original RL
problem (1) at a high-frequency using global state
information. However, because MPC requires replanning for
every time step, running the expert policy (26) on-the-fly
consumes significantly more computational power than what
is required by the learner.

5.2 Learning a DNN Control Policy
The learner’s control policy π is parametrized by a DNN
containing ∼10 million parameters. As illustrated in Fig.
3, the DNN policy, consists of two sub-networks: a
convolutional neural network (CNN) with 6 convolutional
layers, 3 max-pooling layers, and 2 fully-connected layers,
that takes 160× 80 RGB monocular images as inputs,∗ and
a feedforward network with a fully-connected hidden layer
that takes wheel speeds as inputs. The convolutional and
max-pooling layers are used to extract lower-dimensional
features from images. The DNN policy uses 3× 3 filters
for all convolutional layers, and rectified linear unit (ReLU)
activation for all layers except the last one. Max-pooling
layers with 2× 2 filters are integrated to reduce the spatial
size of the representation (and therefore reduce the number
of parameters and computation loads). The two sub-networks
are concatenated and then followed by another fully-
connected hidden layer. The structure of this DNN was
selected empirically based on experimental studies of several
different architectures.

In construction of the surrogate problem for IL, the
action space A is equipped with ‖ · ‖1 for filtering outliers,
and the optimization problem, (9) or (11), is solved using
ADAM Kingma and Ba (2014), which is a stochastic
gradient descent algorithm with an adaptive learning rate.
Note while st or s?t is used in (9) or (11), the neural network
policy does not use the state, but rather the synchronized
raw observation ot as input. Note that we did not perform
any data selection or augmentation techniques in any of
the experiments. † The only pre-processing was scaling and
cropping of raw images.

‡‡ It might be possible to build a model that maps raw observations to
state estimates, though, in general, a model may need to consider also the
temporal dependency that the current state depends on the previous state.
Learning such a mapping faces several challenges, however. We did not
choose to do so because we wanted to completely remove the use of the
expert policy, which requires real-time trajectory optimization.
∗The raw images from the camera were re-scaled to 160× 80.
†Data collection or augmentation techniques such as Geist et al. (2017);
Bojarski et al. (2016) can be used in conjunction with our method.
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Figure 3. The DNN control policy.

Figure 4. The Gazebo-based simulation enviorment (left) and a
snapshot from the on-board camera (right).

5.3 The Autonomous Driving Platform
To validate our IL approach to off-road autonomous
driving, the system was implemented on a custom-built,
1/5-scale autonomous AutoRally car (weight 22 kg; LWH
1m×0.6m×0.4m), shown in the top figure in Fig. 5. The car
was equipped with an ASUS mini-ITX motherboard, an Intel
quad-core i7 CPU, 16GB RAM, a Nvidia GTX 750 Ti GPU,
and a 11000mAh battery. For sensors, two forward facing
machine vision cameras,‡ a Hemisphere Eclipse P307 GPS
module, a Lord Microstrain 3DM-GX4-25 IMU, and Hall
effect wheel speed sensors were instrumented. In addition, an
RC transmitter could be used to remotely control the vehicle
by a human, and a physical run-stop button was installed to
disable all motions in case of emergency.

In the experiments, all computation was executed on-
board the vehicle in real-time. In addition, an external
laptop was used to communicate with the on-board computer
remotely via Wi-Fi to monitor the vehicle’s status. The
observations were sampled and action were executed at 50
Hz to account for the high-speed of the vehicle and the
stochasticity of the environment. Note this control frequency
is significantly higher than Bojarski et al. (2017) (10 Hz),
Rausch et al. (2017) (12 Hz), and Muller et al. (2006) (15
Hz).

6 Experimental Setup

6.1 High-speed Driving Task
We tested the performance of the proposed IL system in
Section 5 in a high-speed driving task with a desired speed
of 7.5 m/s (an equivalent speed of 135 km/h on a full-scale
car). The performance index of the task was formulated as
the cost function in the finite-horizon RL problem (1) with

c(st, at) = α1cpos +α2cspd +α3cslip +α3cact, (27)

Figure 5. The AutoRally car and the test track.

in which cpos favors the vehicle to stay in the middle of the
track, cspd drives the vehicle to reach the desired speed, cslip
stabilizes the car from slipping, and cact inhibits large control
commands.

