
EFFICIENT AND PRINCIPLED ROBOT LEARNING:
THEORY AND ALGORITHMS

A Dissertation
Presented to

The Academic Faculty

By

Ching-An Cheng

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in Robotics

School of Interactive Computing
Georgia Institute of Technology

May 2020

Copyright c© Ching-An Cheng 2020

EFFICIENT AND PRINCIPLED ROBOT LEARNING:
THEORY AND ALGORITHMS

Approved by:

Dr. Byron Boots, Advisor
School of Interactive Computing
Georgia Institute of Technology

Dr. Seth Hutchinson
School of Interactive Computing
Georgia Institute of Technology

Dr. Evangelos A. Theodorou
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Geoff Gordon
Machine Learning Department
Carnegie Mellon University

Dr. Karen Liu
School of Engineering
Stanford University

Date Approved: December 5, 2019

The final test of a theory is its capacity to solve the problems which originated it.

George Dantzig

To my wife, my parents, and my cats.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor Prof.

Byron Boots for his continuous support in both research and life. Especially, I truly appre-

ciate the research freedom and invaluable advices he provided throughout my Ph.D. study,

which have cultivated me to become an independent researcher.

Besides my advisor, I would like to thank my thesis committee: Prof. Seth Hutchinson,

Prof. Evangelos A. Theodorou, Prof. Geoff Gordon, and Prof. Karen Liu for their encour-

agement and insightful comments that further widen my research in various perspectives. I

would like to equally thank my mentors, Dr. Nathan Ratliff, Prof. Dieter Fox, Dr. Alekh

Agarwal, and Dr. Andrey Kolobov, who I was privileged to work with during internships

and have provided me priceless suggestions ever since.

Tremendous thanks also go to my wonderful friends, colleagues, and collaborators;

especially, Xinyan Yan, Amirreza Shaban, Nolan Wagener, Anqi Li, Jacob Sacks, Jonathan

N. Lee, Dr. Mustafa Mukadam, Dr. Yungpeng Pan, Dr. Hugh Salimbeni, Dr. Remi Tachet

des Combes, Dr. Stan Birchfield, Prof. Marc Deisenroth, Prof. Magnus Egerstedt, and

Prof. Ken Goldberg. I learned a significant amount from these collaborations and fruitful

discussions. This thesis would not be possible without their contributions.

Last but not the least, I would like to thank my family, especially my wife Jiashan Chen

and my cats (Alice and Ramesses). They have been my mental support, providing me

unconditioned love throughout good and bad times of this journey. I would not be where I

am today if not for them.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . vii

List of Figures . viii

Chapter 1: Introduction . 1

1.1 The Reality Gap . 1

1.2 Theories Driven by Practical Needs . 3

1.3 Policy Optimization: An Online Learning Approach 3

1.3.1 Efficient Policy Optimization via Online Imitation Learning 4

1.3.2 Convergence and Acceleration of Online Imitation Learning 5

1.3.3 Toward a Generic Framework for Policy Optimization and Beyond . 6

1.4 Expressive Structural Policies with Stability Guarantees 9

1.4.1 A Geometric Framework for Policy Fusion 10

1.4.2 Combining Policies with Control Lyapunov Functions 11

1.5 Outline . 12

I Policy Optimization I: Imitation 14

Chapter 2: Policy Optimization . 17

vi

2.1 Setup . 17

2.2 Objective and Assumptions . 19

2.3 A General Performance Difference Lemma 21

Chapter 3: Imitation Learning . 25

3.1 Introduction . 25

3.2 Problem Setup . 27

3.3 Goal of Imitation Learning . 28

3.3.1 Performance Difference . 28

3.4 Different Approaches to Imitation Learning 30

3.4.1 Online Imitation Learning . 30

3.4.2 Batch Imitation Learning . 32

3.4.3 Imitation Learning without Demonstrations 33

3.5 Admissible Experts . 34

3.6 Comparison between Online IL and Batch IL 34

Chapter 4: Imitation Learning for Agile Autonomous Driving 36

4.1 Introduction . 36

4.2 Related Work . 39

4.3 The Autonomous Driving System . 41

4.3.1 Algorithmic Expert: Model-Predictive Control 43

4.3.2 Learning a DNN Control Policy 44

4.3.3 The Autonomous Driving Platform 45

4.4 Experimental Setup . 46

vii

4.4.1 High-speed Driving Task . 46

4.4.2 Test Track . 48

4.4.3 Data Collection . 48

4.4.4 Policy Learning . 49

4.5 Experimental Results . 50

4.5.1 Algorithmic Expert vs Human Expert 50

4.5.2 Empirical Performance . 50

4.5.3 Generalizability of the Learned Policy 53

4.5.4 The Neural Network Policy . 54

4.6 Conclusion . 57

4.A Design of Algorithmic Expert . 58

4.A.1 Probabilistic Dynamics Model . 59

4.A.2 Trajectory Optimization . 63

Chapter 5: Fast Policy Learning through Imitation and Reinforcement 66

5.1 Introduction . 66

5.2 Problem Setup . 67

5.3 First-Order RL and IL . 68

5.3.1 Mirror Descent . 69

5.3.2 First-Order Oracles . 70

5.4 Theoretical Comparison . 73

5.4.1 Policy Gradients . 73

5.4.2 Imitation Gradients . 74

viii

5.5 Imitate-Then-Reinforce . 76

5.5.1 Algorithm: LOKI . 76

5.5.2 Analysis . 77

5.6 Related Work . 80

5.7 Experiments . 82

5.7.1 Tasks . 82

5.7.2 Algorithms . 83

5.7.3 Experimental Results . 85

5.8 Conclusion . 86

5.A Task Details . 86

5.B Proof of Section 5.4 . 86

5.B.1 Proof of Proposition 5.4.1 . 86

5.B.2 Proof of Proposition 5.4.2 . 90

5.C Proof of Section 5.5 . 92

5.C.1 Proof of Theorem 5.5.1 . 92

5.C.2 Proof of Theorem 5.6.1 . 94

Chapter 6: Convergence of Value Aggregation for Imitation Learning 96

6.1 Introduction . 96

6.2 Problem Setup . 97

6.3 Value Aggregation . 98

6.3.1 Motivation . 99

6.3.2 Algorithm and Performance . 101

ix

6.4 Guarantee On the Last Policy? . 102

6.5 Theoretical Analysis . 104

6.5.1 Classical Result . 105

6.5.2 New Structural Assumptions . 106

6.5.3 Guarantee on the Last Policy . 107

6.5.4 Proof of Theorem 6.5.2 . 108

6.5.5 Stochastic Problems . 111

6.6 Regularization . 112

6.6.1 Mixing Policies . 113

6.6.2 Weighted Regularization . 114

6.7 Conclusion . 115

6.A Missing Proofs . 116

6.A.1 Proof of Proposition 6.3.1 . 116

6.A.2 Proof of Theorem 6.5.1 . 117

6.A.3 Proof of Theorem 6.5.3 . 118

6.A.4 Proof of Corollary 6.5.1 . 120

6.A.5 Proof of Lemma 6.6.1 . 122

6.B Analysis of AGGREVATTE in Stochastic Problems 122

6.B.1 Uniform Convergence of Vector-Valued Martingales 123

6.B.2 Proof of Theorem 6.5.4 . 128

6.C AGGREVATTE with Function Approximations 136

6.D Weighted Regularization . 138

x

Chapter 7: Accelerating Imitation Learning with Predictive Models 140

7.1 Introduction . 140

7.2 Preliminaries . 141

7.2.1 Problem Setup: RL and IL . 141

7.2.2 Imitation Learning as Online Learning 143

7.3 Accelerating IL with Predictive Models 145

7.3.1 Performance and Average Regret 146

7.3.2 Algorithms . 147

7.3.3 Predictive Models . 150

7.4 Theoretical Analysis . 151

7.4.1 Assumptions . 151

7.4.2 Performance of MOBIL-VI . 153

7.4.3 Performance of MOBIL-PROX . 153

7.4.4 Comparison . 156

7.5 Experiments . 157

7.5.1 Setup and Results . 158

7.5.2 Discussions . 158

7.6 Conclusion . 159

7.A Notation . 160

7.B Missing Proofs . 161

7.B.1 Proof of Section 7.3.1 . 161

7.B.2 Proof of Section 7.4.2 . 161

7.B.3 Proof of Section 7.4.3 . 163

xi

7.C Model Learning through Learning Dynamics Models 169

7.C.1 Proofs . 170

7.D Relaxation of Strong Convexity Assumption 171

7.E Connection with Stochastic Mirror-Prox 175

7.E.1 Variational Inequality Problems 176

7.E.2 Stochastic Mirror-Prox . 178

7.E.3 Connection with MOBIL-PROX 180

7.E.4 Comparison of stochastic MIRROR-PROX and MOBIL-PROX in
Imitation Learning . 186

7.F Experimental Details . 187

7.F.1 Tasks . 187

7.F.2 Algorithms . 188

7.G Useful Lemmas . 190

7.G.1 Polynomial Partial Sum . 190

7.G.2 Sequence in Banach Space . 191

7.G.3 Basic Regret Bounds of Online Learning 192

II Policy Optimization II: Abstraction 196

Chapter 8: Online Learning with Continuous Variations 198

8.1 Introduction . 198

8.1.1 Definition of COL . 199

8.1.2 Examples . 201

8.1.3 Main Results . 202

8.2 Related Work . 203

xii

8.3 Preliminaries . 204

8.4 Equivalence and Hardness . 208

8.4.1 EP and VI Perspectives . 209

8.4.2 Fixed-point Perspective . 211

8.5 Monotone EP as COL . 211

8.6 Reduction by Regularity . 212

8.6.1 Example Algorithms . 214

8.6.2 Remark . 215

8.7 Extensions . 216

8.8 Conclusion . 217

8.A Complete Proofs of Section 8.4 . 218

8.A.1 Proof of Theorem 8.4.1 . 218

8.A.2 Proofs of Proposition 8.4.1 . 222

8.A.3 Proof of Proposition 8.4.2 . 222

8.A.4 Proof of Proposition 8.4.3 . 222

8.B Dual Solution and Strongly Convex Sets 223

8.C Complete Proofs of Section 8.5 . 225

8.C.1 Background: Equilibrium Problems (EPs) 226

8.C.2 More insights into residuals of primal and dual EPs 229

8.C.3 Reduction from Equilibrium Problems to Continuous Online Learning234

8.C.4 Summary . 236

8.D Complete Proofs of Section 8.6 . 236

8.D.1 Proof of Theorem 8.6.1 . 236

xiii

8.D.2 Proof of Corollary 8.6.1 . 237

8.D.3 Proof of Proposition 8.6.1 . 238

8.D.4 Proof of Proposition 8.6.2 . 238

8.D.5 Proof of Proposition 8.6.3 . 240

8.E Complete Proofs of Section 8.7 . 241

8.E.1 Proof of Proposition 8.7.1 . 241

8.E.2 Proof of Theorem 8.7.1 . 242

8.E.3 Proof of Theorem 8.7.2 . 248

Chapter 9: A Reduction from Reinforcement Learning to Online Learning . . . 252

9.1 Introduction . 252

9.2 Setup & Preliminaries . 255

9.2.1 Duality in RL . 255

9.2.2 Toward RL: the Saddle-Point Setup 257

9.2.3 COL and EPs . 258

9.3 An Online Learning View . 260

9.3.1 The COL Formulation of RL . 262

9.3.2 Policy Performance . 262

9.4 The Reduction . 266

9.4.1 Proof of Theorem 9.4.1 . 267

9.4.2 Function Approximators . 268

9.5 Sample Complexity of Mirror Descent . 270

9.5.1 Proof Sketch of Theorem 9.5.1 . 272

xiv

9.5.2 Extension to Function Approximators 273

9.6 Conclusion . 274

9.A Review of RL Setups . 274

9.A.1 Coordinate-wise Formulations . 275

9.A.2 Linear Programming Formulations 276

9.B Missing Proofs of Section 9.3 . 278

9.B.1 Proof of Lemma 9.3.1 . 278

9.B.2 Proof of Lemma 9.3.2 . 278

9.B.3 Proof of Proposition 9.3.1 . 279

9.B.4 Proof of Proposition 9.3.2 . 280

9.C Missing Proofs of Section 9.4 . 281

9.C.1 Proof of Proposition 9.4.1 . 281

9.C.2 Proof of Corollary 9.4.1 . 284

9.C.3 Proof of Proposition 9.4.2 . 284

9.D Proof of Sample Complexity of Mirror Descent 286

9.D.1 The First Term: Martingale Concentration 288

9.D.2 Static Regret of Mirror Descent 291

9.D.3 Union Bound . 296

9.D.4 Summary . 299

9.E Sample Complexity of Mirror Descent with Basis Functions 299

9.E.1 Setup . 300

9.E.2 Online Loss and Sampled Gradient 301

9.E.3 Proof of Theorem 9.5.2 . 302

xv

9.E.4 The First Term: Martingale Concentration 304

9.E.5 Static Regret of Mirror Descent 307

Chapter 10:Predictor-Corrector Policy Optimization 311

10.1 Introduction . 311

10.2 Problem Definition . 314

10.3 IL and RL as Predictable Online Learning 314

10.3.1 IL as Online Learning . 315

10.3.2 RL as Online Learning . 317

10.3.3 Predictability . 319

10.4 Predictor-Corrector Learning . 319

10.4.1 The PICCOLO Idea . 321

10.4.2 The Meta Algorithm PICCOLO 321

10.4.3 Summary: Why Does PICCOLO Work? 324

10.5 Theoretical Analysis . 326

10.5.1 Convergence Properties . 327

10.5.2 Comparison . 328

10.6 Experiments . 329

10.7 Conclusion . 332

10.A Relationship between PICCOLO and Existing Algorithms 333

10.B Proof of Lemma 10.3.3 . 337

10.C The Basic Operations of Base Algorithms 339

10.C.1 Stationary Regularization Class 341

xvi

10.C.2 Non-Stationary Regularization Class 346

10.D A Practical Variation of PICCOLO . 348

10.E Example: PICCOLOing Natural Gradient Descent 349

10.F Regret Analysis of PICCOLO . 350

10.F.1 Reduction from Predictable Online Learning to Adversarial Online
Learning . 351

10.F.2 Optimal Regret Bounds for Predictable Problems 353

10.G Policy Optimization Analysis of PICCOLO 360

10.G.1 Assumptions . 360

10.G.2 A Useful Lemma . 361

10.G.3 Optimal Regret Bounds . 362

10.G.4 Model Learning . 364

10.H Experimental Details . 365

10.H.1 Algorithms . 365

10.H.2 Tasks . 368

10.H.3 Full Experimental Results . 369

10.H.4 Experiment Hyperparameters . 369

III Structral Policy Fusion 372

Chapter 11:A Geometric Framework for Policy Fusion 375

11.1 Introduction . 375

11.2 Motion Generation and Control . 378

11.2.1 Notation . 379

11.2.2 Motion Policies and the Geometry of Motion 380

xvii

11.3 From Operational Space Control to Geometric Control 381

11.3.1 Energy Shaping and Classical Operational Space Control 382

11.3.2 A Simple First Step toward Weighted Priorities 383

11.3.3 Abstract Task Spaces: Simplified Geometric Mechanics 385

11.3.4 Non-constant Weights and Implicit Task Spaces 392

11.3.5 Limitations of geometric control 394

11.4 RMPflow . 395

11.4.1 Structured Task Maps . 395

11.4.2 Riemannian Motion Policies (RMPs) 396

11.4.3 RMP-tree . 397

11.4.4 RMP-algebra . 398

11.4.5 Algorithm: Motion Policy Generation 399

11.4.6 Example RMPs . 400

11.5 Theoretical Analysis of RMPflow . 402

11.5.1 Geometric Dynamical Systems (GDSs) 403

11.5.2 Closure . 405

11.5.3 Stability . 406

11.5.4 Invariance . 408

11.6 Operational Space Control and Geometric Mechanics in View of RMPflow . 410

11.6.1 From Operational Space Control to RMPflow with GDSs 410

11.6.2 Relationship between RMPflow and Recursive Newton-Euler Al-
gorithms . 413

11.6.3 Related Approaches to Motion Policy Generation 415

xviii

11.7 Relationship between RMPflow, Factor-Graph, and Sparse Linear Systems . 415

11.7.1 Preliminary: Quadratic Program 416

11.7.2 The Quadratic Program RMPflow Solves 416

11.7.3 Discussion . 420

11.8 Experiments . 421

11.8.1 Controlled Experiments . 421

11.8.2 System Experiments . 424

11.9 Conclusion . 432

11.A Non-holonomic Systems . 432

11.B Proofs of RMPflow Analysis . 433

11.B.1 Proof of Theorem 11.5.1 . 433

11.B.2 Proof of Proposition 11.5.1 . 438

11.B.3 Proof of Theorem 11.5.2 . 440

11.B.4 Notation for Coordinate-Free Analysis 441

11.B.5 Proof of Theorem 11.5.3 . 442

11.B.6 Proof of Theorem 11.5.4 . 445

11.C Degenerate GDSs . 448

Chapter 12:RMPflow with Learnable Lyapunov Function Reshaping 449

12.1 Introduction . 449

12.2 Quick Recap of RMPflow . 451

12.2.1 Computation . 451

12.2.2 Theoretical Properties of RMPflow and GDSs 453

xix

12.3 RMPfusion . 454

12.3.1 RMP-tree* and RMP-algebra* . 455

12.3.2 Stability . 456

12.3.3 Advantages of RMPfusion over RMPflow 457

12.3.4 Learning RMPfusion . 458

12.4 Experiments . 459

12.4.1 2D Robot . 459

12.4.2 Franka Robot . 462

12.5 Conclusion . 464

12.A Proof of Theorem 12.3.1 . 465

12.A.1 Background . 465

12.A.2 Proof of Theorem 12.3.1 . 466

12.B Benefits due to the Extra Flexibility of RMPfusion 469

12.C Learning RMPfusion . 470

12.D Experimental Details . 471

12.D.1 2D Robot . 471

12.D.2 Franka Robot . 471

12.D.3 Discussion . 473

Chapter 13:RMPflow with Control Lyapunov Function 476

13.1 Introduction . 476

13.2 Background . 480

13.2.1 Riemannian Motion Policies (RMPs) and RMPflow 480

xx

13.2.2 Control Lyapunov Functions (CLFs) 484

13.3 The CLF Interpretation of RMPflow . 486

13.3.1 An Induction Lemma . 486

13.3.2 Global Stability Properties . 489

13.4 A Computational Framework for RMPflow with CLF Constraints 491

13.4.1 Algorithm Details . 491

13.4.2 Stability Properties . 492

13.5 Experimental Results . 493

13.5.1 Simulation Results . 493

13.5.2 Robotic Implementation . 495

13.6 Conclusions . 496

Chapter 14:Epilogue . 498

References . 523

xxi

LIST OF TABLES

1.1 Notation for Policy Optimization . 16

1.2 Notation for Online Learning . 16

4.1 Comparison of our method to prior work on IL for autonomous driving . . . 38

4.2 Test statistics. Total loss denotes the imitation loss in (3.7), which is the
average of the steering and the throttle losses. Completion is defined as the
ratio of the traveled time steps to the targeted time steps (3,000). All results
here represent the average performance over three independent evaluation
trials. 51

5.1 Comparison . 69

5.2 Experiment Details . 86

7.1 Convergence Rate Comparison . 152

7.2 Summary of Symbols . 160

10.1 Upper bounds of the average regret of different policy optimization algo-
rithms. 328

10.2 Tasks specifics and hyperparameters. 370

10.3 Notation for RMPflow . 374

xxii

LIST OF FIGURES

4.1 The high-speed off-road driving task. 37

4.2 System diagram. 41

4.3 The DNN control policy. 41
4.4 The Gazebo-based simulation enviorment (left) and a snapshot from the

on-board camera (right). 42

4.5 The AutoRally car and the test track. 46

4.6 Examples of vehicle trajectories, where online IL avoids the crashing case
encountered by batch IL. (b) and (c) depict the test runs after training on
9,000 samples. 49

4.7 Performance . 53

4.8 The distributions (t-SNE) of the raw images and wheel speed used as DNN
policy’s inputs (details in Section 4.5.3). 55

4.9 The distributions (t-SNE) of the learned DNN feature in the last fully-
connected layer (details are in Section 4.5.3). 55

