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Abstract— Human intention estimation is important for 

assistive lower limb exoskeleton, and the task is realized mostly 

by the dynamics model or the EMG model. Although the 

dynamics model offers better estimation, it fails when 

unmodeled disturbances come into the system, such as the 

ground reaction force. In contrast, the EMG model is 

non-stationary, and therefore the offline calibrated EMG model 

is not satisfactory for long-time operation. In this paper, we 

propose the self-learning scheme with the sliding mode 

admittance control to overcome the deficiency. In the swing 

phase, the dynamics model is used to estimate the intention 

while teaching the EMG model; in the consecutive swing phase, 

the taught EMG model is used alternatively. In consequence, the 

self-learning control scheme provides better estimations during 

the whole operation. In addition, the admittance interface and 

the sliding mode controller ensure robust performance. The 

control scheme is justified by the knee orthosis with the 

backdrivable spring torsion actuator, and the experimental 

results are prominent. 

I. INTRODUCTION 

In design of the assistive exoskeleton, the estimation of the 
human intention is critical. By human intention, we mean the 
desired movement of the operator. According to different 
implementations, we categorize the literatures into two 
approaches. The first approach measures the interaction force 
between the exoskeleton and the operator with force sensors [1, 
2]. However, this approach reduces the payloads only when 
the operator interacts with the surrounding. Exercising alone, 
the operator consumes at least the same work as without the 
exoskeleton. The second approach is the model-based 
approach: the dynamics model [3, 4] and the 
Electromyography (EMG)-model [5, 6]. The dynamics model 
uses inverse dynamics to compute the human intended torque. 
However, the estimation error is large in the presence of the 
unmodeled disturbances. On the contrary, the EMG-model 
measures directly the level of the human intended torque by 
the activated EMG signal, but it suffers from the time-variant 
nature. Summarizing the literatures, most of the model-based 
exoskeleton systems can be regarded as the human torque 
amplifier, so the operator feels assisted even without the 
interaction with the environment. 

The EXO-UL7 [1] uses three force sensors to estimate the 
interaction between human and robot, and the position 
trajectories of upper limber exoskeleton are generated by the 
admittance model. In [2], the similar admittance model is 
adopted with the force sensors on the fingers. Moreover, they 
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included the sliding mode control to overcome the mechanical 
parameters uncertainties due to deflection of Bowden cables 
and the disturbance. In both designs, the objective is to 
minimize the interaction force between the user and the robot 
so that the robot follows the motion of the user. This design, 
however, does not directly minimize the loading of the 
operator. In fact, the control scheme only lowers the 
impedance between the exoskeleton and the user. In assistive 
applications, the exoskeleton should provide additional power 
to support the user. 

Considering the unmodeled disturbance in the dynamics 
model, the adaptive control in Knee Orthosis [7] tracks the 
predefined trajectory and adjusted the dynamics parameters 
online. In [8], they identified the parameters of the model for 
the lower limb offline, and controlled the knee orthosis by the 
high-order sliding model controller to overcome the 
uncertainty of the online parameter estimation. Because the 
robots in [7, 8] are used in rehabilitation, the position 
trajectories are predefined by the doctor or the user. No online 
feedback of the operator’s intention is presented, yet it is 
crucial to estimate the human intention and to control the robot 
accordingly for assistive exoskeletons.  

Combing the benefits of both the dynamics model and the 
EMG model, we propose the self-learning scheme for human 
walking assistance with the sliding mode admittance control. 
During the swing phase, the inverse dynamics model estimates 
the human intended torque and teaches the EMG model with 
the estimation. The taught EMG model is then used in the 
consecutive stance phase to overcome the disturbance 
uncertainty in the dynamics model, such as the ground 
reaction force. The self-learning scheme updates the 
parameters of the EMG model so that it can adapt to the time 
variant nature. In summary, the estimator of the human 
intended torque switches between the dynamics model and the 
EMG model in the swing phase and in the stance phase, 
respectively, so the most accurate estimate of the two models 
can always be used for the assisting. With the estimation, we 
treat the human intention as the forced response of the 
estimated human intended torque exerting on a second-order 
linear system - the admittance interface. Finally, the sliding 
mode controller is used to overcome the uncertainties of 
modeling errors and disturbances. 