The position cost cpos for the high-speed navigation task
is a 16-term cubic function of the vehicle’s global position
(x, y):

cpos = c0 + c1y + c2y
2 + c3y

3 + c4x+ c5xy

+c6xy
2 + c7xy

3 + c8x
2 + c9x

2y + c10x
2y2 + c11x

2y3

+c12x
3 + c13x

3y + c14x
3y2 + c15x

3y3.

The coefficients c0, .., c15 in this cost function were identified
by performing a regression to fit the track’s boundary: First,
a thorough GPS survey of the track was taken. Points along
the inner and the outer boundaries were assigned values
of −1 and +1, respectively, resulting in a zero-cost path
along the center of the track. The coefficient values ci
were then determined by a least-squares regression of the
polynomials in cpos to fit the boundary data. The speed
cost cspd = ‖vx − vdesired‖2 is a quadratic function which
penalizes the difference between the desired speed vdesired
and the longitudinal velocity vx in the body frame. The side
slip angle cost is defined as cslip = − arctan(

vy
‖vx‖ ), where

vy is the lateral velocity in the body frame. The action cost is
a quadratic function defined as cact = γ1a

2
1 + γ2a

2
2, where a1

and a2 correspond to the steering and the throttle commands,
respectively. In the experiments, γ1 = 1 and γ2 = 1 were
selected.

The goal of the high-speed driving task to minimize
the accumulated cost function over one-minute continuous
driving. That is, under the 50-Hz sampling rate, the task
horizon was set to 60 seconds (T = 3000). The cost

‡In this work we only used one of the cameras.
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information (27) was given to the MPC expert in Fig. 2 to
perform online trajectory optimization with a two-second
prediction horizon (Th = 100). In the experiments, the
weighting in (27) were set as α1 = 2.5, α2 = 1, α3 =
100 and α4 = 60, so that the MPC expert in Section 5.1
could perform reasonably well. The learner’s policy was
tuned by online/batch IL in attempts to match the expert’s
performance.

6.2 Test Track
All the experiments were performed on an elliptical dirt
track, shown in the bottom figure of Fig. 5, with the
AutoRally car described in Section 5.3. The test track
was ∼3m wide and ∼30m long and built with fill dirt.
Its boundaries were surrounded by soft HDPE tubes,
which were detached from the ground, for safety during
experimentation. Due to the changing dirt surface, debris
from the track’s natural surroundings, and the shifting track
boundaries after car crashes, the track condition and vehicle
dynamics can change from one experiment to the next,
adding to the complexity of learning a robust policy.

6.3 Data Collection
For dynamics model learning, data was collected in two
phases: first, a human driver drove the vehicle at various
speeds (3 - 6 m/s) for 10 minutes, during which the state and
action data were recorded, processed with spline smoothing,
and re-sampled. A SSGP model of the vehicle dynamics
was learned offline using the dataset (see Section 4.1 for
details). Next, when the MPC expert (based on the learned
dynamics model) was executed on the vehicle, we continued
to collect new state-action data of transition dynamics
and incorporated them to perform incremental updates, as
described in Section 4.1.2.

For IL, training data was collected in two ways. In batch
IL, the MPC expert was executed, and the camera images,
wheel speed readings, and the corresponding steering and
throttle commands were recorded. In online IL, a mixture
of the expert and learner’s policy was used to collect training
data (camera images, wheel speeds, and expert actions): in
the ith iteration of DAgger, a mixed policy was executed
at each time step π̂i = βiπ? + (1− βi)πi−1, where πi−1 is
learner’s DNN policy after i− 1 DAgger iterations, and βi

is the probability of executing the expert policy. The use
of a mixture policy was suggested in Ross et al. (2011);
Cheng and Boots (2018) for better stability. A mixing
rate β = 0.6 was used in our experiments. Note that the
probability of using the expert decayed exponentially as the
number of DAgger iterations increased. Experimental data
was collected on an outdoor track, and consisted of changing
lighting conditions and environmental dynamics. In the
experiments, the rollouts about to crash were terminated
remotely by overwriting the autonomous control commands
with the run-stop button or the RC transmitter in the safety
control module; these rollouts were excluded from the data
collection.

6.4 Policy Learning
In online IL, three iterations of DAgger were performed. At
each iteration, the robot executed one rollout using the mixed

(a) MPC expert. (b) Batch IL.

(c) Online IL.

Figure 6. Examples of vehicle trajectories, where online IL
avoids the crashing case encountered by batch IL. (b) and (c)
depict the test runs after training on 9,000 samples.

policy described above (the probabilities of executing the
expert policy were 60%, 36%, and 21%, respectively). For
a fair comparison, the amount of training data collected in
batch IL was the same as all of the data collected over the
three iterations of online IL.