4.10 The input RGB image and the averaged feature maps for each max-pooling
layer. 56

4.11 Performance comparison between our DNN policy and its CNN sub-network
in terms of batch IL loss, where the horizontal axis is the size of data used
to train the neural network policies. 57

5.1 Learning curves. Shaded regions correspond to ±1
2
-standard deviation. . . . 84

7.1 Experimental results of MOBIL-PROX with neural network (1st row) and
linear policies (2nd row). The shaded regions represent 0.5 standard deviation157

xxiii

10.1 Performance of PICCOLO with different predictive models. x axis is it-
eration number and y axis is sum of rewards. The curves are the me-
dian among 8 runs with different seeds, and the shaded regions account
for 25% percentile. ADAM is used as the base algorithm, and the update
rule, by default, is PICCOLO; e.g. TRUEDYN in (a) refers to PICCOLO
with TRUEDYN predictive model. (a) Comparison of PICCOLO and DYNA

with adversarial model. (b) PICCOLO with the fixed-point setting (10.9)
with dynamics model in different fidelities. BIASEDDYN0.8 indicates that
the mass of each individual robot link is either increased or decreased by
80% with probability 0.5 respectively. 330

10.2 Performance of PICCOLO in various tasks. x axis is iteration number and
y axis is sum of rewards. The curves are the median among 8 runs with
different seeds, and the shaded regions account for 25% percentile. 331

10.3 Performance of PICCOLO with different predictive models on CartPole. x
axis is iteration number and y axis is sum of rewards. The curves are the
median among 8 runs with different seeds, and the shaded regions account
for 25% percentile. The update rule, by default, is PICCOLO. For exam-
ple TRUEDYN in (a) refers to PICCOLO with TRUEDYN predictive model.
(a), (b): Comparison of PICCOLO and DYNA with adversarial model us-
ing NATGRAD and TRPO as base algorithms. (c), (d): PICCOLO with the
fixed-point setting (10.9) with dynamics model in different fidelities. BI-
ASEDDYN0.8 indicates that the mass of each individual robot link is either
increased or decreased by 80% with probablity 0.5 respectively. 369

10.4 The performance of PICCOLO with different predictive models on various
tasks, compared to base algorithms. The rows use ADAM, NATGRAD, and
TRPO as the base algorithms, respectively. x axis is iteration number and
y axis is sum of rewards. The curves are the median among 8 runs with
different seeds, and the shaded regions account for 25% percentile. 370

11.1 Tree-structured task maps . 396

11.2 Phase portraits (gray) and integral curves (blue; from black circles to red crosses)
of 1D example. (a) Desired behavior. (b) With curvature terms. (c) Without
curvature terms. (d) Without curvature terms but with nonlinear damping. 422

11.3 2D example; initial positions (small circle) and velocities (arrows). (a-d) Obstacle
(circle) avoidance: (a) w/o curvature terms and w/o potential. (b) w/ curvature
terms and w/o potential. (c) w/o curvature terms and w/ potential. (d) w/ curva-
ture terms and w/ potential. (e) Combined obstacle avoidance and goal (square)
reaching. (f) The change of Lyapunov function in (11.24) over time along the
trajectories in (e). 423

xxiv

11.4 This figure depicts the tree of task maps used in the experiments. See Section 11.8.2
for details. 425

11.5 Two of the six simulated worlds in the reaching experiments (left), and the two
physical dual-arm platforms in the full system experiment (right). 426

11.6 Results for reaching experiments. Though some methods achieve a shorter goal
distance than RMPflow in successful trials, they end up in collision in most the
trials. 426

12.1 Franka robot navigating around an obstacle using RMPfusion with the RMP-tree*.
Gray nodes show task spaces, blue nodes show subtask RMPs, and weight func-
tions are shown on the respective edges where they are defined. See Section 12.4.2
for details. 451

12.2 (a) Shows the network used for learning with RMPfusion, specifically for any
node i on the RMP-tree*, with children c0, . . . , cj . If i is a leaf node, then it
is evaluated from the designed RMP policy. The global policy is obtained by
applying resolve on the root node RMP. RMP-tree* used in experiments for (b)
2d1level and (c) 2d2level. 458

12.3 Trajectories generated in by (a)-(b) learner-rmp and (e) learner-un, com-
pared to the expert are shown. Initial state is a black circle for position and black
arrow for velocity. The environment has obstacles (red and blue) and goal (orange
square). (c) shows the corresponding Lyapunov function for learner-rmp tra-
jectories in (b) while (d) shows its learning curve. 461

12.4 Improvement of the behavior produced by learner-rmp at various stages dur-
ing training for 2d2level. The top row shows the trajectories and the bottom
row shows the corresponding Lyapunov function. From left to right these plots
correspond to the red dots from left to right on the training curve in Figure 12.3d. . 461

12.5 (a) An example from the training dataset (left) and the test dataset (right). The
robot is shown in its start configuration with an obstacle (cylinder) and a goal
(sphere). (b) Learner’s performance with respect to the expert on the test dataset
for the experiments with the Franka robot. 463

12.6 (b) Trajectories generated in 2d2level by learner-rmp-large compared
to the expert is shown. Initial state is a black circle for position and black ar-
row for velocity. The environment has obstacles (red and blue) and goal (orange
square). Learning curves for (a) learner-rmp and (c) learner-rmp-large
on 2d2level is also shown. 472

xxv

12.7 Trajectories produced by learner-un at various stages during training for 2d2level.
From left to right these plots correspond to the red dots from left to right on the
training curve in Figure 12.6a. 472

12.8 Trajectories produced by learner-un-large at various stages during training
for 2d2level. From left to right these plots correspond to the red dots from left
to right on the training curve in Figure 12.6c. 472

12.9 (a)-(d) An example execution (left to right) from the test dataset, comparing (a)
the expert with (b) learner-0, (c) learner-300, and (d) learner-1200.
(e) The respective Lyapunov function of the learners’ trajectories (learner-0
(left), learner-300 (middle), learner-1200 (right)). 475

13.1 An example of an RMP-tree. See text for details. 481

13.2 2D goal reaching task with a circular obstacle (grey). (a) RMPflow–CLF
with three choices of nominal controllers, resulting in different goal reach-
ing behaviors. (b) RMPflow–GDS with the goal attractor given by a GDS.
The behavior is limited by the choice of the metric and the potential func-
tion. 495

13.3 Multi-robot goal reaching task. (a) RMPflow–CLF with spiral nominal
controllers. The robots move to their goal smoothly. (b) RMPflow–GDS
with the goal attractor given by a GDS. Due to the symmetry of the con-
figuration, the system suffers from deadlock when the robots are near the
center: the robots oscillate around the deadlock configuration. 496

13.4 Multi-robot formation preservation task. The robots are tasked with pre-
serving a regular pentagon formation while the leader has an additional
task of reaching a goal position. (a) RMPflow–CLF with a spiral nomi-
nal controller. (b) RMPflow–GDS. The goal (red star) and the trajectories
(blue curves) of the leader robot are projected onto the environment through
an overhead projector. RMPflow–CLF shapes the goal-reaching behavior
through a spiral nominal controller. 497

xxvi

SUMMARY

Roboticists have long envisioned fully-automated robots that can operate reliably in

unstructured environments. This is an exciting but extremely difficult problem; in order

to succeed, robots must reason about sequential decisions and their consequences in face

of uncertainty. As a result, in practice, the engineering effort required to build reliable

robotic systems is both demanding and expensive. This research aims to provide a set of

techniques for efficient and principled robot learning. We approach this challenge from

a theoretical perspective that more closely integrates analysis and practical needs. These

theoretical principles are applied to design better algorithms in two important aspects of

robot learning: policy optimization and development of structural policies. This research

uses and extends online learning, optimization, and control theory, and is demonstrated

in applications including reinforcement learning, imitation learning, and structural policy

fusion. A shared feature across this research is the reciprocal interaction between the de-

velopment of practical algorithms and the advancement of abstract analyses. Real-world

challenges force the rethinking of proper theoretical formulations, which in turn lead to

refined analyses and new algorithms that can rigorously leverage these insights to achieve

better performance.

xxvii

CHAPTER 1

INTRODUCTION

We have long envisioned a world with fully-automated agents that can operate reliably

to solve complex tasks in unstructured, real-world environments. This is an exciting but

extremely difficult problem: in order to succeed, an agent must reason about sequential

decisions and their consequences through a careful balance between exploration and ex-

ploitation. The agent should adapt to new environments to maximize performance, while

also making decisions that contend with the agent’s uncertainty about its own experiences

of the world. Broadly speaking, this problem can be framed as reinforcement learning

(RL), where the interactions between the agent and the environment follow the rules of

some (contextual/partially observable) Markov decision process. However, despite our

decades-long research on RL and understanding of near-optimal algorithms, there still ex-

ists a significant gap between theory and practice.

1.1 The Reality Gap

This “reality gap” can be attributed, at least in part, to the mismatch between the formal

problem settings commonly studied by theoreticians and the domain properties of real-

world applications. As a result, engineers often need to heuristically modify existing theo-

retical frameworks via trial and error to make them work well in practice, which can be a

time-consuming and expensive process.

Nevertheless, the effectiveness of modifying these frameworks by hand is ultimately

compromised by the lack of integration across various methodologies and theories that

have been implicitly adopted throughout the design pipeline. Because theoretical tools are

often designed without the practical applications in mind, they can be overly pessimistic

or optimistic when deployed on real systems. On the one hand, when an overly simplified

1

problem setup is taken, such as breaking the full policy optimization problem into iso-

lated parts (like planning, perception, control, etc.), the agent can suffer from uncontrolled

performance bias due to optimistic assumptions. On the other hand, when we approach

real-world applications using a overly general problem setup, such as black-box learning,

the agent can also have suboptimal performance. While this approach does not make opti-

mistic assumptions, they can be too pessimistic about the problem’s difficulty. Therefore,

algorithms designed based on such a general setting will waste efforts to tackle imaginary

corner cases that do not exist in the source applications, making the agent learn less data

efficiently.

Indeed, when an algorithm with strong theoretical guarantees is applied to a real-world

problem that well matches its abstract setup, high-performance systems can be built (such

as contextual bandit and recommendation systems). But, often this is not the case. In

practice, we have been unconsciously using shallow human learning to figure out the last

mile of design, seldomly using the real-world insights to refine our theories end-to-end.

Errors due to the mismatch between theory and practice therefore compound in each stage

of design, leading to the reality gap.

When systems become more complicated, this reality gap can widen. As an example,

most robots are built on a hierarchical decomposition principle, where complex tasks are

decomposed into simpler problems. However, the untold story behind the success of hierar-

chical approaches is the ad-hoc way in which these simpler components are combined and

tuned: a planning module may have been designed under perfect realization assumptions,

and yet imperfections due to control, modeling errors, and computational budget unavoid-

ably arise in a real system. Consequently, the engineering effort required to build robotic

systems with desired performance is both demanding and expensive.

2

1.2 Theories Driven by Practical Needs

In this thesis, I propose to bridge the reality-gap from a theoretical perspective that more

closely integrates analysis and practical needs: Real-world challenges force the rethinking

of proper theoretical formulations, which in turn lead to refined analyses and new algo-

rithms that can rigorously leverage these insights to achieve better performance. While

theory cannot replace engineering and empirical studies, a proper theoretical setup can

help provide a panoramic perspective on the underlying difficulties and indicate systematic

directions for improvement. I will demonstrate the efficacy of this approach through my re-

search to date, which contributes a set of techniques for efficient and principled robot learn-

ing. This thesis focuses on two important aspects of robot learning: policy optimization

and development of structural policies, where a reciprocal interaction is shown between the

development of practical algorithms and the advancement of abstract analyses.

1.3 Policy Optimization: An Online Learning Approach

Policy optimization concerns learning the decision rule (i.e. the policy) for sequential

decision-making tasks based on interactions and experiences. My research takes an online

learning approach to policy optimization, in which the policy update process is abstracted

into the interactions between two players (a learner and an opponent) (Cheng and Boots,

2018; Cheng et al., 2018a, 2019a,b,c,d; Pan et al., 2019; Pan et al., 2018). The use of on-

line learning to analyze policy optimization was pioneered by Ross, Gordon, and Bagnell

(2011) who proposed to reduce imitation learning (IL) to adversarial online learning. The

research here (constituting Part I and Part II of the thesis) builds on top of these ideas and

provides further insights.

3

1.3.1 Efficient Policy Optimization via Online Imitation Learning

Policy optimization in practice is not simply about solving a generic RL problem as it is

mathematically stated, because specific information is often known about the sequential

decision problem of real-world applications. For example, a robot does not need to learn to

move from scratch, as similar problems have been studied for decades in motion planning

and optimal control. Therefore, we should also consider this prior knowledge as part of

the overall problem description, and an important aspect of policy optimization is about

designing proper learning paradigms through which a good policy can be learned efficiently

(Chapter 2).

One instantiation of this idea is IL, which leverages domain knowledge in the form of

expert demonstrations to build surrogate problems that have nicer optimization properties

(Chapter 3). The expert in IL can be fairly general. While experts are commonly associ-

ated with human demonstrators, they can also be heuristics or suboptimal algorithms (like

planning in a simplified world). That is, we should more appropriately view IL as a mecha-

nism to transfer our prior knowledge about the problem (abstracted in the form of an expert

policy) to quickly instantiate non-trivial policies.

We put this design principle into practice: In Chapter 4, we build an autonomous sys-

tem that is capable of using cheap on-board sensors on a rally car to perform high-speed

maneuvers on off-road terrain (Pan et al., 2019; Pan et al., 2018). This is a challenging

policy optimization problem, where observations are high-dimensional and dynamics are

highly stochastic, and running a usual RL algorithm here could risk permanently damaging

the car. We accomplish this feat by instead leveraging IL to let the robot mimic a model

predictive control (MPC) algorithm that runs with expensive compute and sensor resources,

the prior knowledge about the problem. To this end, we take online IL (Ross, Gordon, and

Bagnell, 2011) and batch IL (i.e. behavior cloning) (Pomerleau, 1989) as potential candi-

dates. We show in theory that when the expert is stable and can provide consistent feedback

to the learner for any query, online IL enjoys a better trade-off between the expert-learner

4

performance gap and sample efficiency. Importantly, this theoretical insight translates into

our real-wold system: the policy trained with online IL learned to drive the rally car faster

and generalized better to new conditions.

While the idea of expressing prior information as expert policies is powerful, IL can

yield policies with inferior performance compared to RL when the expert policy is subopti-

mal. To combine the best aspects of RL and IL, in Chapter 5, we frame several popular RL

and IL algorithms in a common mirror descent framework and propose a simple random-

ized strategy, called LOKI (Locally Optimal search after K-step Imitation) (Cheng et al.,

2018a). LOKI first performs a small but random number of first-order online IL iterations

before hard switching to a policy gradient RL method. Both theoretically and empirically,

we show not only can LOKI improve faster than common RL methods, but it can also sig-

nificantly outperform a suboptimal expert. The insight is that training a policy with online

IL generally converges faster than with RL in the early stage, as it minimizes a relative

performance measure and is less noisy.

1.3.2 Convergence and Acceleration of Online Imitation Learning

Can we further accelerate online IL? Inspired by this question, we revisit the reduction

made by Ross, Gordon, and Bagnell, 2011 which defines the per-round loss in online

learning as the expectation of some performance upper bound over the distribution of states

visited by the current policy. This reduction treats the state distribution as an online, ad-

versarial component, and all the algorithms discussed above and in the literature had been

designed based on this principle. But is policy optimization truly adversarial? We found

that in practice it is not: the policies are executed in the same environment whose dynam-

ics do not change adversarially with policies; instead certain continuity properties exist.

In other words, the per-round losses in online IL are actually predictable from the past

information.

With this insight, in Chapter 6, we prove the first last-iterate convergence result for a

5

family of online IL algorithms, called value aggregation (Ross and Bagnell, 2014). While

the existence of a good policy in the policy sequence can be guaranteed non-asymptotically

using the traditional adversarial treatment, little was known about the convergence of the

sequence or the performance of the last policy. We debunk the common belief that value

aggregation always produces a convergent policy sequence with improving performance.

Moreover, we identify a critical stability condition for convergence and provide a tight non-

asymptotic bound on the performance of the last policy (Cheng and Boots, 2018). These

new theoretical insights show that online IL can be stabilized by regularization techniques,

including the heuristic use of mixture policies in the literature.

The above discovery leads to a new family of algorithms, called MoBIL (Model-Based

Imitation Learning), that combines the knowledge about the predictable components in-

side online IL to achieve provably faster and unbiased convergence (Cheng et al., 2019b).

In Chapter 7, we propose two model-based IL algorithms inspired by Follow-the-Leader

(FTL) with prediction: MoBIL-VI based on solving variational inequalities (VIs) and

MoBIL-Prox based on stochastic first-order updates. These two methods leverage a predic-

tive model to estimate future gradients in lieu of real interactions with the environment to

speed up policy learning. For example, a predictive model can be built using a biased sim-

ulator or past experiences. When the predictive model is learned online, these algorithms

can provably accelerate the best known convergence rate up to an order.

1.3.3 Toward a Generic Framework for Policy Optimization and Beyond

We further extend the above ideas beyond IL to a much larger class of problems. We gen-

eralize these findings along two directions, proposing 1) a refined online learning setup,

called Continuous Online Learning (COL), that intrinsically models the regularity of loss

functions across rounds (Cheng et al., 2019c); and 2) a meta algorithm, called PICCOLO

(PredICtor-COrrector onLine Optimization1), that leverages this regularity to turn a stan-

1In the original paper, it was named PredICtor-COrrector poLicy Optimization.

6

dard online learning algorithm designed for adversarial problems into a new hybrid algo-

rithm with accelerated convergence (Cheng et al., 2019d).

Introduced in Chapter 8, COL aims to bridge the reality gap between the classic adver-

sarial setup of online learning and the applications with such regularity properties. Toward

this end, COL refines the relationship between regret, per-round losses, and feedback in-

formation. In COL, the regret is measured with respect to a loss sequence whose gradi-

ents change continuously across rounds with respect to the learner’s decisions, while the

learner receives potentially adversarial feedback about these regular online losses (such

as stochastic gradients). COL appropriately describes many interesting applications, from

general equilibrium problems (EPs) to optimization in episodic MDPs, where online losses

are predictable (in expectation). For example in online IL, the regret is measured in terms

of the generalization error of imitation, which is continuous because of the expectation

over the state distribution induced by the learner’s policy, whereas the feedback returned

to the learner is only its noisy finite-sample approximation. Structural prediction, system

identification, and fitted Q-learning can be framed similarly as well.

COL formalizes these regularity properties observed in practice into an abstract theo-

retical setup, so that we can better study how this extra information changes the learning

characteristics. In Chapter 8, we prove a fundamental relationship between COL and EPs:

On the one hand, all monotone EPs admit a reduction to achieving sublinear static regret

in COL. On the other hand, achieving sublinear dynamic regret in COL is equivalent to

solving all EPs. Using this insight, we offer conditions for efficient algorithms that achieve

sublinear dynamic regret, even when the losses are chosen adaptively without any a pri-

ori variation budget. Furthermore, we show for COL a reduction from dynamic regret to

both static regret and convergence in the associated EP, allowing us to analyze the dynamic

regret of many existing algorithms.

As a compelling demonstration of the new COL framework, in Chapter 9, we present

a reduction from RL to no-regret online learning based on the saddle-point formulation of

7

RL, by which any online algorithm with sublinear regret can generate policies with prov-

able performance guarantees. This new perspective decouples the RL problem into two

parts: regret minimization and function approximation. The first part admits a standard

online-learning analysis, and the second part can be quantified independently of the learn-

ing algorithm. Therefore, the proposed reduction can be used as a tool to systematically

design new RL algorithms. We demonstrate this idea by devising a simple RL algorithm

based on mirror descent and the generative-model oracle. For any γ-discounted tabular

RL problem, with probability at least 1 − δ, it learns an ε-optimal policy using at most

Õ
(
|S||A| log(1

δ
)

(1−γ)4ε2

)
samples. Furthermore, this algorithm admits a direct extension to linearly

parameterized function approximators for large-scale applications, which has computation

and sample complexities independent of |S|,|A|, though at the cost of potential approxima-

tion bias.