To the best of our knowledge, no other papers have 
investigated the adaptive estimation of the EMG model via 
self-learning. Our self-learning exoskeleton uses the dynamics 
model to teach EMG model so that the EMG model can cover 
for the dynamics when needed. The hybrid scheme overcomes 
the insufficiency of using only a single model. Compared to 
[9], the dynamics model, identified offline, serves as the 
supervisor and teaches the EMG model online in this paper, 
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Fig. 1. Exploded view of the backdrivable torsion spring actuator, Knee 
orthosis, and Backdrivable torsion spring actuator 

 

Weight (including the motor) 835 g 

Length*Width*Height 62×50×187 mm3 

Reduction Ratio of Bevel Gear 2:1 

Reduction Ratio of Motor Gear Head 43:1 

Stall Torque 87.5 Nm 

No-Load Speed 404 deg/sec 

Spring Stiffness 40 Nm/rad 

TABLE I SPECIFICATIONS OF THE BTSA  

*The input motor used in this design is a Faulhaber DC-micromotor 
3863H024CR with gear head 38/2 S (43:1). 

 

 

  

(a) dynamics model identification (b) EMG model identification 

Fig. 2. Offline dynamics and EMG model identification 
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whereas Cheng et al. use the Bayesian committee machines to 
combine the two models, which are both trained offline.  

The paper is organized as follows. Section II gives the 
knee orthosis system, and the modeling. In Section III, we 
described the self-learning scheme and the sliding mode 
admittance control. In Section IV, we verify the performance 
of the proposed scheme in simulations and experiments, and 
the results are discussed.  Finally, we give a short summary in 
Section VI.  

II. KNEE ORTHOSIS SYSTEM AND MODELING 

A. Exoskeleton System 

The exoskeleton system comprises the knee orthosis 
system and the footswitch. The knee orthosis system is driven 
by a backdrivable spring torsion actuator (BTSA) [10]. The 
soft stiffness of the BTSA provides mechanically intrinsic 
safety and measures the torque between the human and the 
actuator. Fig. 1 shows the exploded view of the BTSA, and 
the specification of the BTSA is shown in Table I. The 
actuator, the output bevel gear, and the torsion spring are 
connected in serial. A potentiometer is installed to measure 
the knee angle via the belt transmission between the output 
joint and the input shaft. The deflection of the spring is 
measured as the difference between the potentiometer and the 
encoder of the motor, which can be used to calculate output 
torque via the Hooke’s law. And the footswitch is used to 
detect the swing phase and the stance phase. 

B. The Dynamics Model and the EMG Model 

The dynamics model of the human-knee orthosis system is 
given by: 

 ( ) sin( )
E h g

Jq Bq Asign q M q         , (1) 

where q is the angular position, J is the inertia, B is the 

viscous friction, A is the static friction, M is the gravity torque,

E
 is the external torque of the exoskeleton,

h
 is the external 

torque of the human muscle, and
g

 is the external torque of 

the ground reaction force, which is assumed to be zero during 
the swing phase. The parameters of the dynamics model are 
calibrated offline in the experiments. 

We use the linear combination of the filtered EMG signals, 

the flexor
f

E and the extensor
e

E , as the EMG model. That is, 

 ˆ
h e e f f bias

a E a E a    , (2) 

where
e

a ,
f

a ,
bias

a are the unknown parameters to be 

identified. Although more sophisticated EMG models are 
possible, in our experience, the linear model suffices to predict 
the human intended torque. 

C. Offline System Identifications 

In this section, we describe how the unknown coefficients 
in (1) and (2) are identified offline. Unlike the EMG model, 
the dynamics model identified offline can predict with high 
accuracy as long as no unmodeled disturbance comes in, 
since it is time invariant. The EMG model, however, can only 
approximate locally due to the unmodeled uncertainties and 
the slow variation of the parameters. Therefore, the 
identification of the dynamics model is carried offline, 
whereas the EMG model learns online from the dynamics 
model in the swing phase with the initial parameters 
identified offline. 

The task for the identification of the dynamics model is 
shown in Fig. 2 (a). During this task, the user needs to relax 

totally such that
h

 can be approximated to be zero. The 

system model becomes 

 ( ) sin( )
E

Jq Bq Asign q M q      (3) 

The stimulus signals are the sinusoidal position trajectories of

q with different frequencies. The filtered angular position q , 

the angular velocity q , the angular acceleration q , and the 

torque
E

 are collected to identify the unknowns by the 

ordinary linear regression. 

The task for the EMG model identification is shown in Fig. 
2 (b). During this task, the user tries to exercise his leg, while 
the knee angle is fixed to be a constant position by the 
position controller. The system model becomes 

 _ 0 _ 0 _ 0E h e e f f bias
a E a E a      , (4) 

and the identified parameters
0 _ 0 _ 0 _ 0

[ ,  , ]
e f bias

a a aθ are 

used as the initial condition for the online learning. 