At each training phase, the optimization problem (9)
or (11) was solved by ADAM for 20 epochs, with mini-
batch size 64, and a learning rate of 0.001. Dropouts were
applied at all fully connected layers to avoid over-fitting
(with probability 0.5 for the firstly fully connected layer
and 0.25 for the rest). See Section 5.2 for details. Finally,
after the entire learning session of a policy, three rollouts
were performed using the learned policy for performance
evaluation.

7 Experimental Results

7.1 Algorithmic Expert vs Human Expert
First, we study the performance of the algorithmic expert.
For comparison the same task was demonstrated by a human
driver using a remote controller. We use speed (the faster
the better) as the metric for both MPC and human driver.
Other metrics such as cross-track error may not be intuitive
because MPC and human driver have different objectives.
For example, MPC does path following while the human
driver does lane keeping, e.g., it is more desirable to not
follow the center of the lane during cornering. Statistics for
both MPC and human expert are shown in Table 2. Results
were averaged over 3 independent trials. The MPC expert
outperforms the human expert significantly in terms of speed
(our target speed is 7.5 m/s).

While a professional race car driver could be better at
utilizing the tire force potential than a hand-crafted controller
(Laurense et al. 2017), the MPC expert performs better,
because, in our case, the human driver controls the vehicle
via a transmitter in a third-person view, which results in a
delayed response and differences in terms of sensing and
handling capabilities. In addition, human drivers can be
problematic for online imitation learning tasks due to the
lack of instantaneous feedback from the vehicle caused by
his or her own actions (as we discussed in Section 3.5.3 and
at the beginning of Section 4). Labeling the actions frame-
by-frame offline (Ross et al. 2013) is not possible because
of the continuous throttle and steering commands. In the
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following experiments we focus on comparing batch and
online imitation learning with the MPC expert.

7.2 Empirical Performance
Next we study the performance of training a control policy
with online and batch IL algorithms. Fig. 6 illustrates the
vehicle trajectories of different policies. Due to accumulating
errors, the policy trained with batch IL crashed into the
lower-left boundary, an area of the state-action space rarely
explored in the expert’s demonstrations. In contrast to batch
IL, online IL successfully copes with corner cases as the
learned policy occasionally ventured into new areas of the
state-action space.

Fig. 7 shows the performance in terms of distance traveled
without crashing (we used the safe control module shown in
Fig. 2 to manually terminate the rollout when the car crashed
into the soft boundary) and Table 2 shows the statistics of
the experimental results. Overall, DNN policies trained with
both online and batch IL algorithms were able to achieve
speeds similar to the MPC expert. However, with the same
amount of training data, the policies trained with online
IL in general outperformed those trained with batch IL. In
particular, the policies trained using online IL achieved better
performance in terms of both completion ratio and imitation
loss.

In addition, we found that, when using online IL, the
performance of the policy monotonically improves over
iterations as data are collected, which is opposed to what
was found by Laskey et al. (2016). The discrepancy can
be explained with a recent theoretical analysis by Cheng
and Boots (2018); Lee et al. (2018); Cheng et al. (2019a),
which provides a necessary and sufficient condition for
the convergence of the policy sequence. In particular, the
authors show that adopting a non-zero mixing (as used in
our experiment) is sufficient to guarantee the convergence of
the learned policy sequence. Our autonomous driving system
is a successful real-world demonstration of this IL theory.

Finally, it is worth noting that the traveled distance
of the batch learning policy, learned with 3,000 samples,
was longer than that of other batch learning policies.
This is mainly because this policy achieved better steering
performance than throttle performance (cf. Steering/Throttle
loss in Table 2). That is, although the vehicle was able to
navigate without crashing, it actually traveled at a much
slower speed. By contrast, the other batch learning policies
that used more data had better throttle performance and
worse steering performance, resulting in faster speeds but
also higher chances of crashing.

7.3 Generalizability of the Learned Policy
To further analyze the difference between the DNNs trained
using online and batch IL, we embed the data in a two-
dimensional space using t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Maaten and Hinton 2008), as shown in
Fig. 8 and Fig. 9. These figures visualize the data in both
batch and online IL settings, where “train” denotes the data
collected to train the policies and “test” denotes the data
collected to evaluate the performance of the final policies
after the learning phase. For the online setting, the train
data include the data in all DAgger iterations; for the batch

Figure 7. Performance of online and batch IL in the distance
(meters) traveled without crashing. The policy trained with a
batch of 3,000 samples was used to initialize online IL.

setting, the train data include the same amount of data but
collected by the expert policy. The figures plot a subset of
3,000 points from each data set.