Complementary to this refined COL setup, in Chapter 10, we provide a constructive

framework, PICCOLO (Cheng et al., 2019d), to design algorithms that leverage the pre-

dictability in losses to speed up learning. PICCOLO is a meta algorithm. An instance

algorithm returned by PICCOLO uses the concept of predictive models presented in Chap-

ter 7 to optimize online decisions. It recursively repeats the two following steps: In the

Prediction Step, the learner uses a predictive model to estimate the gradient of the next

loss function and then applies the predictions, potentially through solving a VI or an op-

timization problem, to update the decision; in the Correction Step, the learner runs the

updated decision in the environment, receives (noisy) gradient feedback, and then corrects

the decision using the gradient error.

The design of PICCOLO was made possible by a novel reduction that converts a given

predictable online learning problem into a new adversarial problem. We prove that PIC-

COLO can improve the static regret rate of any base algorithm that can be written as mirror

descent or FTRL (Follow-the-Regularized-Leader).2 An intuition for the faster learning

2MoBIL in Chapter 7 is a special case of PICCOLO when the base algorithm is FTRL.

8

rate is that PICCOLO decouples optimization complexity from sample complexity (mea-

sured each round) through embedding complex computation into the Prediction Step.

We can use the PICCOLO idea in policy optimization by identifying each online deci-

sion as a policy. Because the family of mirror descent and FTRL update rules is rich and

covers most first-order algorithms used in RL and IL (cf. Chapter 5), we can use PICCOLO

to speed up many policy optimization techniques. At a high level, we can treat PICCOLO as

a hybrid algorithm that combines a model-based update (Prediction Step) and a model-free

update (Correction Step), where the concept of predictive model provides an abstraction of

model information (i.e. past experiences). We show that PICCOLO does not suffer from

policy performance bias due to modeling error, unlike the classic model-based approaches.

Therefore, PICCOLO provides a systematic framework for designing new algorithms that

can safely leverage imperfect models. To corroborate the theory, in Chapter 10 we construct

a predictable online learning setup for RL, and we ‘PICCOLOed’ multiple algorithms in

simulation, including ADAM (Kingma and Ba, 2014), natural gradient descent (Kakade,

2002), and trust-region optimization (Schulman et al., 2015b). The experimental results

show that the PICCOLOed versions consistently surpassed the base algorithm and were

robust to predictive model errors; they converged even when the models were adversarial.

1.4 Expressive Structural Policies with Stability Guarantees

Another aspect of this thesis (Part III) focuses on designing the policy structure in policy

optimization. While universal function approximators can be used to parameterize policies,

policies learned in this way do not have robust guarantees about important qualities such

as stability and interpretability. To reliably apply learning techniques to robotics, we must

find a way to ensure these properties into our learned policies in a non-statistical manner.

We treat this requirement as a design problem of structuring a policy class in which

every policy is interpretable and stable (Cheng et al., 2018b; Li et al., 2019b; Mukadam

et al., 2019), so that statistical policy learning techniques (e.g. the algorithms described in

9

Parts I and II of the thesis) can be freely applied. Although parameterizing a stable class of

policies is not difficult, an ideal policy class must also be flexible and expressive enough to

achieve desired performance.

1.4.1 A Geometric Framework for Policy Fusion

We demonstrate this idea in the design of second-order policies, i.e. policies that control

acceleration/torque based on feedback fo position and velocity. In Chapter 11, we propose

a tree-structured computational graph, called RMPflow, that can efficiently and consis-

tently combine multiple subtask policies into a global policy (Cheng et al., 2018b). Based

on differential geometry, RMPflow uses the Riemannian Motion Policy (RMP) frame-

work (Ratliff, Issac, and Kappler, 2018) to represent policies on manifolds and has a set

of operators to propagate RMPs across different manifolds. RMPflow generalizes opera-

tional space control (Khatib, 1987) to model abstract and non-Euclidean behaviors and can

be combined with motion planning, such as the work from Ratliff, Toussaint, and Schaal

(2015a). Theoretically, we show RMPflow is Lyapunov-stable and has a coordinate-free

expression in tangent bundles. This means that policy of one robot can be stably transferred

to another robot without learning, given enough degrees of freedom. These properties are

proved through defining a new class of differential equations called Geometric Dynamical

Systems (GDSs), which generalize the traditional Simple Mechanical Systems (SMSs) to

have inertia matrices that are velocity-dependent. The incorporation of velocity information

in inertia matrices in RMPflow is a critical step to increasing the policy class’ expressivity;

e.g., it allows RMPflow to generate natural and fast collision avoidance behaviors which

previous methods fail.

In Chapter 12, we formally show that RMPflow is fully differentiable and therefore

can be viewed as a policy class in policy learning (Mukadam et al., 2019). In addition,

we propose a variation of RMPflow, called RMPfusion, where extra weight functions are

introduced onto the edges of the tree data structure of RMPflow. This modification acts

10

as two roles: on the one hand, it increases the programming flexibility when one hand-

specifies task-space RMP policies; on the other hand, it can be used to more finely control

the policy fusion process. We show that, like other parameters in RMPflow, these weights

can also be learned through back-propagation. Furthermore, we prove that RMPfusion

provides the same type of stability guarantees as RMPflow, so long as the weight functions

satisfy minor restrictions (such as being non-negative).

1.4.2 Combining Policies with Control Lyapunov Functions

Nevertheless, the above advancement in policy fusion made by RMPflow relies on the

assumption that the task-space policies are GDSs in order to guarantee stability. Although

GDSs are already more general than SMSs that form the basis of operational space control,

they are still a very specific case of general second-order dynamical systems, and asking

engineers to be familiar these new GDSs increases the learning curve of using RMPflow.

Fortunately, in Chapter 13, we show that the policy fusion procedure of RMPflow actu-

ally works beyond GDSs: RMPflow remains stable for all task-space policies that are stable

with respect to a family of Control Lyapunonv Functions (CLFs) (Li et al., 2019b). In other

words, we can use RMPflow to combine a much larger class of policies, without changing

the algorithm. Leveraging this finding, we design an efficient CLF-based computational

framework that can combine arbitrary subtask policies provided by users into a globally

stable policy. Compared with the original usage of RMPflow above, this new framework

gives users the flexibility to incorporate design heuristics through nominal controllers for

the subtasks.

In summary, RMPflow (and its variation RMPfusion) leverage a tree-decomposition

of the problem and effectively represents a policy class that is Lyapunov-stable and yet

is expressive enough to contain policies that are known to work well in practice. These

properties make RMPflow an ideal candidate for policy optimization with requirements of

safety and interpretability.

11

1.5 Outline

The following chapters of this thesis are organized as follows. We partition the overall

thesis into three parts:

• Part I: Policy Optimization I: Imitation

• Part II: Policy Optimization II: Abstraction

• Part III: Structral Policy Fusion

In Part I, we first introduce the setup and preliminaries of policy optimization and imitation

learning (IL) in a tutorial style, respectively, in Chapter 2 and Chapter 3. Then we show

in Chapter 4 that IL can be used as a tool to speed up policy optimization with real-world

experiments in autonomous driving. In Chapter 5, we provide a simple solution to deal

with suboptimal expert policies. Inspired by these encouraging results of online IL, we

dive deeper into the theoretical properties of online IL in Chapter 6. Finally, we show in

Chapter 7 how these new insights can be leveraged to further accelerate online IL via the

concept of predictive models.

Part II of this thesis the generalizes the new theoretical findings of IL presented in

Part I to a larger class of problems. In Chapter 8, we establish a refinement of existing

online learning setups, called Continuous Online Learning (COL), to formally consider

the regularity of loss functions across different rounds, an important observation made in

Chapter 6. Based on this new formulation, in Chapter 9, we provide a reduction from the

saddle-point formulation of RL to COL, by which efficient policy optimization algorithms

with strong theoretical guarantees can be systematically designed. Lastly, we describe

the meta algorithm PICCOLO in Chapter 10, which generalizes the results of Chapter 7

and provides a principled way to leverage the predictable information resulted from the

regularity of online losses to speed up learning.

12

Part III complements the first two parts of this thesis by providing a class of second-

order policies with provable stability guarantees. In other words, under proper assumptions,

these structural policies can be used in conjunction with the learning techniques described

in Parts I and II, so that even policies generated in the premature learning phase are guaran-

teed to be Lyapunov stable. We first describe the general policy fusion algorithm, RMPflow,

and its geometric and stability properties in Chapter 11. Next in Chapter 12, we provide an

extension, RMPfusion, to further increase its parameterization flexibility. Finally, in Chap-

ter 13, we re-establish and extend the stability results of RMPflow in Chapter 11 through a

rigorous Control Lyapunov Function (CLF) treatment, and provide a new Lyapunov stable

framework for combining arbitrary user policies.

At the very end, in Chapter 14, we revisit the question of whether better theories can

help bridge the reality gap. The short answer is yes. Nonetheless, the insights learned here

also open the door to many new, exciting research directions.

13

Part I

Policy Optimization I: Imitation

14

ABSTRACT

In this part of the thesis, we discuss how imitation learning (IL) can be used for efficient

policy optimization (Cheng and Boots, 2018; Cheng et al., 2018a, 2019b; Pan et al., 2019;

Pan et al., 2018). First, in Chapter 2, we define a general policy optimization problem

and set up the notation for the remaining chapters. This chapter is written in a tutorial

style with an aim to provide background knowledge in reinforcement learning (RL) to

unfamiliar readers. In Chapter 3, we discuss domain knowledge available in practical policy

optimization problems, and show how imitation learning (IL) can be used as a interface to

express this prior knowledge. We compare different approaches to IL and theoretically

analyze their properties. Later in Chapter 4 we use these insights to design a sample-

efficient IL system for off-road high-speed autonomous driving.

With these encouraging results, we further study the theoretical properties of online IL.

In Chapter 5, we address the issue of suboptimal expert policies through a simple random-

ized framework that combines IL and RL. In Chapter 6, we finely characterize interesting

phenomena about the convergence of a popular IL algorithm AGGREVATTE, proving that

whether it converges in the last iterate or not is purely problem dependent. This insight

supports the usage of common heuristics in online IL, as we show that these tricks effec-

tively act as regularization to stabilize the problem. Inspired by these findings, we design

two new online IL algorithms (MOBIL) in Chapter 7. These algorithms learn predictive

models of future gradients online, and can provably accelerate the convergence of existing

IL methods in literature up to an order.

15

NOTATION

Table 1.1: Notation for Policy Optimization

Symbol Definition

S the state space
A the action space

π(a|s) the distribution of a policy π, where s ∈ S and a ∈ A
π?(a|s) the expert policy
γ the discount factor
T the problem horizon
t the time step

r(s, a) the reward function
c(s, a) the cost function
P(s′|s, a) the transition dynamics
p(s) the initial state distribution
V π(s) the value function of a policy π, where s ∈ S
Qπ(s, a) the Q-function of a policy π, where s ∈ S and a ∈ A

V π(p), J(π) the return (i.e. the expected accumulated cost/reward) of a policy π
V̄ π(p), J̄(π) the average return of a policy π

dπt (s) the state distribution of a policy π at time t
dπ(s) the average state distribution of a policy π

Table 1.2: Notation for Online Learning

Symbol Definition

n the round number
N the total number of rounds
X the decision set
ln the loss in round n

regretN(X) the static regret w.r.t. to the adversarial comparator in X after N rounds
regretsN(X) the same as regretN(X)
regretdN(X) the dynamic regret w.r.t. to the adversarial comparator in X after N rounds

16

CHAPTER 2

POLICY OPTIMIZATION

In this chapter, we provide a tutorial of reinforcement learning (RL) from the perspective

of policy optimization. We will use this chance to set up the notation for the following

chapters. While the contents here are not new, our goal is to summarize these preliminaries

in a coherent, concise manner and highlight important properties. We invite the readers to

refer to, e.g., (Puterman, 2014) for further details.

2.1 Setup

We consider sequential-decision making problems in discrete-time Markov decision pro-

cesses (MDPs). Let S denote the state space, A denote the action space, and P(s′|s, a)

denote the (stochastic) transition dynamics, for s, s′ ∈ S and a ∈ A. We allow the state

and actions spaces to be either discrete or continuous. To make writing compact, we will

embed time information into the state definition when needed (e.g. in finite-horizon appli-

cations); that is, one can think of S as S̄ × [0,∞), where S̄ is some basic state space, and

P(s′|s, a) as a non-stationary function for elements in S̄. For simplicity, we suppose the

same action space A is shared across different states; the following results can be easily

extended to the state-dependent case.

In policy optimization, the goal is to find a policy π(a|s) (a conditional distribution of

action a ∈ A given state s ∈ S) inside a compact policy class Π with good performance.

In this thesis, we will consider both the reward and the cost formulations, whichever is

more appropriate for a given application, where we use r(s, a) and c(s, a) to denote the

reward and the cost functions, respectively. Following the standard convention, we measure

the performance of a policy π in terms of V π(p), the expected accumulated reward/cost

(or simply the return) when π is executed in the MDP starting from some initial state

17

distribution p(s0). In the cost formulation, we would often write J(π) := V π(p), which

is known as the cost-to-go in the control literature. Since cost and reward are essentially

interchangeable, we will focus only on the reward case in this tutorial chapter.

We will study both the finite-horizon and the discounted infinite horizon cases:

• Finite-horizon problems with horizon T <∞:

V π(p) := Es0,a0,s1,···∼ρπ(p)

[
T−1∑

t=0

r(st, at)

]
(2.1)

• Infinite-horizon problems with discount γ ∈ [0, 1):

V π(p) = Es0,a0,s1,···∼ρπ(p)

[
∞∑

t=0

γtr(st, at)

]
(2.2)

where ρπ(p) is the trajectory distribution of running the policy π from the initial distribution

p. Likewise we write ρπ(s) if the trajectory starts from a state s ∈ S . Note again that,

because we allow the state to encode time information, the policies considered here can

effectively be non-stationary if needed.

While V π(p) is the performance of interest, we will more often work with its average

version, which we denote as V̄ π(p), in order to design algorithms that are agnostic the exact

setup. Specifically, the average return V̄ π(p) is related to the return V π(p) by V̄ π(p) =

1
T
V π(p) for the T -horizon problem, or V̄ π(p) = (1− γ)V π(p) for the γ-discounted infinite

horizon problem. The average return can alternatively be defined from the perspective of

the average state distribution. Let dπt (s) denote the state distribution at time t of running

the policy π from the initial distribution p. We define the average state distribution as

dπ :=
1

T

T−1∑

t=0

dπt (s) or dπ := (1− γ)
∞∑

t=0

γtdπt (s) (2.3)

for the T -horizon and the γ-discounted infinite horizon problems, respectively. Then the

18

average return, for both settings, can be defined using the same expression as

V̄ π(p) := Es∼dπEa∼π|s[r(s, a)]. (2.4)

Likewise we can define J̄(π). For convenience, we will often omit writing the random

variable in expectations; for example, we may write (2.4) simply as V̄ π(p) = EdπEπ[r].

From the above construction, we see that the factor 1
1−γ plays the role of the effective

horizon in a γ-discounted infinite horizon problem, or the factor 1 − 1
T

is the effective

discount factor in a T -horizon problem. Therefore, core mathematical properties of finite

horizon problems and discounted infinite horizon problems are essentially the same, though

algebraic differences are necessary in writing.

We also notice that, by the definition in (2.4), as either γ → 1 or T → ∞, the average

return V̄ π(p) converges to the objective of the undiscounted infinite horizon MDP prob-

lems. In the limit, the average state distribution dπ defined in (2.3) is known as the limiting

average state distribution, which is the same as the stationary distribution of the MDP un-

der π when one exists (Puterman, 2014). Because the following chapters are based on the

average setup in (2.4), most of our results also apply to the undiscounted infinite horizon

case.

2.2 Objective and Assumptions

Based on the definition of average return in (2.4), a general policy optimization problem in

RL can be written compactly as

max
π∈Π

V̄ π(p) = max
π∈Π

Es∼dπEa∼π|s[r(s, a)]. (2.5)

The main assumption we have imposed so far is that the policy class Π is compact and

the MDP is discrete-time.1 We should remark that, for the purpose of policy optimization,

1Similar constructions could be extended to continuous time under technical regularity assumptions.

19

assuming the state observable does not lose generality. Suppose originally we wish to

optimize some reactive policy π′(a|o) in a partially observable MDP with an observation

space O, where o ∈ O. We can equivalently view this problem as optimizing the policy

π(a|s) = Eo|s[π′(a|o)] in the fully observable MDP. For history-dependent policies, similar

ideas of transformation can be applied, as a state by definition captures all the information.

In other words, partial observability simply means that we have restrictions on the structure

of the policy class Π.

We have not made assumptions on the initial state distribution p and the transition

dynamics P; they can be unknown, and P can be stochastic. We also have not yet made

any restrictions on the reward r and the cost c functions. Therefore, the problem described

in (2.5) is fairly general; the only way for the learner to improve the policy π is to directly

interact with the unknown MDP to gather information.

To make learning feasible, we will additionally assume that the problem can be reset

by querying the (unknown) initial state distribution, so that the learner would not run into

disastrous and unrecoverable situations (like getting stuck in a sub-optimal absorbing state).

We call this setting episodic policy optimization, where the data are collected in terms

of trajectories. We will make this assumption, if not stronger, throughout the following

chapters.

Later we will also add extra structural assumptions on the generic setup (2.5), as often

prior knowledge about the MDP problem at hand is available. While we will give the

specific insights, we recall typical assumptions used in the literature.

• In a typical RL problem, the reward is usually bounded, e.g., in the range [0, 1].

• When the state and action spaces are continuous, (local) Lipschitz properties of the

reward/cost and the transition dynamics are likely to hold.

• In control applications, the cost function is hand-specified and therefore known (which

is usually continuous though not necessarily bounded), and partial knowledge about

20

the transition dynamics and the initial state distribution is not uncommon.

• In imitation learning (IL), the prior knowledge about the problem is represented in

the form of an expert policy, although the reward/cost in this case can sometimes be

completely unknown and cannot be queried at all.

2.3 A General Performance Difference Lemma

Let us discuss some useful properties that are induced by the Markovian structure of the

MDP and the additive structure of the performance index in (2.4). Working with these

properties are often more convenient than directly with the algebra.

First, using (2.4), we define the value function of the policy π at state s ∈ S as V π(s),

i.e. it is the return when the initial distribution is a delta distribution centered at s.2 Using

V π(s), we can define the Q-functions with respect to the policy π: with3 γ ∈ [0, 1],

Qπ(s, a) := r(s, a) + γEs′∼P|s,a[V π(s′)] (2.6)

It is easy to verify that they are related through V π(s) = Ea∼π|s[Qπ(s, a)]. In other words,

we have the recursive equation,

V π(s) = Es∼π|s
[
r(s, a) + γEs′∼P|s,a[V π(s′)]

]
(2.7)

For the optimal policy π∗, its value function additionally satisfies the Bellman equation (Bell-

man, 1954)

V π(s) = max
a∈A

r(s, a) + γEs′∼P|s,a[V π(s′)]. (2.8)

Using the value function and the Q-function, we can define the advantage function with

2For finite-horizon problems, the sum starts from the associated time step of s and stops when the end of
horizon is reached.

3For the finite-horizon problem, it holds with γ = 1 as the state includes time information.

21

respect to the policy π:

Aπ(s, a) = Qπ(s, a)− V π(s), (2.9)

which measures the benefits of switching to an action a ∈ A from using the policy π at state

s (assuming π is used afterwards). The advantage function is a very convenient quantity

to encapsulate a policy property, especially, when it is combined with the performance

difference lemma below due to Kakade and Langford (2002).

Lemma 2.3.1 (Performance Difference Lemma). (Kakade and Langford, 2002) Let π and

π′ be two policies. Then

V̄ π(p) = V̄ π′(p) + EdπEπ[Aπ
′
] = V̄ π′(p) + Edπ

[
Eπ[Qπ′]− Eπ′ [Qπ′]

]

We will prove a more general version of the above the performance difference lemma.

Before that let us discuss some of its implications. An immediate consequence of the

performance difference lemma is the policy gradient theorem.

Corollary 2.3.1. EdπEπ[Aπ] = 0

Corollary 2.3.2 (Policy Gradient). If π is parameterized by θ. ∇θV̄
π(p) = Edπ(∇θEπ)[Aπ]

Proof. Observe∇θV̄
π(p) = (∇θEdπ)Eπ[Aπ

′
]+Edπ(∇θEπ)[Aπ

′
] and EdπEπ[Aπ] = 0. Then

set π′ = π. We have the policy gradient theorem. �

In practice, Edπ(∇θEπ)[Aπ] is approximated by sampling. This can be done by using the

likelihood-ratio method based on the equality Edπ(∇θEπ)[Aπ] = EdπEπ[(∇θ log π)Aπ].