III. SELF-LEARNING SCHEME AND SLIDING MODE 

ADMITTANCE CONTROL 

The general idea of the exoskeleton control is to exert the 
force desired by the operator. We believe that human reduces 



  

 
Fig. 3. The self-learning control scheme of the exoskeleton system 
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the muscle force when feeling the positive feedback. 
Therefore, the exoskeleton can assist the operator and reduces 
the payloads by providing the desired force.  

We classify the walking phases into the swing phase and 
the stance phase, and the controller switches in between 
according to the footswitch. In the swing phase, the dynamics 
model identified offline is used to estimate the human 
intended torque, and to teach the EMG model; in the stance 
phase, the EMG model, becomes the estimator. In both phases, 
the admittance interface transfers the estimated torque of 
either the dynamics model or the EMG model to the position 
command, and effectively filters the discontinuities of the 
switching. Therefore, the reference position trajectory for the 
inner position controller is continuously differentiable, and is 
tracked by the sliding mode controller in the inner position 
control loop. In summary, the exoskeleton system consists of 
two control loops. The upper control loop estimates the human 
intention and learns online; the lower control loop tracks the 
reference trajectory robustly by the sliding mode controller, as 
shown in Fig. 3. 

A. Self-learning Scheme 

Self-learning, also called self-training, is a technique for 
semi-supervised learning. Semi-supervised learning is a 
methodology of machine learning and used in the scenario 
where accessing the labeled data is hard or expensive. The 
semi-supervised learning machine takes into account both the 
labeled and the unlabeled data to improve the performance. In 
the supervised step, the machine is first trained with the small 
amount of labeled data, and then it is used to predict the 
unlabeled data. During the unsupervised process, the machine 
labels parts of the confident unlabeled data and retrains. We 
found the mechanism very suitable for the exoskeleton. In our 
case, the exoskeleton learns offline with the data collected 
from the strictly controlled experiments, which is time 
consuming if large amount of data are in need. In the 
unsupervised step, the machine labels the unlabeled data by 
the dynamics model, and the newly labeled data are used to 
teach the EMG model. In this design, the exoskeleton system 
consists of a weak learner, the EMG model, and a strong 
learner, the dynamics model. In spite of the ability, the strong 

learner can only be used in the restricted domain, and 
therefore the strong learner has to teach the weak learner to 
compensate the deficits. That is, in the swing phase, the 
dynamics model teaches the EMG model, since it is accurate 
in absence of external disturbances. And then the EMG model 
takes over when the dynamics model fails. We detail the 
process as follows. 

In the swing phase, using (1) with the parameters 

identified offline and
E

 measured by the BTSA, the 

dynamics model can estimate the human intended torque. The 
estimation is used to teach the EMG model by the following 
adaptive law with the initial parameters identified offline in 
(4). From (1) and (2), 
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E

e e f f bias

Jq Bq Asign q M q

a E a E a

   

  
, (5) 

so the human intended torque can be measured by the 
dynamics model with 

 
*[ ( ) sin( ) ]

:
( )

TE
Jq Bq Asign q M q

z
s
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
θ Φ , (6) 

where
* * * *

,  ,
T

T

e f bias
a a a   θ is the optimal parameter with 

respect the L2-norm error,  
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T

e f
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       Φ  (7) 

is the regressor vector, and, with the abuse of notation, ( )s

denotes Hurwitz system, which is chosen as the Butterworth 
low-pass filter in the experiments, and s is the variable of 

Laplace transform. Let the empirical estimation be 

 ˆˆ T
z  θ Φ , (8) 

where ˆ ˆ ˆ ˆ,  ,  
T

e f bias
a a a   θ is estimated parameters. The error 

between the measurement and estimation is given as 
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where ˆ θ θ θ ,and
2

s
m is the normalization factor such that 

2
/

s
m  Φ .Considering the cost function ( )J θ ,  
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the adaptive law is given by taking the negative gradient of , 
that is 

 0
( ) ,  (0)J     θ θ Φ θ θ , (11) 
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where 0  is the learning rate. Let  
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be the Lyapunov function. The adaptive law is stable since 
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B.  Sliding Mode Admittance Control 

The sliding mode admittance control consists of the 
admittance interface, the sliding mode controller, and the PD 
torque controller. The main advantages of sliding mode 
admittance control are that the admittance interface in fact acts 
as a low-pass filter, so the tracking position trajectory is 
smoother than the estimated human intended torque, and that 
the sliding mode controller can handle the uncertainty of the 
modeling errors and the disturbance robustly. Compared to the 
methods [1, 2, 7, 8] that compensates only impedance of the 
dynamics, the main difference here is that the human intended 
torque is also considered, and therefore the assistance is more 
direct and more precise.  