We first observe in Fig. 8 that, while the wheel speed
data have similar training and testing distributions, the
raw image distributions are fairly misaligned. The raw
images are subject to changing lighting conditions, as the
policies were executed at different times and days, and
to various trajectories the robot stochastically traveled.
Therefore, while the task (driving fast in the same direction)
is seemingly monotone, it actually is not. More importantly,
the training and testing images were collected by executing
different policies, which leads to different distributions of
the neural networks inputs. This is known as the covariate
shift problem (Shimodaira 2000), which can significantly
complicate the learning process.

The policy trained with online IL yet still demonstrated
great performance in the experiments. To further understand
how it could generalize across different image distributions,
we embed its feature distribution in Fig. 9 (a) and (b). The
feature here are the last hidden layer of the neural network;
namely, the output layer is a linear function of the features. In
comparison with the raw images, these abstract features (e.g.
lane boundary, building shown in Fig. 10) extracted by the
encoder CNN ideally can be more invariant across different
situations.

Interestingly, despite the difference in the raw image
distributions in Fig. 8 (a) and (b), the DNN policy trained
with online IL are able to map the train and test data to
similar feature distributions, as shown in Fig. 9 (a) and
(b). An insight to this is that the online IL algorithm
(e.g. DAgger) forces the DNN to learn a set of features
such that a linear combination (the last layer) of those
features is sufficient to represent a good policy for a range
of distributions generated during the interactive training
process. In other words, the online IL paradigm effectively
makes the DNN face a multi-task learning situation: it must
find an invariant feature embedding that is admissible to the
use of linear policies. This explains the coherency between
Fig. 9 (a) and (b), compared with Fig. 8 (a) and (b).

On the contrary, the DNN policy trained with batch IL fails
to learn a coherent feature embedding, as shown in Fig. 9 (c)
and (d). (They are still better than Fig. 8 (a) and (b), but worse
than Fig. 9 (a) and (b).) Based on the discussion above, this is
because the DNN only needs to work well on the distribution
visited by the expert policy, which is comparably simpler
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Table 2. Test statistics. Total loss denotes the imitation loss in (8), which is the average of the steering and the throttle losses.
Completion is defined as the ratio of the traveled time steps to the targeted time steps (3,000). All results here represent the
average performance over three independent evaluation trials.

Policy Avg. speed Top speed Training data Completion ratio Total loss Steering/Throttle loss
Expert 6.05 m/s 8.14 m/s N/A 100 % 0 0

Expert (human) 5.09 m/s 6.1 m/s N/A 100 % 0 0
Batch 4.97 m/s 5.51 m/s 3000 100 % 0.108 0.092/0.124
Batch 6.02 m/s 8.18 m/s 6000 51 % 0108 0.162/0.055
Batch 5.79 m/s 7.78 m/s 9000 53 % 0.123 0.193/0.071
Batch 5.95 m/s 8.01 m/s 12000 69 % 0.105 0.125/0.083

Online (1 iter) 6.02 m/s 7.88 m/s 6000 100 % 0.090 0.112/0.067
Online (2 iter) 5.89 m/s 8.02 m/s 9000 100 % 0.075 0.095/0.055
Online (3 iter) 6.07 m/s 8.06 m/s 12000 100 % 0.064 0.073/0.055

(a) Batch raw image (b) Online raw image

(c) Batch wheel speed (d) Online wheel speed

Figure 8. The distributions (t-SNE) of the raw images and
wheel speed used as DNN policy’s inputs (details in
Section 7.3).

(an analogy to single-task learning). This could explain the
inferior performance of batch IL, and its inability to deal with
the corner case in Fig. 6 (b). This evidence shows that our
online learning system can alleviate the covariate shift issue
caused by executing different policies at training and testing
time.

7.4 The Neural Network Policy
Compared with hand-crafted feature extractors, one main
advantage of a DNN policy is that it can learn to extract
both low-level and high-level features of an image and
automatically detect the parts that have greater influence on
steering and throttle. We validate this idea by showing in
Fig. 10 the averaged feature map at each max-pooling layer
(see Fig. 3), where each pixel represents the averaged unit
activation across different filter outputs. We can observe that
at a deeper level, the detected salient features are boundaries
of the track and parts of a building. In contrast, grass and dirt
contribute little.