The performance difference lemma is also closely related to the idea of reward reshap-

ing (Ng, Harada, and Russell, 1999) (i.e. modifying the reward function while not chang-

ing the objective). Now we give a generalized version that subsumes both cases discussed

above and has a simpler proof.

22

Lemma 2.3.2 (General Performance Difference Lemma). Let π be any policy and f be any

function, which can be history dependent. For the γ-discounted infinite-horizon problem,

V̄ π(p) = (1− γ)Ep[f] + EdπEπ[Af]

where Af (s, a) = r(s, a) + γEs′∼P|s,a[f(s′)]− f(s).

Proof. We prove the statement by a simple telescoping sum.

V π(p) = Es0,a0,s1,···∼ρπ(p)

[
∞∑

t=0

γtr(st, at)

]

=
∞∑

t=0

γtEst∼dπt Eat∼π|st [r(st, at)] + Est∼dπt [f(st)]− Est∼dπt [f(st)]

= Est∼dπ0 [f(st)] +
∞∑

t=0

γtEst∼dπt Eat∼π|st [r(st, at) + γEst+1∼P|st,at [f(st+1)]− f(st)]

= Ep[f] +
1

1− γEdπEπ[Af] �

Corollary 2.3.3. Let π be any policy and f be any function which can be history dependent

but satisfies that f(st) = 0 for st at time step t ≥ T . For the T -horizon problem, it holds

V̄ π(p) =
1

T
Ep[f] + EdπEπ[Af]

where Af (s, a) = r(s, a) + Es′∼P|s,a[f(s′)]− f(s).

Lemma 2.3.2 supports a non-stationary, history-dependent functional comparator that is

not necessarily a value function. In comparison, the reward reshaping lemma (Ng, Harada,

and Russell, 1999) assumes that the comparator is fixed function of the basic state, and

the performance difference lemma in (Kakade and Langford, 2002) assumes that the com-

parator is the value function of some policy. In addition, we see that, in Lemma 2.3.2,

the comparator f(st) for st at time t can be constructed online, depending on the history

ht = s0, a0, s1, . . . , st. This lemma can potentially be helpful to designing trajectory-wise

23

control variates for variance reduction, although we will be mainly using the basic version

of the performance difference lemma in the later chapters.

24

CHAPTER 3

IMITATION LEARNING

3.1 Introduction

Understanding policy optimization for sequential decision making in uncertain environ-

ment is fundamental to robotics. As we show in Chapter 2, this problem can be mathemat-

ically formulated as a reinforcement learning (RL) problem. However, learning a policy

from scratch with a standard RL algorithm (like the policy gradient method (Williams,

1992)) faces many practical challenges, such as high-variance, sparse feedback signals,

and unsafe explorations. As a consequence, these RL techniques are often considered to be

too data inefficient and unsuitable for robotics applications, because collecting real-world

data is both expensive and time-consuming.

Fortunately, we usually have some prior knowledge about the policy optimization prob-

lem at hand. For example, even though we do not know the optimal feedback controller for

a robot, we usually already have a set of hand-tuned PID controllers that can work up to

certain degree. In other situations, we may have access to human experts who can perform

similar tasks, or information of the dynamics in the sequential decision process. Therefore,

in practice, we rarely are solving the most generic policy optimization in RL.

A powerful and systematic way to leverage this prior information is imitation learn-

ing (IL). IL abstracts this domain knowledge as expert policies. In the above examples,

the PID controllers and the human demonstrators are directly in the form an expert policy,

which can provide desired or non-trivial actions for different situations. For the knowledge

of dynamics, we can express it as an expert policy, e.g., through designing an optimal con-

troller with respect to the dynamics model. Therefore, the concept of expert policies can

be used as a unified channel to express our understanding about the problem.

25

IL avoids the aforementioned issues in RL by optimizing policies through surrogate

problems that are defined by demonstrations of the expert policy. As we will show later,

these surrogate problems can be a supervised learning problem (Pomerleau, 1989), an on-

line learning problem (Ross, Gordon, and Bagnell, 2011), or even another (perhaps simpler)

RL problem (Peng et al., 2018; Schroecker and Isbell, 2017). For example, we can set up

an optimization problem of which the objective function is some distance measure between

the learner policy and the expert policy, and intuitively minimizing this objective function

can drive the learner policy to behave similarly as the expert policy. The hope is that these

surrogate problems have better optimization properties (like smaller variance and denser

costs) than the original RL problem of interest, while being able to provide meaningful

directions for policy improvement.

But what properties constitute a good surrogate problem for IL? A good surrogate prob-

lem in IL should be easy to solve and in the meanwhile can lead to a policy that performs

well in the original RL problem. However, these two requirements often lead to a trade-off.

For example, training a policy in a supervised learning fashion, with samples collected by

the expert policy, is perhaps the simplest surrogate problem in IL (this scheme is known

as batch IL or behavior cloning). However, performing well on such a surrogate problem,

in general, does not necessarily translate into good performance in the original RL prob-

lem. The main reason for the performance gap is known as the covariate shift problem: the

learner policy may visit a set of states different from the ones visited by the expert policy in

the training set. Therefore, when the learner runs its policy and ends up in states that can-

not find resemblance in the training set, there is no guarantee that the learner can still take

meaningful actions. Overall the rule of thumb is that surrogate problems easier to optimize

usually need to pay for larger covariate-shift effects. For IL to be effective, designing a

balanced surrogate problem for the application domain is an important topic.

In this chapter, we give a concise introduction to IL and discuss the strengths and weak-

ness of different approaches. Particularly, we will focus on problems with continuous ac-

26

tion spaces, as our ultimate goal is to find a suitable framework for robotics applications.

Our presentation is motivated by the realizations that the connection between online IL

and DAGGER-like algorithms (Ross, Gordon, and Bagnell, 2011) has not been formally

introduced in continuous domains,1 and that the original derivation is more convoluted and

does not convey important structural properties. Here we simplify the derivation of Ross,

Gordon, and Bagnell (2011) into a compact tutorial. Some materials here are based on the

talk I presented in (Cheng, 2018) and our papers published as (Pan et al., 2019; Pan et al.,

2018)

3.2 Problem Setup

Let us quickly refresh the problem setup. We consider a discrete-time, continuous-valued

sequential-decision making problem with a finite horizon T . Let S, A, and O be the

state, action, and observation spaces. Our goal here is to find a stationary, reactive policy2

π : O 7→ A inside a policy class Π such that π has a low accumulated cost:

min
π
J(π), J(π) := Es0,o0,a0,s1,...,aT−1∼ρπ(p)

[
T−1∑

t=0

c(s, a)

]
, (3.1)

in which s ∈ S, o ∈ O, a ∈ A, c(s, a) is the instantaneous cost, and ρπ(p) is the distribution

of trajectory generated by running the policy π starting from a fixed initial state distribution

p at time 0. Note that S,O contain time information (see Chapter 2).

While the policy π above only have access to the observations, we recall from Chapter 2

that the partial observability can be handled through considering the effective policy class

in analysis. In other words, we can embed the partial observability into the policy structure

and frame the above problem equivalently as policy optimization in the MDP with this

structured policy class. Therefore, in the following, we will abuse the notation: identify

1Before our conference paper (Pan et al., 2018) was published, DAGGER had only been used heuristically
in these domains (Ross et al., 2013; Zhang and Cho, 2016)

2 While we focus on reactive policies, the same derivations apply to history-dependent policies.

27

π(a|s) = Eo|s[π(a|o)] and modify Π accordingly.

The below discussions will also use the concept of Q-function and value function. Be-

cause our state/observation definition contains time information, when using Qπ(s, a) to

denote the Q-function value for some state s and action a at time t, it means that

Qπ(s, a) = Es,o,a,...,aT−1∼ρπ(s)|a=a

[
t+T−1∑

τ=t

c(sτ , aτ)

]

Similarly, V π(s) = Ea∼π|s[Qπ(s, a)] is the associated non-stationary value function.

3.3 Goal of Imitation Learning

Directly optimizing (3.1) is challenging. Especially when the agent is a physical robot,

model-free RL techniques become intolerably sample inefficient and have the risk of per-

manently damaging the robot when deploying a partially-optimized policy in exploration.

Considering these limitations, we consider to solve for policy π by IL. We assume the ac-

cess to an oracle policy or expert π? to generate demonstrations during the training phase.

This expert can use resources that are unavailable in the testing phase, like additional sen-

sors and computation. The goal of IL is to quickly find a policy π for the learner such that

its performance J(π) is close to J(π?) of the expert policy π?.

3.3.1 Performance Difference

To this end, we need a way to express the performance difference J(π)− J(π?). A useful

tool is the performance difference lemma below, which was due to Kakade and Langford

(2002). Define J̄(π) := 1
T
J(π). We will write the results instead in terms of the average

setup with J̄(π), so that our results can be extended to other settings (see Chapter 2).

Lemma 3.3.1. Let dπ(s) = 1
T

∑T−1
t=0 d

π
t (s) be the average state distribution,3where dπt is

the distribution of state at time t when running the policy π. Let π and π′ be two arbitrary

policies. Then it holds that J̄(π) = J̄(π′) + Es∼dπEa∼π|s[Aπ
′
(s, a)], where Aπ

′
(s, a) =

28

Qπ′(s, a)− V π′(s) is the (dis)advantage function with respect to π′.

Lemma 3.3.1 gives a closed-form expression of the performance difference based on struc-

tural properties of MDPs. Precisely, it can be read in two ways:

J̄(π)− J̄(π?) = Es∼dπEa∼π|s[Aπ
?

(s, a)] (3.2)

= −Es∼dπ?Ea∼π?|s[Aπ(s, a)] (3.3)

giving a duality relationship of the performance difference. First, (3.2) says that the perfor-

mance difference is equivalent to the degree the learner policy π is better than the expert

policy π? in expectation over the states visited by the learner, because the advantage func-

tion Aπ?(s, a) in essence measures how an action a is better than the expert policy π? at

state s. Alternatively, (3.3) says that the performance difference is equivalent to the degree

the expert policy π? is worse than the learner policy π in expectation over the states the

expert visits. In short, these two perspectives show that the performance difference can be

upper bounded in terms of either the state-action distribution of the learner or that of the

expert. We will show that the choice of perspective, (3.2) or (3.3), is the bifurcation point

that leads to the online approach or the batch approach to IL.

To derive upper bounds of (3.2) and (3.3), let us review a basic statistical distance, called

the transportation distance (Kontorovich and Raginsky, 2017). We will use this distance to

derive, e.g., upper bounds of (3.2) and (3.3). For two probability distributions p and q on a

metric spaceM with metric m, the transportation distance is defined as

DW (p, q) = inf
g∈Γ(p,q)

Ex,y∼g[m(x, y)] (3.4)

where Γ denotes the family of distributions whose marginals are p and q. It can be shown

by the Kantorovich-Rubinstein theorem that the above definitions has an equivalent dual

3dπ(s) is an unnormalized time-state distribution of the time-state distribution 1
T d

π(s). One can verify
that

∑T
t=1

∫
s∈S

1
T d

π(s) = 1.

29

representation (also known as the Wasserstein distance):

DW (p, q) = sup
f :Lip(f(·))≤1

Ex∼p[f(x)]− Ey∼q[f(y)] (3.5)

where Lip(f(·)) denotes the Lipschitz constant of a function f with respect to the metric

m. Therefore, it follows that any L-Lipschitz function f in the metric spaceM satisfies

Ex∼p[f(x)]− Ey∼q[f(y)] ≤ LDW (p, q)

The transportation distance is a flexible tool for upper bounding the difference between

expectations, as we can choose the metric m according to the geometry of the random

variables to compensate for the effects of dimensionality. For example, when the random

variables are of discrete values, we can choose the metric as the indicator function and

the transportation distance is then equal to the total variation distance. Our interest here

concerns continuous-valued random variables in some normed space with norm ‖ · ‖. Nat-

urally, we can choose the metric as the distance metric induced by the norm ‖ · ‖, i.e.

d(x, y) = ‖x − y‖. Finally, we note that the below results apply to also other statistical

distances that further upper bound the transportation distance, like the KL-divergence.

3.4 Different Approaches to Imitation Learning

3.4.1 Online Imitation Learning

We first present the objective function for the online learning approach to IL. Let Cπ? =

sups∈S Lip
(
Qπ?(s, ·)

)
be the uniform Lipschitz constant, which describes the regularity

of expected behaviors. We achieve this by upper bounding the performance difference

30

using (3.2) as follows

J̄(π)− J̄(π?) = Es∼dπ
[
Ea∼π|s[Qπ?(s, a)]− Ea?∼π?|s[Qπ?(s, a?)]

]

≤ Cπ?Es∼dπ [DW (π, π?)]

≤ Cπ?Es∼dπEa∼π|sEa?∼π?|s[‖a− a?‖], (3.6)

where the first equality is simply (3.2) but with the advantage function replaced with its

definition Aπ?(s, a) = Qπ?(s, a) − Ea?∼π?|s[Qπ?(s, a?)], and the two inequalities are due

to (3.5) and (3.4), respectively. Define ĉ(s, a) = Ea?∼π?|s[‖a − a?‖]. Thus, to make π

perform as well as π?, we can minimize the upper bound in (3.6), i.e.

min
π

Es0,a0,...,aT−1∼ρπ(p)

[
T−1∑

t=0

ĉ(st, at)

]
. (3.7)

This new surrogate loss in (3.7) is the objective of the online IL. Notice that this is still an

RL problem because the trajectory distribution in (3.7) still depends on π. One can choose

to solve (3.7) with pure RL techniques (e.g. policy gradient methods); however, while this

new problem might be simpler than the original one in (3.1) (e.g. (3.7) has denser cost func-

tions than (3.1)), tackling it directly could still be sample inefficient due to the necessity of

back-propagating information through trajectories. To circumvent this difficulty, the online

learning approach to IL (Cheng et al., 2019b,d; Ross and Bagnell, 2014; Ross, Gordon,

and Bagnell, 2011) leverages the structural property of cost function ĉ in (3.7) and relies

on a reduction from (3.7) to online learning problems (Shalev-Shwartz, 2012) to optimize

policies. As a result, back-propagating through trajectories is no longer necessary, and

provable performance guarantees can be achieved (Cheng et al., 2018a). We will further

discuss about this structural property of ĉ in Chapter 6. For now, we highlight that this

reduction works, because ĉ(s, a) behaves like a loss function in supervised learning, i.e.,

given any s there is some a (namely the action taken by the expert) such that ĉ(s, a) is close

31

to zero.

Let us illustrate this idea by the classic online IL algorithm, DAGGER (Data Aggrega-

tion) (Ross, Gordon, and Bagnell, 2011), which reduces (3.7) to a sequence of supervised

learning problems: Let D be the training data of pairs of state and action. DAGGER ini-

tializes D with samples gathered by running π?. Then, in the nth iteration, it trains πn by

supervised learning,

πn = arg min
π∈Π

Es∼DEa∼π|s[ĉ(s, a)], (3.8)

where the subscript D denotes empirical data distribution. Next it runs πn to collect more

data, which is then added into D to train πn+1. The procedure is repeated for O(T) it-

erations and the best policy, in terms of (3.7), is returned. Suppose the policy is linearly

parametrized. When the online loss Es∼dπnEa∼π|s[ĉ(s, a)] defined by the policy πn in the

nth iteration is strongly convex, running DAGGER to solve (3.7) finds a policy π with

performance J(π) ≤ J(π?) + O(TCπ?) (recall that J(π) = T J̄(π)). We note here the

instantaneous cost ĉ(s, ·) can be selected to be any suitable norm according the problem’s

property since norms in finite dimensional space are equivalent.

3.4.2 Batch Imitation Learning

The batch approach to IL (Pomerleau, 1989) takes a different viewpoint of performance

difference. Using the other equality in (3.3), we can derive another upper bound and use

it to construct a different surrogate problem: define c̃π(s?, a?) = Ea∼π|s? [‖a − a?‖] and

Cπ(s?) = Lip(Qπ(s?, ·)), then we can write

J̄(π)− J̄(π?) = Es?∼dπ?
[
Ea∼π|s? [Qπ(s?, a)]− Ea?∼π?|s? [Qπ(s?, a?)]

]

≤ Es?∼dπ?Ea?∼π?|s? [Cπ(s?)c̃π(s?, a?)] . (3.9)

where the derivation is similar to the one in (3.6) but the first equality is instead based

on (3.3). The problem of minimizing the upper-bound (3.9) is called the batch IL prob-

32

lem (Bojarski et al., 2017; Rausch et al., 2017) and can be written equivalently as:

min
π

Es?0,a?0,...,a?T−1∼ρπ
? (p)

[
T∑

t=1

c̃π(s?, a?)

]
, (3.10)

In contrast to the surrogate problem in online IL (3.7), batch IL reduces to a supervised

learning problem, because the expectation is defined by a fixed policy π?.

3.4.3 Imitation Learning without Demonstrations

The two approaches require getting action demonstrations from the expert policy. When

this is not feasible, IL is possible when the instantaneous cost function does not depend on

the action, i.e. c(s, a) = c(s). Suppose c(·) is Cc-Lipschitz. In this case, we can write the

performance difference as

J̄(π)− J̄(π?) = Es∼dπEa∼π|s[c(s, a)]− Es?∼dπ?Ea?∼π?|s? [c(s?, a?)]

= Es∼dπ [c(s)]− Es?∼dπ? [c(s?)]

≤ CcDW (dπ, dπ
?

)

≤ CcEs∼dπEs?∼dπ? [‖s− s?‖] (3.11)

where we abuse the symbol ‖·‖ to denote the norm of S as well. The upper bound in (3.11)

is an RL problem (Peng et al., 2018; Schroecker and Isbell, 2017), where the cost function

namely tries to match the state distributions of the learner and the expert policies. This

RL problem is perhaps easier than the original one (e.g. even if the original cost function

is sparse, this new problem has a dense cost function). However, the problem in (3.11)

does not have the nice supervised-learning-like property of (3.7). Therefore, we cannot

reduce (3.11) to an online learning problem and run, e.g., DAGGER to update the policy.

Therefore, this approach should be used as a last resort, preferred only when the action

demonstrations are unavailable. We will not investigate further along this line.

33

3.5 Admissible Experts

Before comparing the different IL approaches, let us first think about what the desired out-

come of IL looks like. Ideally we wish to design an IL algorithm that can train a policy π to

perform as well as the expert π? with an error that has at most linear dependency on the time

horizon of the problem T . That is, it is desired that J(π) ≤ J(π?)+O(Tε), where ε denotes

potential errors due to approximation and optimization at each time step. Suppose other-

wise an algorithm returns a policy that has performance only as J(π) ≤ J(π?) + O(T 2ε);

the applicability of the algorithm to tasks that involve a long problem horizon would be

limited, because learning imperfection in every time step would accumulate quickly and

hurt the policy performance.

It turns out this linear error dependency of J(π)−J(π?) is not always feasible unless we

make some assumptions on the quality of expert policies. Here we consider a qualification

on the properties of the expert policies below.4

Definition 3.5.1. A policy π? is called an admissible expert to problem (3.1) if Cπ? = O(1)

independent of T .

Let us give some intuition about what Definition 3.5.1 means. For some state s ∈ S at time

t, recall by definition Qπ?(s, a) is the accumulated cost of taking some action a at time t

and then executing the expert policy π? afterwards. The idea behind Definition 3.5.1 is that

a reasonable expert policy π? should perform stably under arbitrary action perturbation,

regardless of where it starts.

3.6 Comparison between Online IL and Batch IL

Now suppose that we have access to an admissible expert policy in IL. This assumption

rules out the situation of learning from arbitrarily bad expert policies; in other words, we
4This assumption was implicitly made by Ross, Gordon, and Bagnell (2011) to derive the linear depen-

dency bound. We note that for discrete action spaces, we just need to define the Lipschitz constant by setting
the metric as the indicator function.

34

consider sub-optimal experts that have at least non-trivial performance with respect to (3.1).

Comparing (3.6) and (3.9), we observe that in batch IL the Lipschitz constant Cπ(s?),

without π being an admissible expert as in Definition 3.5.1, can be on the order of T − t

in the worst case. Therefore, if we take a uniform bound and define Cπ = sups∈S C
π(s),

we see Cπ ∈ O(T). In other words, under the same assumption in online IL (i.e. (3.9) is

minimized to an error inO(T)), the difference between J(π) and J(π?) in batch IL actually

grows quadratically in T due to error compounding. This problem manifests especially in

stochastic environments. In order to achieve the same level of performance as online IL,

batch IL requires a more expressive policy class or more demonstration samples. As shown

in (Ross, Gordon, and Bagnell, 2011), the quadratic bound is tight.