The admittance is used to model the relationship between 
the human intended force and the relative angular position,  

 ˆ( ) ( ) ( )
h d h d h d h

M q q B q q D q q        (15) 

where
h

M , 
h

B , and 
h

D  are user-specific dynamics 

parameters,
d

q is the desired trajectory of the output link, q is 

the current position, and ˆ
h

 is the estimated human intended 

torque. The desired trajectory is forced response of the 
second-order system, so it is continuously differentiable. Note 
that, (15) is the compliance control in the impedance control 
literatures, so exoskeleton follows smoothly regardless of the 
discontinuities in the estimated human intended torque. 

With the desired trajectory from the admittance interface, 
the sliding mode controller uses the sliding surface to generate 
the torque command, which is tracked by the PD torque 
controller. 

The nominal model of the human-exoskeleton system can 
be modeled as  

 1ˆ ˆ
E

q f J  
    (16)  

 
1ˆ ˆ ˆ ˆ[ sin( ) ]
ˆ h

f Bq M q
J

     (17) 

where ˆ
h

  is the estimated human intended torque, Ĵ , B̂ , M̂

are the estimated parameters, D

 is contribution of all 

the modeling uncertainties and the disturbances and is 
bounded by some constant D   . Notice that we include the 

static friction term ( )Asign q in  so that the nominal plant (16) 

is bounded and continuous. In order to let the system track

d
q q , the sliding surface 0S  is defined as (18) 

 S q q   (18)  

 
1ˆ

d E d
S q q q f J q q   
        , (19)  

where
d

q q q  and 0  . Assuming ˆ( )<
d

J f q q     , 

to achieve 0S  , we set 

 ˆ: ( )
E d

J f q q     . (20)  

To satisfy the sliding condition under the uncertainty d , the 

torque reference is designed as (27). 

 
,

ˆ: sat( / )
E d E

J S     , (21)  

which is the torque reference for the inner torque control loop, 
where 0  ,  
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x x
x
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 
 



, 

sgn( ) { 1,0}   denotes the sign function, and 0  is the 

thickness of the boundary layer. Choose the Lyapunov 
function as  

 2

1

1
0

2
V S   (22)  

Set D   with 0  , we can show that for / 1S    
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1
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2
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Therefore, { | / 1}S S   is positively invariant. Inside the 

boundary layer, take  
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and we have 
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Fig. 4. The simulation result of the sliding mode admittance controller 

(a) without the assistive control (b) with the assistive control. 

 

Fig. 5. The parameters of the EMG model. 
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( ) (1 ) 0V q S q q         (25) 

for
1

( )q S 
 , where 0 1  . The error q is ultimately 

bounded in the ball
1

( )q S 
 .  

IV. EXPERIMENTAL RESULTS AND DISCUSSION  

A. Simulation Results 

We use the second-order human muscle model proposed in 
[10] to simulate the effect of the exoskeleton. Assuming 
human is an ideal controller, and the control objective is to 
track a sinusoidal position trajectory. In the simulation, we 
assume the estimated human intended torque is known. Fig. 4 
(a) shows human applied torque and the interaction force due 
to the mechanical impedance of the exoskeleton and the 
human body during the tracking; Fig. 4 (b) shows the result 
with the assistance of the exoskeleton. With the assistive 
control, the human applied torque decreases significantly by a 
factor of 4, and the torque error in the sliding mode control 
converges into the boundary layer exponentially, despite little 
chattering along the boundary. The simulation results prove 
the effect of the sliding mode admittance controller. 

B. Experimental Results 

In the experiments, the subject is a healthy 32-year-old 
male, and he is asked to climb the stairs up and down with the 
BTSA knee othosis. Before the task starts, the exoskeleton 
system is calibrated offline according to Section II. During the 
task, the self-learning exoskeleton estimates the human 
intended torque with the dynamics model and the EMG model 
in the swing phase and the stance phase, respectively. And 
then the estimation is used for the sliding mode admittance 
controller. All the EMG signals are rectified, filtered by the 
Kalman filter [11], and offset such that the EMG signal is zero 
when muscles are totally relaxed.  Fig. 5 shows how the EMG 
model learns during the task with the initial parameters 
identified offline. In each swing phase, the EMG model is 
updated to adapt to current condition, and the result shows the 
parameters of the EMG model is indeed time-variant. This is 
because, to approximate the nonlinear model, the linear model 
is only valid locally, and the electric resistance between the 
electrodes and the operator changes with time due to sweats 
and slipping. Therefore, it is necessary to learn the EMG 
model online. 