We also analyze the importance of incorporating wheel
speeds in our task. We compare the performance of the
policy based on our DNN policy and a policy based on only
the CNN subnetwork (without wheel-speed inputs) in batch
IL. The data was collected in accordance with Section 6.3.
Fig. 11 shows the batch IL loss in (11) of different network

(a) Batch data wrt online
model

(b) Online data wrt online
model

(c) Batch data wrt batch
model

(d) Online data wrt batch
model

Figure 9. The distributions (t-SNE) of the learned DNN feature
in the last fully-connected layer (details are in Section 7.3).

(a) raw image (b) max-pooling1

(c) max-pooling2 (d) max-pooling3

Figure 10. The input RGB image and the averaged feature
maps for each max-pooling layer.

architectures. The full DNN policy in Fig. 3 achieved better
performance consistently. While images contain position and
orientation information, it is insufficient to infer velocities,
which are a part of the (hidden) vehicle state. Therefore,
we conjecture state-of-the-art CNNs (e.g. Bojarski et al.
(2017)) cannot be directly used to perform both lateral and
longitudinal controls, as we do here. By contrast, while
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Figure 11. Performance comparison between our DNN policy
and its CNN sub-network in terms of batch IL loss, where the
horizontal axis is the size of data used to train the neural
network policies.

without a recurrent architecture, our DNN policy learned
to combine wheel speeds in conjunction with CNN to
infer hidden state and achieve better performance. Recent
work has shown that recurrent neural networks (such as
LSTM) can be used to predict speed (Yang et al. 2018) or
acceleration commands (Yu et al. 2017). However, a lower-
level control module is required to compute the throttle
commands, therefore the learned policy is not end-to-end.
Incorporating recurrent structures into our imitation learning
framework could be a interesting extension of this work and
is left to future research.

8 Conclusion

We introduce an end-to-end system to learn a deep neural
network control policy for high-speed driving that maps raw
on-board observations to steering and throttle commands
by mimicking a model predictive controller. In real-world
experiments, our system was able to perform fast off-
road navigation autonomously using a low-cost monocular
camera and wheel speed sensors. We also provide an analysis
of both online and batch IL frameworks, both theoretically
and empirically and show that our system, when trained with
online IL, learns generalizable features that are more robust
to covariate shift than features learned with batch IL.

Acknowledgements

This work was partially supported by NSF NRI Awards
1637758 and 1426945.

References

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, and Jiakai Zhang.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof
Choromanski, Bernhard Firner, Lawrence Jackel, and Urs
Muller. Explaining how a deep neural network trained
with end-to-end learning steers a car. arXiv preprint
arXiv:1704.07911, 2017.

Francesco Borrelli, Paolo Falcone, Tamas Keviczky, Jahan Asgari,
and Davor Hrovat. Mpc-based approach to active steering for

autonomous vehicle systems. International Journal of Vehicle
Autonomous Systems, 3(2):265–291, 2005.

Ching-An Cheng and Byron Boots. Variational inference for
Gaussian process models with linear complexity. In Advances
in Neural Information Processing Systems, 2017.

Ching-An Cheng and Byron Boots. Convergence of value
aggregation for imitation learning. In International Conference
on Artificial Intelligence and Statistics, pages 1801–1809,
2018.

Ching-An Cheng, Xinyan Yan, Nolan Wagener, and Byron Boots.
Fast policy learning through imitation and reinforcement. In
Conference on Uncertainty in Artificial Intelligence, 2018.

Ching-An Cheng, Jonathan Lee, Ken Goldberg, and Byron Boots.
Online learning with continuous variations: Dynamic regret
and reductions. arXiv preprint arXiv:1902.07286, 2019a.

Ching-An Cheng, Xinyan Yan, Nathan Ratliff, and Byron Boots.
Predictor-corrector policy optimization. In International
Conference on Machine Learning, 2019b.

Ching-An Cheng, Xinyan Yan, Evangelos A Theodorou, and Byron
Boots. Accelerating imitation learning with predictive models.
In International Conference on Artificial Intelligence and
Statistics, 2019c.

Paul Drews, Grady Williams, Brian Goldfain, Evangelos A
Theodorou, and James M Rehg. Aggressive deep driving:
Model predictive control with a cnn cost model. arXiv preprint
arXiv:1707.05303, 2017.
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