Therefore, if we have access to an admissible expert policy π? that is stable in the

sense of Definition 3.5.1, then online IL is preferred theoretically. This is satisfied, for

example, when the expert policy is an algorithm with certain performance characteristics.

However, on the contrary, when the expert is not admissible (i.e. Cπ? ≥ Ω(1)), online IL

would also lead to a superlinear error dependency. This could happen, e.g., when human

demonstrators are adopted within online IL to perform off-road driving tasks. Because

the human drivers depend heavily on instant feedback from the car to overcome stochastic

disturbances, the frame-by-frame labeling approach Ross et al., 2013, for example, can

lead to a very counter-intuitive, inefficient data collection process and effectively result in

an inadmissible expert policy. Overall, when using human demonstrations, online IL can

be as bad as batch IL (Laskey et al., 2016), simply due to inconsistencies introduced by

human nature.

35

CHAPTER 4

IMITATION LEARNING FOR AGILE AUTONOMOUS DRIVING

4.1 Introduction

High-speed autonomous off-road driving is a challenging robotics problem (Michels, Sax-

ena, and Ng, 2005; Williams et al., 2016, 2017) (Fig. 4.1). To succeed in this task, a

robot is required to perform both precise steering and throttle maneuvers in a physically-

complex, uncertain environment by executing a series of high-frequency decisions. Com-

pared with most previously studied autonomous driving tasks, the robot here must rea-

son about minimally-structured, stochastic natural environments and operate at high speed.

Consequently, designing a control policy by following the traditional model-plan-then-act

approach (Michels, Saxena, and Ng, 2005; Paden et al., 2016) becomes challenging, as it

is difficult to adequately characterize the robot’s interaction with the environment a priori.

This task has been considered previously, for example, by (Williams et al., 2016, 2017)

using model-predictive control (MPC). While the authors demonstrate impressive results,

their internal control scheme relies on expensive and accurate Global Positioning Sys-

tem (GPS) and Inertial Measurement Unit (IMU) for state estimation and demands high-

frequency online replanning for generating control commands. Due to these costly hard-

ware requirements, their robot can only operate in a rather controlled environment, which

limits the applicability of their approach.

We aim to relax these requirements by designing a reflexive driving policy that uses

only low-cost, on-board sensors (e.g. monocular camera, wheel speed sensors). Building

on the success of deep reinforcement learning (RL) (Levine et al., 2016; Volodymyr et al.,

2015), we adopt deep neural networks (DNNs) to parametrize the control policy and learn

the desired parameters from the robot’s interaction with its environment. While the use

36

Figure 4.1: The high-speed off-road driving task.

of DNNs as policy representations for RL is not uncommon, in contrast to most previous

work that showcases RL in simulated environments (Volodymyr et al., 2015), our agent is

a high-speed physical system that incurs real-world cost: collecting data is a cumbersome

process, and a single poor decision can physically impair the robot and result in weeks of

time lost while replacing parts and repairing the platform. Therefore, direct application of

model-free RL techniques is not only sample inefficient, but costly and dangerous in our

experiments.

These real-world factors motivate us to adopt imitation learning (IL) (Pomerleau, 1989)

to optimize the control policy instead. A major benefit of using IL is that we can leverage

domain knowledge through expert demonstrations. This is particularly convenient, for

example, when there already exists an autonomous driving platform built through classic

system engineering principles. While such a system (e.g. (Williams et al., 2016)) usually

requires expensive sensors and dedicated computational resources, with IL we can train a

lower-cost robot to behave similarly, without carrying the expert’s hardware burdens over

to the learner. Here we assume the expert is given as a black box oracle that can provide

the desired actions when queried, as opposed to the case considered by Kahn et al. (2017)

and Mordatch and Todorov (2014) where the expert can be modified to accommodate the

learning progress.

In this chapter, we leverage the insights in Chapter 3 and present an IL system for real-

world high-speed off-road driving tasks. By leveraging demonstrations from an algorithmic

expert, our system can learn a driving policy that achieves similar performance compared

37

Ta
bl

e
4.

1:
C

om
pa

ri
so

n
of

ou
rm

et
ho

d
to

pr
io

rw
or

k
on

IL
fo

ra
ut

on
om

ou
s

dr
iv

in
g

M
et

ho
ds

Ta
sk

s
O

bs
er

va
tio

ns
A

ct
io

n
A

lg
or

ith
m

E
xp

er
t

E
xp

er
im

en
t

(B
oj

ar
sk

ie
ta

l.,
20

16
)

O
n-

ro
ad

lo
w

-s
pe

ed
Si

ng
le

im
ag

e
St

ee
ri

ng
B

at
ch

H
um

an
R

ea
l&

si
m

ul
at

ed
(P

om
er

le
au

,1
98

9)
O

n-
ro

ad
lo

w
-s

pe
ed

Si
ng

le
im

ag
e

&
la

se
r

St
ee

ri
ng

B
at

ch
H

um
an

R
ea

l&
si

m
ul

at
ed

(R
au

sc
h

et
al

.,
20

17
)

O
n-

ro
ad

lo
w

-s
pe

ed
Si

ng
le

im
ag

e
St

ee
ri

ng
B

at
ch

H
um

an
Si

m
ul

at
ed

(M
ul

le
re

ta
l.,

20
06

)
O

ff
-r

oa
d

lo
w

-s
pe

ed
L

ef
t&

ri
gh

ti
m

ag
es

St
ee

ri
ng

B
at

ch
H

um
an

R
ea

l
(Z

ha
ng

an
d

C
ho

,2
01

6)
O

n-
ro

ad
un

kn
ow

n
sp

ee
d

Si
ng

le
im

ag
e

St
ee

ri
ng

+
br

ea
k

O
nl

in
e

Pr
e-

sp
ec

ifi
ed

po
lic

y
Si

m
ul

at
ed

(Y
an

g
et

al
.,

20
18

)
O

n-
ro

ad
lo

w
/h

ig
h

sp
ee

d
Si

ng
le

im
ag

e
+

ve
hi

cl
e

sp
ee

d
se

qu
en

ce
St

ee
ri

ng
+

sp
ee

d
B

at
ch

H
um

an
Si

m
ul

at
ed

(Y
u

et
al

.,
20

17
)

O
n-

ro
ad

lo
w

/h
ig

h
sp

ee
d

Im
ag

e
se

qu
en

ce
+

G
PS

/I
M

U
m

ea
su

re
m

en
t

St
ee

ri
ng

+
ac

ce
le

ra
tio

n
B

at
ch

H
um

an
Si

m
ul

at
ed

O
ur

M
et

ho
d

O
ff

-r
oa

d
hi

gh
-s

pe
ed

Si
ng

le
im

ag
e

+
w

he
el

sp
ee

ds
St

ee
ri

ng
+

th
ro

ttl
e

O
nl

in
e

M
od

el
pr

ed
ic

tiv
e

co
nt

ro
lle

r
R

ea
l&

si
m

ul
at

ed

38

to the expert. The system was implemented on a 1/5-scale autonomous AutoRally car.

In real-world experiments, we show the AutoRally car—without any state estimator or

online planning, but with a DNN policy that directly inputs measurements from a low-cost

monocular camera and wheel speed sensors—could learn to perform high-speed driving at

an average speed of ∼6 m/s and a top speed of ∼8 m/s (equivalently 108 km/h and 144

km/h on a full-scale car), matching the state-of-the-art (Williams et al., 2017). This chapter

is partly based on our previous papers published as (Pan et al., 2019; Pan et al., 2018).

4.2 Related Work

End-to-end learning for self-driving cars has been explored since the late 1980s. The Au-

tonomous Land Vehicle in a Neural Network (ALVINN) (Pomerleau, 1989) was developed

to learn steering angles directly from camera and laser range measurements using a neural

network with a single hidden layer. Based on similar ideas, modern self-driving cars (Bo-

jarski et al., 2016; Muller et al., 2006; Rausch et al., 2017) have recently started to employ

a batch IL approach: with DNN control policies, these systems require only expert demon-

strations during the training phase and on-board measurements during the testing phase.

For example, Nvidia’s PilotNet (Bojarski et al., 2016, 2017), a convolutional neural net-

work that outputs steering angle given an image, was trained to mimic human drivers’

reactions to visual input with demonstrations collected in real-world road tests.

Our problem differs substantially from these previous on-road driving tasks. We study

autonomous driving on a fixed set of dirt tracks, whereas on-road driving must perform well

in a larger domain and contend with moving objects such as cars and pedestrians. While

on-road driving in urban environments may seem more difficult, our agent must overcome

challenges of a different nature. It is required to drive at high speed, on dirt tracks, the

surface of which is constantly evolving and highly stochastic. As a result, high-frequency

application of both steering and throttle commands are required in our task, whereas many

previous work only focuses on steering commands (Bojarski et al., 2017; Muller et al.,

39

2006; Rausch et al., 2017). In (Yang et al., 2018), a Convolutional Neural Network (CNN)

+ Long Short Term Memory network (LSTM) design was proposed to predict both steer-

ing angle and vehicle speed. In (Yu et al., 2017), a convolutional LSTM model is used

to predict acceleration commands. However, these approaches are not exactly end-to-end

because a lower-level control module is required to compute the throttle/brake commands.

Furthermore, (Yu et al., 2017) requires GPS/IMU measurements which increase the hard-

ware cost. A Dataset Aggregation (DAGGER) (Ross, Gordon, and Bagnell, 2011) related

online IL algorithm for autonomous driving was recently demonstrated in (Zhang and Cho,

2016), but only considered simulated environments and used a rule-based policy as the ex-

pert. In comparison with the previous setups, our system uses an MPC expert that solves

optimal control problems at a high frequency, rather than a human driver (Bojarski et al.,

2016) or a simple rule-based policy (Zhang and Cho, 2016), in order to provide timely

feedback to contend with the stochasticity in high-speed dirt-track driving. A comparison

of different IL approaches to autonomous driving is presented in Table 4.1.

Our task is similar to the task considered by Williams et al. (2016, 2017) and Drews

et al. (2017). Compared with a DNN policy, their MPC approach has several drawbacks:

computationally expensive optimization for planning is required to be performed online

at high-frequency, which becomes repetitive for navigating the vehicle on a track after a

few laps. In (Williams et al., 2016, 2017), accurate GPS and IMU feedbacks are also re-

quired for state estimation, which may not contain sufficient information to contend with

the changing environment in off-road driving tasks. While the requirement on GPS and

IMU is relaxed by using a vision-based cost map in (Drews et al., 2017), a large dataset

(300,000 images) was used to train the model, expensive on-the-fly planning is still re-

quired, and speed performance is compromised. In contrast to previous work, our approach

off-loads the hardware requirements to an expert. While the expert may use high-quality

sensors and more computational power, our agent only needs access to cheap sensors and

its control policy can run reactively in high frequency, without on-the-fly planning. Addi-

40

Figure 4.2: System diagram.

Figure 4.3: The DNN control policy.

tionally, our experimental results match those in (Williams et al., 2016), and are faster and

more data efficient than that in (Drews et al., 2017).

4.3 The Autonomous Driving System

Building on the analyses in Chapter 3, we design a system that can learn to perform fast

off-road autonomous driving with only on-board measurements. The overall system archi-

tecture for learning end-to-end DNN driving policies is illustrated in Fig. 4.2. It consists of

three high-level controllers (an expert, a learner, and a safety control module) and a low-

level controller, which receives steering and throttle commands from the high-level con-

trollers and translates them to pulse-width modulation (PWM) signals to drive the steering

and throttle actuators of a vehicle.

On the basis of the analysis in Section 3.6, we assume the expert is algorithmic and

has access to expensive sensors (GPS and IMU) for accurate global state estimates1 and

1Global position, heading and roll angles, linear velocities, and yaw rate.

41

Figure 4.4: The Gazebo-based simulation enviorment (left) and a snapshot from the on-
board camera (right).

resourceful computational power. The expert is built on multiple hand-engineered compo-

nents, including a state estimator, a dynamics model of the vehicle, a cost function of the

task, and a trajectory optimization algorithm for planning (see Section 4.3.1). By contrast,

the learner is a DNN policy that has access to only a monocular camera and wheel speed

sensors and is required to output steering and throttle command directly (see Section 4.3.2).

In this setting, the sensors that the learner uses can be significantly cheaper than those of the

expert2; specifically on our experimental platform, the AutoRally car (see Section 4.3.3),

the IMU and the GPS sensors required by the expert in Section 4.3.1 together cost more

than $6,000, while the sensors used by the learner’s DNN policy cost less than $500. The

safety control module has the highest priority among all three controllers and is used to

prevent the vehicle from high-speed crashing.

The software system was developed based on the Robot Operating System (ROS) in

Ubuntu. In addition, a Gazebo-based simulation environment (Koenig and Howard, 2004)

was built (see Fig 4.4) using the same ROS interface but without the safety control module.

Due to the limitation of the Gazebo simulator in terms of graphics quality and physics

engine, we do not use simulated data to pre-train our control policy. The simulator was

used to evaluate the performance of the software before real track tests.

2 It might be possible to build a model that maps raw observations to state estimates, though, in general,
a model may need to consider also the temporal dependency that the current state depends on the previous
state. Learning such a mapping faces several challenges, however. We did not choose to do so because we
wanted to completely remove the use of the expert policy, which requires real-time trajectory optimization.

42

4.3.1 Algorithmic Expert: Model-Predictive Control

We build the algorithmic expert based on the model-based optimal controller described in

Section 4.A, which attempts to solve

min
π
J(π), J(π) := Es0,a0,s1,...,aT−1∼ρ̂π(p)

[
T−1∑

t=0

c(s, a)

]
, (4.1)

in which s ∈ S, a ∈ A, c(s, a) is the instantaneous cost, and ρ̂π(p) is the distribution of

trajectory generated by running the policy π with respect to the dynamics model starting

from the initial state distribution p.

This algorithm is able to approximate the solution to the problem (4.1). However, in

practice the task time horizon T may be very long (e.g., 1 minute), so solving the optimal

problem (4.1) in a single pass is computationally inefficient and not robust to long-term

prediction errors (given the fact that we never have enough data). Therefore we apply the

algorithmic expert in a Model Predictive Control (MPC) fashion, which solves a shorter

time horizon optimal problem at every sampling time: at time t, the expert policy π? is a

locally optimal policy such that

π? ≈ arg min
π

Est,at,...,at+Th∼ρ̂π(st)

[
t+Th−1∑

τ=t

c(sτ , aτ)

]
(4.2)

where Th is the length of horizon it previews. The details of the computation steps can

be found in Section 4.A, which uses iSAM2 (Kaess et al., 2012) to estimate the vehi-

cle states. Upon convergence, the algorithm returns a locally optimal control sequence

{ât, ..., ât+Th−1}, and the MPC expert executes the first action in the sequence as the ex-

pert’s action at time t (i.e. a∗t = ât). When a new vehicle state is available from the

state estimator, the state-control pair is incorporated to perform incremental regression as

described in Section 4.A.1. In order to ensure fast convergence, we use a ‘warm-start’ ap-

proach that initializes the nominal trajectory with the optimal control sequence obtained

43

at the previous step. Empirically the trajectory optimization algorithm converges within 3

iterations with warm-start.

In view of the analysis in Section 3.3, we can assume that the MPC expert satisfies Def-

inition 3.5.1, because it updates the approximate solution to the model RL problem (4.1) at

a high-frequency using global state information. However, because MPC requires replan-

ning for every time step, running the expert policy (4.2) on-the-fly consumes significantly

more computational power than what is required by the learner.

4.3.2 Learning a DNN Control Policy

The learner’s control policy π is parametrized by a DNN containing ∼10 million param-

eters. As illustrated in Fig. 4.3, the DNN policy, consists of two sub-networks: a convo-

lutional neural network (CNN) with 6 convolutional layers, 3 max-pooling layers, and 2

fully-connected layers, that takes 160× 80 RGB monocular images as inputs,1 and a feed-

forward network with a fully-connected hidden layer that takes wheel speeds as inputs. The

convolutional and max-pooling layers are used to extract lower-dimensional features from

images. The DNN policy uses 3× 3 filters for all convolutional layers, and rectified linear

unit (ReLU) activation for all layers except the last one. Max-pooling layers with 2 × 2

filters are integrated to reduce the spatial size of the representation (and therefore reduce

the number of parameters and computation loads). The two sub-networks are concatenated

and then followed by another fully-connected hidden layer. The structure of this DNN was

selected empirically based on experimental studies of several different architectures.

We consider training this DNN policy by both online IL and batch IL, which are de-

scribed in Section 3.4. The online IL solves the problem

min
π∈Π

Es,a?∼DEa∼π|s[‖a− a?‖], (4.3)

1The raw images from the camera were re-scaled to 160× 80.

44

and the batch IL solves the problem

min
π∈Π

Es?,a?∼DEa∼π|s? [‖a− a?‖] (4.4)

where Π denotes the effective policy class of the DNN. Comparing the two approaches,

the main difference is whether the dataset D is collected under the learner’s or the expert’s

distribution; in each iteration, online IL uses the newly trained learner’s policy to collect

more data, whereas the batch IL always the uses the expert policy to collect data.

In construction of the surrogate problem for IL, we equip the action space A with

‖ · ‖1 for filtering outliers, and the optimization problem, (4.3) or (4.4), is solved using

ADAM (Kingma and Ba, 2014), which is a stochastic gradient descent algorithm with an

adaptive learning rate. Note while s or s? is used in (4.3) or (4.4), the neural network policy

does not use the state, but rather the synchronized raw observation ot as input. Note that we

did not perform any data selection or augmentation techniques in any of the experiments.2

The only pre-processing was scaling and cropping of raw images.

4.3.3 The Autonomous Driving Platform

To validate our IL approach to off-road autonomous driving, the system was implemented

on a custom-built, 1/5-scale autonomous AutoRally car (weight 22 kg; LWH 1m×0.6m×0.4m),

shown in the top figure in Fig. 4.5. The car was equipped with an ASUS mini-ITX moth-

erboard, an Intel quad-core i7 CPU, 16GB RAM, a Nvidia GTX 750 Ti GPU, and a

11000mAh battery. For sensors, two forward facing machine vision cameras,3 a Hemi-

sphere Eclipse P307 GPS module, a Lord Microstrain 3DM-GX4-25 IMU, and Hall effect

wheel speed sensors were instrumented. In addition, an RC transmitter could be used to

remotely control the vehicle by a human, and a physical run-stop button was installed to

disable all motions in case of emergency.

2Data collection or augmentation techniques such as (Bojarski et al., 2016; Geist et al., 2017) can be used
in conjunction with our method.

3In this work we only used one of the cameras.

45

Figure 4.5: The AutoRally car and the test track.

In the experiments, all computation was executed on-board the vehicle in real-time. In

addition, an external laptop was used to communicate with the on-board computer remotely

via Wi-Fi to monitor the vehicle’s status. The observations were sampled and action were

executed at 50 Hz to account for the high-speed of the vehicle and the stochasticity of the

environment. Note this control frequency is significantly higher than (Bojarski et al., 2017)

(10 Hz), (Rausch et al., 2017) (12 Hz), and (Muller et al., 2006) (15 Hz).

4.4 Experimental Setup

4.4.1 High-speed Driving Task

We tested the performance of the proposed IL system in Section 4.3 in a high-speed driving

task with a desired speed of 7.5 m/s (an equivalent speed of 135 km/h on a full-scale car).

The performance index of the task was formulated as the cost function in the finite-horizon

RL problem with

c(st, at) = α1cpos +α2cspd +α3cslip +α3cact, (4.5)

in which cpos favors the vehicle to stay in the middle of the track, cspd drives the vehicle to

reach the desired speed, cslip stabilizes the car from slipping, and cact inhibits large control

commands. The position cost cpos for the high-speed navigation task is a 16-term cubic

46

function of the vehicle’s global position (x, y):

cpos = c0 + c1y + c2y
2 + c3y

3 + c4x+ c5xy

+c6xy
2 + c7xy

3 + c8x
2 + c9x

2y + c10x
2y2 + c11x

2y3

+c12x
3 + c13x

3y + c14x
3y2 + c15x

3y3. (4.6)

The coefficients c0, .., c15 in this cost function were identified by performing a regression

to fit the track’s boundary: First, a thorough GPS survey of the track was taken. Points

along the inner and the outer boundaries were assigned values of −1 and +1, respectively,

resulting in a zero-cost path along the center of the track. The coefficient values ci were then

determined by a least-squares regression of the polynomials in cpos to fit the boundary data.