To compare the self-learning estimator and the single 
model approach, the estimations are shown in Fig. 6 (a). 
Combining the two models, the self-learning estimator 
switches between the two models according to the gait phase. 
In the swing phase, the EMG model tries to learn from the 
dynamics model, so it can encounter the uncertainties in the 
stance phase. We observe that the dynamics model 
overestimate the human intended torque in the stance phase, 
because it includes the torques from the disturbance and the 
exoskeleton. Indeed, when climbing, the hamstrings and the 
quadriceps exert the most in the swing phase and relax in the 
stance phase. This accounts for the estimation of the EMG 
model. Therefore, if we use the dynamics model in all the 
phases, the operator might be easily injured by the large forces 
provided by the exoskeleton in the stance phase, since it not 
only amplifies the human intended torque but also the torque 
due to exogenous disturbance. In this case, the operator has to 

exert large forces to compensate the disturbance, which is the 
major defects of most of the exoskeleton with only the 
dynamics model. Fig. 6 (b) shows the reference position from 
the admittance interface. Despite the discontinuity of the 
torque estimation in Fig. 6 (a), the desired position trajectory is 
continuously differentiable owing to the second-order system.  

V. DISCUSSIONS 

In the implementation, the sliding mode control plays an 

important figure. As discussed, the thickness of the boundary 

layer trades off the magnitude of the chattering and the 

tracking error. In contrast to the conventional sliding mode 

controller used in the tracking, we design our sliding mode 

controller with large boundary layer. Augmented on human, 

the success of an assistive controller relies more on the 

smoothness, the phase, and the direction of the assisting 

torque rather than the actual value of the supporting force and 

the position tracking error. With such knowledge, the 

boundary layer should be large as long as it pushes the 

exoskeleton from large tracking errors; inside the boundary, 

the sliding mode control is actually a proportional feedback 

controller providing smooth assisting. 

In the experiments, we observe that the optimal parameters 

of the admittance interface vary with the configurations and 

the tasks. It is interesting that human expect different 
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Fig. 6. (a) The self-learning estimator, the dynamics model, and the EMG 
model. (b) The actual angle and the desired angle generated from 
admittance interface. (c) The torque command of the sliding mode 
controller and exoskeleton torque. 
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impedance with various poses. We suggest identifying the 

task-dependent impedance and using the gain scheduling 

technique to control the impedance system in the future works. 

Also, the learning rate affects the performance of the EMG 

model much. With small learning rate, the EMG model 

cannot learn fast enough within the short swing phase, while 

the learning becomes more unstable when large learning rate 

is used. Therefore, the learning rate trades off the 

performance and the stability. We hope this can be addressed 

by incorporating the adaptive learning rate and the Hessian 

matrix. Finally, we are considering whether the robust control 

approach is suitable in the application of exoskeleton. Most of 

the robust control uses finite bounds for the disturbances and 

the uncertainty, and forces the tracking error to stay within 

some bounded domain. On the other hand, the interaction 

with human does not emphasize the absolute error. Indeed, 

only the bandwidth and smoothness matters. In our 

experiences, human seems to be able to adapt to the errors 

easily as long as the bandwidth is limited. 

VI. CONCLUSION 

In this paper, we propose the self-learning scheme with the 

sliding mode admittance controller for the assistive 

exoskeleton system. The self-learning scheme combines both 

the dynamics model and the EMG model to achieve better 

performance. In the swing phase, the dynamics model teaches 

the EMG model, so that the estimated human intended torque 

can tolerate the disturbance uncertainties in the stance phase. 

Together, the estimator uses the dynamics model in the swing 

phase and the updated EMG in the stance phase. With the 

estimated human intended torque, the sliding mode 

admittance controller assists the operator robustly. Despite 

the discontinuity of the switching, the desired position 

trajectory is smooth owing to the admittance interface. In the 

experiments, we justify the control scheme with the BTSA 

knee orthosis. The results are satisfactory, and show the 

deficiency of single dynamics model. In the future works, we 

want to address the issue of pose-dependent desired 

impedance and design a more sophisticated self-learning 

scheme. 
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