The speed cost cspd = ‖vx− vdesired‖2 is a quadratic function which penalizes the difference

between the desired speed vdesired and the longitudinal velocity vx in the body frame. The

side slip angle cost is defined as cslip = − arctan(vy
‖vx‖), where vy is the lateral velocity

in the body frame. The action cost is a quadratic function defined as cact = γ1a
2
1 + γ2a

2
2,

where a1 and a2 correspond to the steering and the throttle commands, respectively. In the

experiments, γ1 = 1 and γ2 = 1 were selected.

The goal of the high-speed driving task to minimize the accumulated cost function over

one-minute continuous driving. That is, under the 50-Hz sampling rate, the task horizon

was set to 60 seconds (T = 3000). The cost information (4.5) was given to the MPC expert

in Fig. 4.2 to perform online trajectory optimization with a two-second prediction horizon

(Th = 100). In the experiments, the weighting in (4.5) were set as α1 = 2.5, α2 = 1,

α3 = 100 and α4 = 60, so that the MPC expert in Section 4.3.1 could perform reasonably

well. The learner’s policy was tuned by online/batch IL in attempts to match the expert’s

performance.

47

4.4.2 Test Track

All the experiments were performed on an elliptical dirt track, shown in the bottom figure

of Fig. 4.5, with the AutoRally car described in Section 4.3.3. The test track was ∼3m

wide and ∼30m long and built with fill dirt. Its boundaries were surrounded by soft HDPE

tubes, which were detached from the ground, for safety during experimentation. Due to the

changing dirt surface, debris from the track’s natural surroundings, and the shifting track

boundaries after car crashes, the track condition and vehicle dynamics can change from

one experiment to the next, adding to the complexity of learning a robust policy.

4.4.3 Data Collection

For dynamics model learning, data was collected in two phases: first, a human driver drove

the vehicle at various speeds (3 - 6 m/s) for 10 minutes, during which the state and action

data were recorded, processed with spline smoothing, and re-sampled. A SSGP model of

the vehicle dynamics was learned offline using the dataset (see Section 4.A.1 for details).

Next, when the MPC expert (based on the learned dynamics model) was executed on the

vehicle, we continued to collect new state-action data of transition dynamics and incorpo-

rated them to perform incremental updates, as described in Section 4.A.1.

For IL, training data was collected in two ways. In batch IL, the MPC expert was

executed, and the camera images, wheel speed readings, and the corresponding steering

and throttle commands were recorded. In online IL, a mixture of the expert and learner’s

policy was used to collect training data (camera images, wheel speeds, and expert actions):

in the nth iteration of DAGGER, a mixed policy was executed at each time step π̂n =

βiπ? + (1− βm)πn−1, where πn−1 is learner’s DNN policy after n− 1 DAGGER iterations,

and βn is the probability of executing the expert policy. The use of a mixture policy was

suggested in (Cheng and Boots, 2018; Ross, Gordon, and Bagnell, 2011) for better stability.

A mixing rate β = 0.6 was used in our experiments. Note that the probability of using the

expert decayed exponentially as the number of DAGGER iterations increased. Experimental

48

(a) MPC expert. (b) Batch IL. (c) Online IL.

Figure 4.6: Examples of vehicle trajectories, where online IL avoids the crashing case
encountered by batch IL. (b) and (c) depict the test runs after training on 9,000 samples.

data was collected on an outdoor track, and consisted of changing lighting conditions and

environmental dynamics. In the experiments, the rollouts about to crash were terminated

remotely by overwriting the autonomous control commands with the run-stop button or the

RC transmitter in the safety control module; these rollouts were excluded from the data

collection.

4.4.4 Policy Learning

In online IL, three iterations of DAGGER were performed. At each iteration, the robot

executed one rollout using the mixed policy described above (the probabilities of executing

the expert policy were 60%, 36%, and 21%, respectively). For a fair comparison, the

amount of training data collected in batch IL was the same as all of the data collected over

the three iterations of online IL.

At each training phase, the optimization problem (4.3) or (4.4) was solved by ADAM

for 20 epochs, with mini-batch size 64, and a learning rate of 0.001. Dropouts were applied

at all fully connected layers to avoid over-fitting (with probability 0.5 for the firstly fully

connected layer and 0.25 for the rest). See Section 4.3.2 for details. Finally, after the entire

learning session of a policy, three rollouts were performed using the learned policy for

performance evaluation.

49

4.5 Experimental Results

4.5.1 Algorithmic Expert vs Human Expert

First, we study the performance of the algorithmic expert. For comparison the same task

was demonstrated by a human driver using a remote controller. We use speed (the faster

the better) as the metric for both MPC and human driver. Other metrics such as cross-track

error may not be intuitive because MPC and human driver have different objectives. For

example, MPC does path following while the human driver does lane keeping, e.g., it is

more desirable to not follow the center of the lane during cornering. Statistics for both

MPC and human expert are shown in Table 4.2. Results were averaged over 3 independent

trials. The MPC expert outperforms the human expert significantly in terms of speed (our

target speed is 7.5 m/s).

While a professional race car driver could be better at utilizing the tire force potential

than a hand-crafted controller (Laurense, Goh, and Gerdes, 2017), the MPC expert per-

forms better, because, in our case, the human driver controls the vehicle via a transmitter in

a third-person view, which results in a delayed response and differences in terms of sensing

and handling capabilities. In addition, human drivers can be problematic for online imita-

tion learning tasks due to the lack of instantaneous feedback from the vehicle caused by his

or her own actions (as we discussed in Section 3.6 and at the beginning of Section 4.A).

Labeling the actions frame-by-frame offline (Ross et al., 2013) is not possible because of

the continuous throttle and steering commands. In the following experiments we focus on

comparing batch and online imitation learning with the MPC expert.

4.5.2 Empirical Performance

Next we study the performance of training a control policy with online and batch IL algo-

rithms. Fig. 4.6 illustrates the vehicle trajectories of different policies. Due to accumulating

errors, the policy trained with batch IL crashed into the lower-left boundary, an area of the

50

Ta
bl

e
4.

2:
Te

st
st

at
is

tic
s.

To
ta

l
lo

ss
de

no
te

s
th

e
im

ita
tio

n
lo

ss
in

(3
.7

),
w

hi
ch

is
th

e
av

er
ag

e
of

th
e

st
ee

ri
ng

an
d

th
e

th
ro

ttl
e

lo
ss

es
.

C
om

pl
et

io
n

is
de

fin
ed

as
th

e
ra

tio
of

th
e

tr
av

el
ed

tim
e

st
ep

s
to

th
e

ta
rg

et
ed

tim
e

st
ep

s
(3

,0
00

).
A

ll
re

su
lts

he
re

re
pr

es
en

tt
he

av
er

ag
e

pe
rf

or
m

an
ce

ov
er

th
re

e
in

de
pe

nd
en

te
va

lu
at

io
n

tr
ia

ls
.

Po
lic

y
A

vg
.s

pe
ed

To
p

sp
ee

d
Tr

ai
ni

ng
da

ta
C

om
pl

et
io

n
ra

tio
To

ta
ll

os
s

St
ee

ri
ng

/T
hr

ot
tle

lo
ss

E
xp

er
t

6.
05

m
/s

8.
14

m
/s

N
/A

10
0

%
0

0
E

xp
er

t(
hu

m
an

)
5.

09
m

/s
6.

1
m

/s
N

/A
10

0
%

0
0

B
at

ch
4.

97
m

/s
5.

51
m

/s
30

00
10

0
%

0.
10

8
0.

09
2/

0.
12

4
B

at
ch

6.
02

m
/s

8.
18

m
/s

60
00

51
%

01
08

0.
16

2/
0.

05
5

B
at

ch
5.

79
m

/s
7.

78
m

/s
90

00
53

%
0.

12
3

0.
19

3/
0.

07
1

B
at

ch
5.

95
m

/s
8.

01
m

/s
12

00
0

69
%

0.
10

5
0.

12
5/

0.
08

3
O

nl
in

e
(1

ite
r)

6.
02

m
/s

7.
88

m
/s

60
00

10
0

%
0.

09
0

0.
11

2/
0.

06
7

O
nl

in
e

(2
ite

r)
5.

89
m

/s
8.

02
m

/s
90

00
10

0
%

0.
07

5
0.

09
5/

0.
05

5
O

nl
in

e
(3

ite
r)

6.
07

m
/s

8.
06

m
/s

12
00

0
10

0
%

0.
06

4
0.

07
3/

0.
05

5

51

state-action space rarely explored in the expert’s demonstrations. In contrast to batch IL,

online IL successfully copes with corner cases as the learned policy occasionally ventured

into new areas of the state-action space.

Fig. 4.7 shows the performance in terms of distance traveled without crashing (we used

the safe control module shown in Fig. 4.2 to manually terminate the rollout when the car

crashed into the soft boundary) and Table 4.2 shows the statistics of the experimental re-

sults. Overall, DNN policies trained with both online and batch IL algorithms were able

to achieve speeds similar to the MPC expert. However, with the same amount of training

data, the policies trained with online IL in general outperformed those trained with batch

IL. In particular, the policies trained using online IL achieved better performance in terms

of both completion ratio and imitation loss.

In addition, we found that, when using online IL, the performance of the policy mono-

tonically improves over iterations as data are collected, which is opposed to what was

found in (Laskey et al., 2016). The discrepancy can be explained with recent theoretical

analyses (Cheng and Boots, 2018; Cheng et al., 2019c; Lee et al., 2018c), which provides

a necessary and sufficient condition for the convergence of the policy sequence. In par-

ticular, the authors show that adopting a non-zero mixing (as used in our experiment) is

sufficient to guarantee the convergence of the learned policy sequence. Our autonomous

driving system is a successful real-world demonstration of this IL theory.

Finally, it is worth noting that the traveled distance of the batch learning policy, learned

with 3,000 samples, was longer than that of other batch learning policies. This is mainly

because this policy achieved better steering performance than throttle performance (cf.

Steering/Throttle loss in Table 4.2). That is, although the vehicle was able to navigate

without crashing, it actually traveled at a much slower speed. By contrast, the other batch

learning policies that used more data had better throttle performance and worse steering

performance, resulting in faster speeds but also higher chances of crashing.

52

Figure 4.7: Performance of online and batch IL in the distance (meters) traveled without
crashing. The policy trained with a batch of 3,000 samples was used to initialize online IL.

4.5.3 Generalizability of the Learned Policy

To further analyze the difference between the DNNs trained using online and batch IL,

we embed the data in a two-dimensional space using t-Distributed Stochastic Neighbor

Embedding (t-SNE) (Maaten and Hinton, 2008), as shown in Fig. 4.8 and Fig. 4.9. These

figures visualize the data in both batch and online IL settings, where “train” denotes the

data collected to train the policies and “test” denotes the data collected to evaluate the

performance of the final policies after the learning phase. For the online setting, the train

data include the data in all DAGGER iterations; for the batch setting, the train data include

the same amount of data but collected by the expert policy. The figures plot a subset of

3,000 points from each data set.

We first observe in Fig. 4.8 that, while the wheel speed data have similar training and

testing distributions, the raw image distributions are fairly misaligned. The raw images are

subject to changing lighting conditions, as the policies were executed at different times and

days, and to various trajectories the robot stochastically traveled. Therefore, while the task

(driving fast in the same direction) is seemingly monotone, it actually is not. More impor-

tantly, the training and testing images were collected by executing different policies, which

leads to different distributions of the neural networks inputs. This is known as the covariate

shift problem (Shimodaira, 2000), which can significantly complicate the learning process.

The policy trained with online IL yet still demonstrated great performance in the exper-

53

iments. To further understand how it could generalize across different image distributions,

we embed its feature distribution in Fig. 4.9 (a) and (b). The feature here are the last hid-

den layer of the neural network; namely, the output layer is a linear function of the features.

In comparison with the raw images, these abstract features (e.g. lane boundary, building

shown in Fig. 4.10) extracted by the encoder CNN ideally can be more invariant across

different situations.

Interestingly, despite the difference in the raw image distributions in Fig. 4.8 (a) and

(b), the DNN policy trained with online IL are able to map the train and test data to similar

feature distributions, as shown in Fig. 4.9 (a) and (b). An insight to this is that the online

IL algorithm (e.g. DAGGER) forces the DNN to learn a set of features such that a linear

combination (the last layer) of those features is sufficient to represent a good policy for a

range of distributions generated during the interactive training process. In other words, the

online IL paradigm effectively makes the DNN face a multi-task learning situation: it must

find an invariant feature embedding that is admissible to the use of linear policies. This

explains the coherency between Fig. 4.9 (a) and (b), compared with Fig. 4.8 (a) and (b).

On the contrary, the DNN policy trained with batch IL fails to learn a coherent feature

embedding, as shown in Fig. 4.9 (c) and (d). (They are still better than Fig. 4.8 (a) and

(b), but worse than Fig. 4.9 (a) and (b).) Based on the discussion above, this is because

the DNN only needs to work well on the distribution visited by the expert policy, which

is comparably simpler (an analogy to single-task learning). This could explain the inferior

performance of batch IL, and its inability to deal with the corner case in Fig. 4.6 (b). This

evidence shows that our online learning system can alleviate the covariate shift issue caused

by executing different policies at training and testing time.

4.5.4 The Neural Network Policy

Compared with hand-crafted feature extractors, one main advantage of a DNN policy is that

it can learn to extract both low-level and high-level features of an image and automatically

54

(a) Batch raw image (b) Online raw image

(c) Batch wheel speed (d) Online wheel speed

Figure 4.8: The distributions (t-SNE) of the raw images and wheel speed used as DNN
policy’s inputs (details in Section 4.5.3).

(a) Batch data wrt online model (b) Online data wrt online model

(c) Batch data wrt batch model (d) Online data wrt batch model

Figure 4.9: The distributions (t-SNE) of the learned DNN feature in the last fully-connected
layer (details are in Section 4.5.3).

55

(a) raw image (b) max-pooling1

(c) max-pooling2 (d) max-pooling3

Figure 4.10: The input RGB image and the averaged feature maps for each max-pooling
layer.

detect the parts that have greater influence on steering and throttle. We validate this idea

by showing in Fig. 4.10 the averaged feature map at each max-pooling layer (see Fig. 4.3),

where each pixel represents the averaged unit activation across different filter outputs. We

can observe that at a deeper level, the detected salient features are boundaries of the track

and parts of a building. In contrast, grass and dirt contribute little.

We also analyze the importance of incorporating wheel speeds in our task. We compare

the performance of the policy based on our DNN policy and a policy based on only the

CNN subnetwork (without wheel-speed inputs) in batch IL. The data was collected in ac-

cordance with Section 4.4.3. Fig. 4.11 shows the batch IL loss in (4.4) of different network

architectures. The full DNN policy in Fig. 4.3 achieved better performance consistently.

While images contain position and orientation information, it is insufficient to infer veloci-

ties, which are a part of the (hidden) vehicle state. Therefore, we conjecture state-of-the-art

CNNs (e.g. (Bojarski et al., 2017)) cannot be directly used to perform both lateral and

longitudinal controls, as we do here. By contrast, while without a recurrent architecture,

our DNN policy learned to combine wheel speeds in conjunction with CNN to infer hid-

56

Figure 4.11: Performance comparison between our DNN policy and its CNN sub-network
in terms of batch IL loss, where the horizontal axis is the size of data used to train the neural
network policies.

den state and achieve better performance. Recent work has shown that recurrent neural

networks (such as LSTM) can be used to predict speed (Yang et al., 2018) or acceleration

commands (Yu et al., 2017). However, a lower-level control module is required to com-

pute the throttle commands, therefore the learned policy is not end-to-end. Incorporating

recurrent structures into our imitation learning framework could be a interesting extension

of this work and is left to future research.

4.6 Conclusion

We introduce an end-to-end system to learn a deep neural network control policy for high-

speed driving that maps raw on-board observations to steering and throttle commands by

mimicking a model predictive controller. In real-world experiments, our system was able

to perform fast off-road navigation autonomously using a low-cost monocular camera and

wheel speed sensors. We also provide an analysis of both online and batch IL frameworks,

both theoretically and empirically and show that our system, when trained with online IL,

learns generalizable features that are more robust to covariate shift than features learned

with batch IL.

57

4.A Design of Algorithmic Expert

In Chapter 3, we showed that if an admissible expert is available then online IL (e.g. DAG-

GER) provides a learning framework that can achieve the desirable linear error dependency.

Due to the dynamic nature of our high-speed driving task, we consider algorithmic experts,

because human experts might not be able to provide stable and consistent high-frequency

feedbacks while the learner is driving the car.

More precisely, we recall that online IL requires action demonstrations on the trajecto-

ries generated by running the learner’s policy. For high-speed driving, this means that hu-

man experts need to provide action demonstrations (desired steering and throttle commands

here) when the vehicle is being autonomously controlled by the (suboptimal) learner’s pol-

icy. Deprived of the usual sensory-motor feedback, human drivers often provide poor feed-

back: for example, we have observed that human drivers tend to overcompensate when

providing steering when faced with unexpected vehicle dynamics (under the control of the

learner’s policy). This inconsistency can introduce bias into the demonstrated actions, in

the worst case, effectively creating an inadmissble expert policy for IL (see Section 3.6).

By contrast, a natural candidate with such stability property would be the optimal policy

of (3.1). Specifically, suppose the dynamics of (3.1) is known, an expert policy can be

obtained by solving problem (3.1) via Dynamic Programming, and its value function is the

solution to the Bellman equation

V π?
t (st) = min

at∈A
c(st, at) + Est+1∼P|st,at

[
V π?
t+1(st+1)

]
(4.7)

where P(s′|s, a) denotes the distribution of vehicle dynamics (i.e. the state transition). (We

made the dependency on time explicit here.)

However, in practice, the above idealistic approach faces two main challenges: 1) the

transition probability P(s′|s, a) is hard to obtain due to the complexity of vehicle dynam-

ics at high-speed in off-road conditions. 2) Solving (4.7) for all s ∈ S is computationally

58

intractable due to the curse of dimensionality of Dynamic Programming. In this work, we

address these two challenges using a probabilistic dynamics model and trajectory optimiza-

tion. We describe these techniques in the following and they will be used as the foundation

to design the algorithmic expert in our IL system, as later described in Section 4.3.1.

4.A.1 Probabilistic Dynamics Model

Under normal driving conditions, a planar single-track vehicle model derived from Newto-

nian physics (Kong et al., 2015) and an empirical tire model (Rajamani, 2011) are widely

used and usually sufficient for control design. In contrast, controlling a race car in aggres-

sive maneuvers, e.g., cornering at the limit of tire-road friction, requires more sophisticated

techniques to estimate the tire-road friction coefficient (Laurense, Goh, and Gerdes, 2017).

In our case, the friction changes rapidly due to the uneven dirt surface, which makes it

more challenging to estimate the coefficient. In practice, physics-based models do not

capture the aforementioned dynamics effects well, and neural networks (NNs) have been

used for vehicle dynamics model identification (Rutherford and Cole, 2010; Williams et

al., 2017). However, NNs typically do not adapt to rapidly changing road conditions in

real-time. In addition, NNs do not provide estimates of model uncertainty given limited

amount of training data, which can hamper accurate long-range prediction. Motivated by

these challenges, we consider learning a probabilistic model, Sparse Spectrum Gaussian

Processes (Lázaro-Gredilla et al., 2010) (SSGPs) from data to approximate the vehicle dy-

namics, and Bayesian inference to predict the vehicle’s future states.

SSGP Regression

Gaussian process regression (GPR) (Williams and Rasmussen, 2006) is a principled way

to perform Bayesian inference in function space. Consider the task of learning function

f : Rd → R (the vehicle dynamics model in our case, and we treat each output dimension

59

independently) given a dataset D = {(xn, yn)}Nn=1 that are sampled according to

yn = f(xn) + εn, εn ∼ N (0, σ2), (4.8)

where ε is an independent additive zero-mean Gaussian noise with covariance σ2. Data col-

lection details will be provided in Section 4.4.3. GPR reasons about potential candidates of

the latent function, under the assumption that f has a prior GP distribution f ∼ GP(m̄, k),

with mean function m̄ : Rd → R and covariance function k : Rd × Rd → R. That is,

for any x, x′ ∈ Rd, E[f(x)] = m̄(x), C[f(x), f(x′)] = k(x, x′), and for any finite subset

{xn ∈ Rd}Kn=1, {f(xn)}Kn=1 is Gaussian distributed. Using the dataset D, the inference

problem of GRP computes the posterior distribution of the latent function f . Without loss

of generality, we assume m̄(x) = 0 a priori.

While theoretically sound, the exact inference problem of GPR is challenging for large

datasets due to its O(N3) time and O(N2) space complexities (Williams and Rasmussen,

2006), which is a direct consequence of storing and inverting an N × N Gram matrix.

Many approximate techniques have been proposed to tackle this challenge, including us-

ing random Fourier features (Lázaro-Gredilla et al., 2010), degenerate priors (Snelson and

Ghahramani, 2006), variational posteriors (Cheng and Boots, 2017; Hensman, Fusi, and

Lawrence, 2013; Salimbeni et al., 2018; Titsias, 2009). In this work, we adopt the ap-

proach by Lázaro-Gredilla et al. (2010) for its implementation simplicity.

To reduce the complexity, Lázaro-Gredilla et al. (2010) use approximate GP models,

SSGPs, which are a class of GPs with prior covariance function in the form:

k(x, x′) = φ(x)>φ(x′) + σ2δ(x− x′), φ(x) =

φc(x)

φs(x)

 ,

φc(x) =

[
φc1(x) . . . φcm(x)

]>
, φs(x) =

[
φs1(x) . . . φsm(x)

]>
,

φci(x) = η cos(ω>i x), φsi (x) = η sin(ω>i x), ωi ∼ p(ω),

60

where function φ : Rd → R2m is an explicit finite-dimensional feature map 4, η is a scalar

scaling coefficient, δ is the Kronecker delta function, and vector ωi is sampled according

to some spectral density p(ω) function. Based on Bochner’s theorem, it can be shown

that SSGPs can unbiasedly approximate any continuous shift-invariant kernels if p(ω) is

constructed properly with respect to the original covariance function (Lázaro-Gredilla et

al., 2010).

Because of the explicit finite-dimensional feature map φ, each SSGP is equivalent to a

Gaussian distribution over the weights of the features w ∈ R2m and has a prior distribution

of weights w as N (0, I) (Lázaro-Gredilla et al., 2010). Given a fixed feature map, the

posterior distribution of w conditioned on the data D = {xn, yn}Nn=1 is

w ∼ N (α, σ2A−1), (4.9)

α = A−1ΦY, A = ΦΦ> + σ2I, (4.10)

which can be derived through Bayesian linear regression. In (4.10), the column vector Y

and the matrix Φ are specified by the data D, in which Y =

[
y1 . . . yn

]>
and Φ =

[
φ(x1) . . . φ(xn)

]
. Consequently, the posterior distribution over the output y in (4.8) at

a test point x is exactly Gaussian

p(y|x) = N (α>φ(x), σ2 + σ2‖φ(x)‖2
A−1). (4.11)

in which the posterior variance explicitly captures the model uncertainty in predicting f(x).

We use this SSGP framework to model the state transition of the unknown vehicle

dynamics (i.e. the latent function f : S × A → S that determines the change of state

∆st := st+1 − st given a concatenated state-action pair (st, at) as input). We assume

each output dimension is conditionally independent5 and use a SSGP model for each out-

4φ is obtained by concatenating m random features into a vector form.
5We assume that, for outputs in different dimensions ya and yb, p(ya, yb|x) = p(ya|x)p(yb|x).

61

put dimension. The hyper-parameters σ, η are optimized via maximizing the GP marginal

likelihood (Williams and Rasmussen, 2006).

Incremental Update

In order to cope with rapidly changing dynamics (e.g, caused by stochastic road condi-

tions), when a new vehicle state is available, we incorporate it to incrementally update the

posterior distribution over weightz w in (4.9) of the SSGP dynamics model. We note this

can be done rather efficiently without storing and inverting the A matrix explicitly. Instead

we keep track of its Cholesky factorR where A = R>R and perform rank-1 update given a

new sample (Gijsberts and Metta, 2013). The computation requires O(m2) time and can be

performed in real-time if m is moderate. To cope with time-varying dynamics, we employ

a forgetting factor λ ∈ (0, 1) such that the previous samples’ impact decays exponentially

in time (Ljung, 1998). Details are omitted.

Multi-step Prediction

We need to be able to perform multi-step prediction in order to use the SSGP dynamics

model inside a trajectory optimization algorithm. We provide the details of information

propagation across SSGP dynamics models in the following. At time t, suppose the distri-

bution at the current state st is distributed according to p(st) = N (µt,Σt) and the current

action is at. We wish to compute the state distribution p(st+1) at time t+1, which is related

to the current state st through

st+1 = st + f(st, at) + wt, wt ∼ N (0, σ2), (4.12)

where f is a random function given by the SSGP model. As in general p(st+1) can be

quite complicated, in this work, we approximate the predictive distribution with a Gaussian

distribution p(st+1) ≈ N (µt+1,Σt+1) through linearizing the predictive mean function of

62

the SSGP model. The moments of this approximate Gaussian predictive distribution can

be represented as follows (Pan et al., 2017b):

µt+1 = µt + E[∆st] (4.13)

Σt+1 = Σt + Var[∆st] + Cov(st,∆st) + Cov(∆st, st).

Equivalently, we can write the propagation of statistics in (4.13) in terms of the belief

of state st. Define the belief as bt = [µt vec(Σt)]
>, where vec(Σt) is the vectorization of

Σt, and denote the space of all beliefs by B ⊂ R. We can write (4.13) in a compact form

as

bt+1 = F(bt, at), (4.14)

where F : B×A → B is the effective map by (4.13). This new equation corresponds to the

belief-space representation of the dynamics; below we introduce a trajectory optimization

method to obtain optimal actions based on the belief-space dynamics model in (4.14).

4.A.2 Trajectory Optimization

Solving (4.7) globally is notoriously difficult, requiring discretization of the state space

S and incurs exponentially large complexity. In order to solve the optimal control prob-

lem efficiently, we use a trajectory optimization method, Differential Dynamic Program-

ming (DDP) (Jacobson and Mayne, 1970), which approximates the solution to (4.7) locally

around a trajectory. To control the vehicle under model uncertainty, we use the belief-

space dynamics model in (4.14). The instantaneous cost function l : B × A → R defined

as l(b, a) = Es[c(s, a)|b] where the cost c(s, a) is designed to 1) keep the car close to the

middle of the track, 2) travel at a target speed, 3) stabilize the car from slipping, and 4)

minimize throttle, brake and steering efforts. The details will be described in Section 4.4.1.

DDP is an iterative method. At each iteration, it creates a local model along a nominal

trajectory in the belief space including: 1) a linear approximation of the dynamics model; 2)

63

a second-order approximation of the value function. Denote the belief and control nominal

trajectory as (b̄1:T , ā1:T) and deviations from this trajectory as δbt = bt − b̄t, δat = at − āt.

The linear approximation of the belief dynamics along the nominal trajectory is

δbt+1 = Fb
tδbt + Fa

t δat. (4.15)

where Fb
t ,F

a
t are Jacobian matrices and the superscripts denote the variables involved in

the partial derivatives6. Given the closed-form expression of F, these derivatives can be

evaluated efficiently without using numerical differentiation techniques. To propagate the

value function, we construct a quadratic approximation of the instantaneous cost function l

along the nominal belief and control trajectory, i.e.,

l(bt, at) ≈ l0t + (lbt)
>δbt + (lat)

>δat +
1

2

δbt

δat

>

lbbt lbut

lubt luut

δbt

δat

 , (4.16)

where l0t = l(b̄t, āt). Given the above local approximations of dynamics (4.15) and cost

function (4.16), DDP creates a quadratic model of the value function

V π?

t (b) = min
at∈A

(
l(bt, at) + V π?

t

(
F(bt, at)

))
(4.17)

≈ V 0
t + (V b

t)>δbt +
1

2
δb>t V

bb
t δbt. (4.18)

In order to compute V 0
t , V

b
t , V

bb
t , we define the term inside the min operator in (4.17) as the

Q-function

Qπ?

t (bt, at) = l(bt, at) + V π?

t

(
F(bt, at)

)
.

6We will use this superscript rule for dynamics and cost-related terms.

64

Then we expand it up to the second order in δb and δa along b̄t, āt.

Qπ?

t (b̄t + δbt, āt + δat) ≈ Q0
t +Qb

tδbt +Qa
t δat +

1

2

δbt

δat

>

Qbb
t Qba

t

Qab
t Qaa

t

δbt

δat

 ,

(4.19)

and find an optimized control law by minimizing (4.19), i.e.,

δât = arg min
δat

[
Q(b̄t + δbt, āt + δat)

]

= −(Qaa
t)−1(Qa

t +Qab
t δbt).

(4.20)

The quadratic model (4.17) of the value function V 0
t , V

b
t , V

bb
t can be computed in a back-

ward pass by inserting the optimized control law ât = āt + δât into (4.19), see (Jacobson

and Mayne, 1970; Tassa, Erez, and Smart, 2008) for details. Once the optimized control

law along the entire nominal trajectory is computed through the backward pass, it is ap-

plied to the dynamics (4.14) to generate a new nominal trajectory in a forward pass. This

backward-forward scheme is repeated for multiple iterations until convergence.

Unlike Quadratic programming (QP)-based approaches (Borrelli et al., 2005), our DDP-

based approach is self-contained and does not rely on an external optimization solver. Com-

pared to sampling-based method (Wagener et al., 2019; Williams et al., 2017) that uses

massive forward simulations, our approach is more efficient as it exploits of the structure

of the dynamics model (4.14).

65

CHAPTER 5

FAST POLICY LEARNING THROUGH IMITATION AND REINFORCEMENT

5.1 Introduction

In Chapter 4, we show that imitation learning (IL), which works by leveraging additional

information provided through expert demonstrations, can be used as an alternate strategy

to reinforcement learning (RL) for faster policy learning (Pomerleau, 1989; Schaal, 1999).

However, despite significant recent breakthroughs in our understanding of imitation learn-

ing (Cheng and Boots, 2018; Ross, Gordon, and Bagnell, 2011), the performance of IL is

still highly dependent on the quality of the expert policy. When only a suboptimal expert

is available, policies learned with standard IL can be inferior to the policies learned by

tackling the RL problem directly with approaches such as policy gradients.

Several recent attempts have endeavored to combine RL and IL (Chang et al., 2015;

Nair et al., 2017; Rajeswaran et al., 2017; Ross and Bagnell, 2014; Sun, Bagnell, and Boots,

2018). These approaches incorporate the cost information of the RL problem into the im-

itation process, so the learned policy can both improve faster than their RL-counterparts

and outperform the suboptimal expert policy. Despite reports of improved empirical per-

formance, the theoretical understanding of these combined algorithms are still fairly lim-

ited (Rajeswaran et al., 2017; Sun, Bagnell, and Boots, 2018). Furthermore, some of these

algorithms have requirements that can be difficult to satisfy in practice, such as state reset-

ting (Chang et al., 2015; Ross and Bagnell, 2014).

In this chapter, we aim to provide an algorithm that combines the best aspects of RL

and IL. We accomplish this by first formulating first-order RL and IL algorithms in a com-

mon mirror descent framework, and show that these algorithms can be viewed as a single

approach that only differs in the choice of first-order oracle. On the basis of this new

66

insight, we address the difficulty of combining IL and RL with a simple, randomized algo-

rithm, named LOKI (Locally Optimal search after K-step Imitation). As its name suggests,

LOKI operates in two phases: picking K randomly, it first performs K steps of online IL

and then improves the policy with a policy gradient method afterwards. Compared with

previous methods that aim to combine RL and IL, LOKI is extremely straightforward to

implement. Furthermore, it has stronger theoretical guarantees: by properly randomizing

K, LOKI performs as if directly running policy gradient steps with the expert policy as the

initial condition. Thus, not only can LOKI improve faster than common RL methods, but

it can also significantly outperform a suboptimal expert. This is in contrast to previous

methods, such as AGGREVATTE (Ross and Bagnell, 2014), which generally cannot learn

a policy that is better than a one-step improvement over the expert policy. In addition to

these theoretical contributions, we validate the performance of LOKI in multiple simulated

environments. The empirical results corroborate our theoretical findings. This chapter is

partly based on our paper published as (Cheng et al., 2018a).

5.2 Problem Setup

In this chapter, we consider solving discrete-time γ-discounted infinite-horizon RL prob-

lems with γ ∈ [0, 1).1 Let S and A be the state and the action spaces, and let Π be the

policy class. The objective is to find a policy π ∈ Π that minimizes an accumulated cost

J(π) defined as

min
π∈Π

J(π), J(π) := Es0,a0,...,∼ρπ(p)

[
∞∑

t=0

γtc(st, at)

]
, (5.1)

in which st ∈ S, at ∈ A, c is the instantaneous cost, and ρπ(p) denotes the distribution

of trajectories (s0, a0, s1, . . .) generated by running the stationary policy π starting from a

fixed initial state distribution p(s0).

1LOKI can be easily adapted to finite-horizon problems.

67

We denote Qπ(s, a) as the Q-function under policy π and V π(s) = Ea∼π|s[Qπ(s, a)]

as the associated value function, where π(a|s) denotes the action distribution given state

s ∈ S. In addition, we denote dπt (s) as the state distribution at time t generated by running

the policy π for the first t steps, and we define the average state distribution dπ(s) =

(1 − γ)
∑∞

t=0 γ
tdπt (s). Note that, while we use the notation Ea∼π|s, the policy class Π can

be either deterministic or stochastic.

We generally will not deal with the objective function in (5.1) directly. Instead, we

consider a surrogate problem

min
π∈Π

Es∼dπEa∼π|s[Aπ
′
(s, a)], (5.2)

where Aπ′ = Qπ′ −V π′ is the (dis)advantage function with respect to some fixed reference

policy π′. For compactness of writing, we will often omit the random variable in expec-

tation; e.g., the objective function in (5.2) will be written as EdπEπ[Aπ
′
] for the remainder

of paper. By the performance difference lemma below (Kakade and Langford, 2002), it is

easy to see that solving (5.2) is equivalent to solving (5.1). (See also Chapter 2.)

Lemma 5.2.1. (Kakade and Langford, 2002) Let π and π′ be two policies and Aπ
′
(s, a) =

Qπ′(s, a)− V π′(s) be the (dis)advantage function with respect to running π′. It holds that

J(π) = J(π′) +
1

1− γEdπEπ[Aπ
′
]. (5.3)

5.3 First-Order RL and IL

We formulate both first-order RL and IL methods within a single mirror descent frame-

work (Nemirovski et al., 2009), which includes common update rules (Kakade, 2002; Pe-

ters, Mülling, and Altun, 2010; Peters and Schaal, 2008; Rawlik, Toussaint, and Vijayaku-

mar, 2012; Ross, Gordon, and Bagnell, 2011; Schulman et al., 2015a; Silver et al., 2014;

Sun et al., 2017; Sutton et al., 2000). We show that policy updates based on RL and IL

68

mainly differ in first-order stochastic oracles used, as summarized in Table 5.1.

Table 5.1: Comparison of First-Order Oracles

Method First-Order Oracle

POLICY GRADIENT (Section 5.3.2) Edπn (∇θEπ) [Aπn]
DAGGERED (Section 5.3.2) Edπn (∇θEπ) [Eπ? [m]]
AGGREVATED (Section 5.3.2) Edπn (∇θEπ) [Aπ

?
]

SLOLS (Section 5.6) Edπn (∇θEπ) [(1− λ)Aπn + λAπ
?
]

THOR (Section 5.6) Edπn (∇θEπ) [AH,π
?

πn,t]

5.3.1 Mirror Descent

We begin by defining the iterative rule to update policies. We assume that the learner’s

policy π is parametrized by some θ ∈ Θ, where Θ is a closed and convex set, and that the

learner has access to a family of strictly convex functionsR.

To update the policy, in the nth iteration, the learner receives a vector gn from a first-

order oracle, picks Rn ∈ R, and then performs a mirror descent step:

θn+1 = Pn,gn(θn) (5.4)

where Pn,gn is a prox-map defined as

Pn,gn(θn) = arg min
θ∈Θ

〈gn, θ〉+
1

ηn
BRn(θ||θn). (5.5)

ηn > 0 is the step size, and BRn is the Bregman divergence associated with Rn (Bregman,

1967): BRn(θ||θn) := Rn(θ)−Rn(θn)− 〈∇Rn(θn), θ − θn〉.

By choosing proper Rn, the mirror descent framework in (5.4) covers most RL and IL

algorithms. Common choices of Rn include negative entropy (Peters, Mülling, and Altun,

2010; Rawlik, Toussaint, and Vijayakumar, 2012), 1
2
‖θ‖2

2 (Silver et al., 2014; Sutton et al.,

69

2000), and 1
2
θ>F (θn)θ with F (θn) as the Fisher information matrix (Kakade, 2002; Peters

and Schaal, 2008; Schulman et al., 2015b).

5.3.2 First-Order Oracles

While both first-order RL and IL methods can be viewed as performing mirror descent,

they differ in the choice of the first-order oracle that returns the update direction gn. Here

we show the vector gn of both approaches can be derived as a stochastic approximation of

the (partial) derivative of EdπEπ[Aπ
′
] with respect to policy π, but with a different reference

policy π′.

Policy Gradients

A standard approach to RL is to treat (5.1) as a stochastic nonconvex optimization problem.

In this case, gn in mirror descent (5.4) is an estimate of the policy gradient∇θJ(π) (Sutton

et al., 2000; Williams, 1992).

To compute the policy gradient in the nth iteration, we set the current policy πn as the

reference policy in (5.3) (i.e. π′ = πn), which is treated as constant in θ in the following

policy gradient computation. Because Eπn [Aπn] = Eπn [Qπn] − V πn = 0, using (5.3), the

policy gradient can be written as2

(1− γ)∇θJ(π)|π=πn = ∇θEdπEπ[Aπn]|π=πn

= (∇θEdπ) [0] + Edπ (∇θEπ) [Aπn]|π=πn

= Edπ (∇θEπ) [Aπn]|π=πn (5.6)

The above expression is unique up to a change of baselines: (∇θEπ) [Aπn] is equivalent to

(∇θEπ) [Aπn + b], because (∇θEπ) [b(s)] = ∇θb(s) = 0, where b : S → R is also called a

control variate (Greensmith, Bartlett, and Baxter, 2004).
2We assume the cost is sufficiently regular so that the order of differentiation and expectation can ex-

change.

70

The exact formulation of (∇θEπ) [Aπn] depends on whether the policy π is stochastic or

deterministic. For stochastic policies,3 we can compute it with the likelihood-ratio method

and write

(∇θEπ) [Aπn] = Eπ[Aπn∇θ log π] (5.7)

For deterministic policies, we replace the expectation as evaluation (as it is the expectation

over a Dirac delta function, i.e. a = π(s)) and use the chain rule:

(∇θEπ) [Aπn] = ∇θA
πn(s, π) = ∇θπ∇aA

πn (5.8)

Substituting (5.7) or (5.8) back into (5.6), we get the equation for stochastic policy gra-

dient (Sutton et al., 2000) or deterministic policy gradient (Silver et al., 2014). Note that

the above equations require the exact knowledge, or an unbiased estimate, of Aπ. In prac-

tice, these terms are further approximated using function approximators, leading to biased

gradient estimators (Konda and Tsitsiklis, 2000; Mnih et al., 2016; Schulman et al., 2015a).

Imitation Gradients

An alternate strategy to RL is IL. In particular, we consider online IL, which interleaves data

collection and policy updates to overcome the covariate shift problem of traditional batch

IL (Ross, Gordon, and Bagnell, 2011). Online IL assumes that a (possibly suboptimal) ex-

pert policy π? is available as a black-box oracle, from which demonstrations a? ∼ π?(a?|s)

can be queried for any given state s ∈ S . Due to this requirement, the expert policy in

online IL is often an algorithm (rather than a human demonstrator), which is hard-coded

or based on additional computational resources, such as trajectory optimization (Pan et al.,

2017a). The goal of IL is to learn a policy that can perform similar to, or better than, the

expert policy.

3A similar equation holds for reparametrization (Grathwohl et al., 2018).

71

Rather than solving the stochastic nonconvex optimization directly, online IL solves an

online learning problem with per-round cost in the nth iteration defined as

ln(π) = EdπnEπ[c̃] (5.9)

where c̃ : S × A → R is a surrogate loss satisfying the following condition: For all s ∈ S

and π ∈ Π, there exists a constant Cπ? > 0 such that

Cπ?Eπ[c̃] ≥ Eπ[Aπ
?

]. (5.10)

By Lemma 5.2.1, this implies J(πn) ≤ J(π?) + Cπ
?

1−γ ln(πn). Namely, in the nth iteration,

online IL attempts to minimize an online upper-bound of J(πn).

DAGGER (Ross, Gordon, and Bagnell, 2011) chooses c̃ to be a loss function c̃(s, a) =

Ea?∼π?|s[m(a, a?)] that penalizes the difference between the learner’s policy and the ex-

pert’s policy, where m is some metric of space A (e.g., for a continuous action space Pan

et al. (2017a) choosem(a, a?) = ‖a−a?‖2). More directly, AGGREVATTE simply chooses

c̃(s, a) = Aπ
?
(s, a) (Ross and Bagnell, 2014); in this case, the policy learned with online

IL can potentially outperform the expert policy.

First-order online IL methods operate by updating policies with mirror descent (5.4)

with gn as an estimate of

∇θln(πn) = Edπn (∇θEπ) [c̃]|π=πn (5.11)

Similar to policy gradients, the implementation of (5.11) can be executed using either (5.7)

or (5.8) (and with a control variate). One particular case of (5.11), with c̃ = Aπ
? , is known

as AGGREVATED (Sun et al., 2017),

∇θln(πn) = Edπn (∇θEπ) [Aπ
?

]|π=πn . (5.12)

72

Similarly, we can turn DAGGER into a first-order method, which we call DAGGERED, by

using gn as an estimate of the first-order oracle

∇θln(πn) = Edπn (∇θEπ)Eπ? [m]. (5.13)

A comparison is summarized in Table 5.1.

5.4 Theoretical Comparison

With the first-order oracles defined, we now compare the performance and properties of

performing mirror descent with policy gradient or imitation gradient. We will see that while

both approaches share the same update rule in (5.4), the generated policies have different

behaviors: using policy gradient generates a monotonically improving policy sequence,

whereas using imitation gradient generates a policy sequence that improves on average.

Although the techniques used in this section are not completely new in the optimization

literature, we specialize the results to compare performance and to motivate LOKI in the

next section. The proofs of this section are included in Section 5.B.

5.4.1 Policy Gradients

We analyze the performance of policy gradients with standard techniques from nonconvex

analysis.

Proposition 5.4.1. Let J be β-smooth and Rn be αn-strongly convex with respect to norm

‖ · ‖. Assume E[gn] = ∇θJ(πn). For ηn ≤ 2αn
β

, it satisfies

E [J(πn+1)] ≤ J(π0) + E

[
N∑

n=1

2ηn
αn
‖∇θJ(πn)− gn‖2

∗

]

+
1

2
E

[
N∑

n=1

(
−αnηn +

βη2
n

2

)
‖∇̂θJ(πn)‖2

]

73

where the expectation is due to randomness of sampling gn, and ∇̂θJ(πn) := 1
ηn

(
θn − Pn,∇θJ(πn)(θn)

)
.

is a gradient surrogate.

Proposition 5.4.1 shows that monotonic improvement can be made under proper smooth-

ness assumptions if the step size is small and noise is comparably small with the gradient

size. However, the final policy’s performance is sensitive to the initial condition J(π0),

which can be poor for a randomly initialized policy.

Proposition 5.4.1 also suggests that the size of the gradient ‖∇̂θJ(πn)‖2 does not con-

verge to zero on average. Instead, it converges to a size proportional to the sampling noise

of policy gradient estimates due to the linear dependency of 2ηn
αn
‖∇θJ(πn) − gn‖2

∗ on ηn.

This phenomenon is also mentioned by Ghadimi, Lan, and Zhang, 2016. We note that this

pessimistic result is because the prox-map (5.5) is nonlinear in gn for general Rn and Θ.

However, when Rn is quadratic and Θ is unconstrained, the convergence of ‖∇̂θJ(πn)‖2 to

zero on average can be guaranteed (see Section 5.B.1 for a discussion).

5.4.2 Imitation Gradients

While applying mirror descent with a policy gradient can generate a monotonically im-

proving policy sequence, applying the same algorithm with an imitation gradient yields a

different behavior. The result is summarized below, which is a restatement of Ross and

Bagnell, 2014, Theorem 2.1, but is specialized for mirror descent.

Proposition 5.4.2. Assume ln is σ-strongly convex with respect to Rn.4 Assume E[gn] =

∇θln(πn) and ‖gn‖∗ ≤ G <∞ almost surely. For ηn = 1
σ̂n

with σ̂ ≤ σ, it holds

1

N
E

[
N∑

n=1

J(πn)

]
≤ J(π?) +

Cπ?

1− γ (εclass + εregret)

where the expectation is due to randomness of sampling gn, εclass = sup{πn} infπ∈Π
1
N

∑N
n=1 ln(π)

and εregret = G2(logN+1)
2σ̂N

.
4A function f is said to be σ-strongly convex with respect to R on a set K if for all x, y ∈ K, f(x) ≥

f(y) + 〈∇f(y), x− y〉+ σDR(x||y).

74

Proposition 5.4.2 is based on the assumption that ln is strongly convex, which can be

verified for certain problems (Cheng and Boots, 2018). Consequently, Proposition 5.4.2

shows that the performance of the policy sequence on average can converge close to the

expert’s performance J(π?), with additional error that is proportional to εclass and εregret.

εregret is an upper bound of the average regret, which is less than Õ(1
N

) for a large

enough step size.5 This characteristic is in contrast to policy gradient, which requires small

enough step sizes to guarantee local improvement.

εclass measures the expressiveness of the policy class Π. It can be negative if there is a

policy in Π that outperforms the expert policy π? in terms of c̃. However, since online IL

attempts to minimize an online upper bound of the accumulated cost through a surrogate

loss c̃, the policy learned with imitation gradients in general cannot be better than perform-

ing one-step policy improvement from the expert policy (Cheng and Boots, 2018; Ross and

Bagnell, 2014). Therefore, when the expert is suboptimal, the reduction from nonconvex

optimization to online convex optimization can lead to suboptimal policies.

Finally, we note that updating policies with imitation gradients does not necessarily

generate a monotonically improving policy sequence, even for deterministic problems;

whether the policy improves monotonically is completely problem dependent (Cheng and

Boots, 2018). Without going into details, we can see this by comparing policy gradient

in (5.6) and the special case of imitation gradient in (5.12). By Lemma 5.3, we see that

Edπn (∇θEπ) [Aπn] = (∇θEdπ)Eπn [Aπ
?

] + Edπn (∇θEπ) [Aπ
?

].

Therefore, even with c̃ = Aπ
? , the negative of the direction in (5.12) is not necessarily a

descent direction; namely applying (5.12) to update the policy is not guaranteed to improve

the policy performance locally.

5The step size should be large enough to guarantee Õ(1
N) convergence, where Õ denotes Big-O but

omitting log dependency. However, it should be bounded since εregret = Θ
(

1
σ̂

)
.

75

Algorithm 1 LOKI

Parameters: d, Nm, NM
Input: π?
1: Sample K with probability in (5.15).
2: for t = 1 . . .K do { # Imitation Phase}
3: Collect data Dn by executing πn
4: Query gn from (5.11) using π?

5: Update πn by mirror descent (5.4) with gn
6: Update advantage function estimate Âπn by Dn
7: end for
8: for t = K + 1 . . . do { # Reinforcement Phase}
9: Collect data Dn by executing πn.

10: Query gn from (5.6) f using Âπn
11: Update πn by mirror descent (5.4) with gn
12: Update advantage function estimate Âπn by Dn
13: end for

5.5 Imitate-Then-Reinforce

To combine the benefits from RL and IL, we propose a simple randomized algorithm

LOKI: first perform K steps of mirror descent with imitation gradient and then switch to

policy gradient for the rest of the steps. Despite the algorithm’s simplicity, we show that,

whenK is appropriately randomized, running LOKI has similar performance to performing

policy gradient steps directly from the expert policy.

5.5.1 Algorithm: LOKI

The algorithm LOKI is summarized in Algorithm 1. The algorithm is composed of two

phases: an imitation phase and a reinforcement phase. In addition to learning rates, LOKI

receives three hyperparameters (d, Nm, NM) which determine the probability of random

switching at time K. As shown in the next section, these three hyperparameters can be

selected fairly simply.

Imitation Phase Before learning, LOKI first randomly samples a number K ∈ [Nm, NM]

according to the prescribed probability distribution (5.15). Then it performs K steps of

76

mirror descent with imitation gradient. In our implementation, we set

Eπ[c̃] = KL(π?||π), (5.14)

which is the KL-divergence between the two policies. (The reverse KL-divergence can also

be used.) It can be easily shown that a proper constantCπ? exists satisfying the requirement

of c̃ in (5.10) (Gibbs and Su, 2002). While using (5.14) does not guarantee learning a policy

that outperforms the expert due to εclass ≥ 0, with another reinforcement phase available,

the imitation phase of LOKI is only designed to quickly bring the initial policy closer to

the expert policy. Compared with choosing c̃ = Aπ
? as in AGGREVATED, one benefit of

choosing KL(π?||π) (or its variants, e.g. ‖a − a?‖2) is that it does not require learning

a value function estimator. In addition, the imitation gradient can be calculated through

reparametrization instead of a likelihood-ratio (Tucker et al., 2017), as now c̃ is presented

as a differentiable function in a. Consequently, the sampling variance of imitation gradient

can be significantly reduced by using multiple samples of a ∼ πn (with a single query from

the expert policy) and then performing averaging.

Reinforcement Phase After the imitation phase, LOKI switches to the reinforcement

phase. At this point, the policy πK is much closer to the expert policy than the initial

policy π0. In addition, an estimate of AπK is also available. Because the learner’s policies

were applied to collect data in the previous online imitation phase, Aπn can already be up-

dated accordingly, for example, by minimizing TD error. Compared with other warm-start

techniques, LOKI can learn both the policy and the advantage estimator in the imitation

phase.

5.5.2 Analysis

We now present the theoretical properties of LOKI. The analysis is composed of two steps.

First, we show the performance of J(πK) in Theorem 5.5.1, a generalization of Propo-

77

sition 5.4.2 to consider the effects of non-uniform random sampling. Next, combining

Theorem 5.5.1 and Proposition 5.4.1, we show the performance of LOKI in Theorem 5.5.2.

The proofs are given in Section 5.C.

Theorem 5.5.1. Let d ≥ 0, Nm ≥ 1, and NM ≥ 2Nm. Let K ∈ [Nm, NM] be a discrete

random variable such that

P (K = n) =
nd∑NM

m=Nm
md

. (5.15)

Suppose ln is σ-strongly convex with respect to Rn, E[gn] = ∇θln(πn), and ‖gn‖∗ ≤

G < ∞ almost surely. Let {πn} be generated by running mirror descent with step size

ηn = nd/σ̂
∑n

m=1m
d. For σ̂ ≤ σ, it holds that

E [J(πK)] ≤ J(π?) + ∆,

where the expectation is due to samplingK and gn, ∆ = Cπ
?

1−γ

(
εwclass + 2−dσ̂DR +G2CNM/σ̂NM

)
,

DR = supR∈R supπ,π′∈Π DR(π′||π), εwclass := sup{wn},{πn} infπ∈Π

∑N
n=1 wnln(π)∑N
n=1 wn

, and

CNM =

log(NM) + 1, if d = 0

8d
3

exp
(

d
NM

)
, if d ≥ 1

Suppose NM � d. Theorem 5.5.1 says that the performance of J(πK) in expectation

converges to J(π?) in a rate of Õ(d/NM) when a proper step size is selected. In addition

to the convergence rate, we notice that the performance gap between J(π?) and J(πK) is

bounded by O(εwclass + 2−dDR). εwclass is a weighted version of the expressiveness measure

of policy class Π in Proposition 5.4.2, which can be made small if Π is rich enough with

respect to the suboptimal expert policy. DR measures the size of the decision space with

respect to the class of regularization functions R that the learner uses in mirror descent.

The dependency on DR is because Theorem 5.5.1 performs a suffix random sampling with

78

Nm > 0. While the presence of DR increases the gap, its influence can easily made small

with a slightly large d due to the factor 2−d.

In summary, due to the sublinear convergence rate of IL, NM does not need to be large

(say less than 100) as long as NM � d; on the other hand, due to the 2d factor, d is

also small (say less than 5) as long as it is large enough to cancel out the effects of DR.

Finally, we note that, like Proposition 5.4.2, Theorem 5.5.1 encourages using larger step

sizes, which can further boost the convergence of the policy in the imitation phase of LOKI.

Given Proposition 5.4.1 and Theorem 5.5.1, now it is fairly easy to understand the

performance of LOKI.

Theorem 5.5.2. Running LOKI holds that

E [J(πN)] ≤ J(π?) + ∆ + E

[
N∑

n=K+1

2ηn
αn
‖∇θJ(πn)− gn‖2

∗

]

+
1

2
E

[
N∑

n=K+1

(
−αnηn +

βη2
n

2

)
‖∇̂θJ(πn)‖2

]
,

where the expectation is due to sampling gn and K.

Firstly, Theorem 5.5.2 shows that πN can perform better than the expect policy π?, and,

in fact, it converges to a locally optimal policy on average under the same assumption as

in Proposition 5.4.1. Compared with to running policy gradient steps directly from the

expert policy, running LOKI introduces an additional gap O(∆ +K‖∇̂θJ(π)‖2). However,

as discussed previously, ∆ and K ≤ NM � N are reasonably small, for usual N in RL.

Therefore, performing LOKI almost has the same effect as using the expert policy as the

initial condition, which is the best we can hope for when having access to an expert policy.

We can also compare LOKI with performing usual policy gradient updates from a ran-

domly initialized policy. The performance difference can be easily shown as O(J(π?) −

J(π0) + ∆ + K‖∇̂θJ(π)‖2). Therefore, if performing K steps of policy gradient from π0

gives a policy with performance worse than J(π?) + ∆, then LOKI is favorable.

79

5.6 Related Work

We compare LOKI with some recent attempts to incorporate the loss information c of RL

into IL so that it can learn a policy that outperforms the expert policy. As discussed in

Section 5.4, when c̃ = Aπ
? , AGGREVATE(D) can potentially learn a policy that is better

than the expert policy (Ross and Bagnell, 2014; Sun et al., 2017). However, implementing

AGGREVATE(D) exactly as suggested by theory can be difficult and inefficient in practice.

On the one hand, while Aπ? can be learned off-policy using samples collected by running

the expert policy, usually the estimator quality is unsatisfactory due to covariate shift. On

the other hand, if Aπ? is learned on-policy, it requires restarting the system from any state,

or requires performing 1
1−γ -times more iterations to achieve the same convergence rate as

other choices of c̃ such as KL(π?||π) in LOKI; both of which are impractical for usual RL

problems.

Recently, Sun, Bagnell, and Boots (2018) proposed THOR (Truncated HORizon policy

search) which solves a truncated RL problem with the expert’s value function as the termi-

nal loss to alleviate the strong dependency of AGGREVATED on the quality of Aπ? . Their

algorithm uses an H-step truncated advantage function defined as

AH,π
?

πn,t = Eρπn [
t+H−1∑

τ=t

γτ−tc(sτ , aτ) + γHVπ?(st+H)− Vπ?(st)].

While empirically the authors show that the learned policy can improve over the expert

policy, the theoretical properties of THOR remain somewhat unclear.6 In addition, THOR

is more convoluted to implement and relies on multiple advantage function estimators. By

contrast, LOKI has stronger theoretical guarantees, while being straightforward to imple-

ment with off-the-shelf learning algorithms.

Finally, we compare LOKI with LOLS (Locally Optimal Learning to Search), proposed

6The algorithm actually implemented by Sun, Bagnell, and Boots (2018) does not solve precisely the
same problem analyzed in theory.

80

by Chang et al., 2015. LOLS is an online IL algorithm which sets c̃ = Qπ̂λn , where λ ∈

[0, 1] and π̂λn is a mixed policy that at each time step chooses to run the current policy πn

with probability 1 − λ and the expert policy π? with probability λ. Like AGGREVATED,

LOLS suffers from the impractical requirement of estimating Qπ̂λn , which relies on the state

resetting assumption.

Here we show that such difficulty can be addressed by using the mirror descent frame-

work with gn as an estimate of ∇θl
λ
n(πn), where lλn(π) := EdπnEπ[(1 − λ)Aπn + λAπ

?
].

That is, the first-order oracle is simply a convex combination of policy gradient and AG-

GREVATED gradient. We call such linear combination SLOLS (simple LOLS) and we show

it has the same performance guarantee as LOLS.

Theorem 5.6.1. Under the same assumption in Proposition 5.4.2, running SLOLS gener-

ates a policy sequence, with randomness due to sampling gn, satisfying

1

N
E

[
N∑

n=1

J(πn)−
(
(1− λ)J∗πn + λJ(π?)

)
]
≤
ελclass + ελregret

1− γ

where J∗πn = minπ∈Π EdπnEπ[Qπn] =: Edπn [V ∗πn] and ελclass = minπ∈Π
1
N

(
∑N

n=1 EdπnEπ[(1−

λ)Qπn + λQπ?])− 1
N

(
∑N

n=1 Edπn [(1− λ)V ∗πn + λVπ?]).

In fact, the performance in Theorem 5.6.1 is actually a lower bound of Theorem 3

in (Chang et al., 2015).7 Theorem 5.6.1 says that on average πn has performance between

the expert policy J(π?) and the intermediate cost J∗πn , as long as ελclass is small (i.e., there

exists a single policy in Π that is better than the expert policy or the local improvement

from any policy in Π). However, due to the presence of ελclass, despite J∗πn ≤ J(πn), it is

not guaranteed that J∗πn ≤ J(π?). As in Chang et al., 2015, either LOLS or SLOLS can nec-

essarily perform on average better than the expert policy π?. Finally, we note that recently

both Nair et al. (2017) and Rajeswaran et al. (2017) propose a scheme similar to SLOLS,

but with the AGGREVATE(D) gradient computed using offline batch data collected by the
7The main difference is due to technicalities. In Chang et al., 2015, ελclass is compared with a time-varying

policy.

81

expert policy. However, there is no theoretical analysis of this algorithm’s performance.

5.7 Experiments

We evaluate LOKI on several robotic control tasks from OpenAI Gym (Brockman et al.,

2016) with the DART physics engine (Lee et al., 2018a)8 and compare it with several

baselines: TRPO (Schulman et al., 2015b), TRPO from expert, DAGGERED (the first-order

version of DAGGER (Ross, Gordon, and Bagnell, 2011) in (5.13)), SLOLS (Section 5.6),

and THOR (Sun, Bagnell, and Boots, 2018).

5.7.1 Tasks

We consider the following tasks. In all tasks, the discount factor of the RL problem is set

to γ = 0.99. The details of each task are specified in Table 10.2 in Section 5.A.

Inverted Pendulum This is a classic control problem, and its goal is to swing up an

pendulum and to keep it balanced in a upright posture. The difficulty of this task is that the

pendulum cannot be swung up directly due to a torque limit.

Locomotion The goal of these tasks (Hopper, 2D Walker, and 3D Walker) is to control a

walker to move forward as quickly as possible without falling down. In Hopper, the walker

is a monoped, which is subjected to significant contact discontinuities, whereas the walkers

in the other tasks are bipeds. In 2D Walker, the agent is constrained to a plane to simplify

balancing.

Robot Manipulator In the Reacher task, a 5-DOF (degrees-of-freedom) arm is con-

trolled to reach a random target position in 3D space. The reward consists of the negative

distance to the target point from the finger tip plus a control magnitude penalty. The actions

correspond to the torques applied to the 5 joints.

8The environments are defined in DartEnv, hosted at https://github.com/DartEnv.

82

5.7.2 Algorithms

We compare five algorithms (LOKI, TRPO, DAGGERED, THOR, SLOLS) and the idealistic

setup of performing policy gradient steps directly from the expert policy (Ideal). To facil-

itate a fair comparison, all the algorithms are implemented based on a publicly available

TRPO implementation (Dhariwal et al., 2017). Furthermore, they share the same parame-

ters except for those that are unique to each algorithm as listed in Table 10.2 in Section 5.A.

The experimental results averaged across 25 random seeds are reported in Section 5.7.3.

Policy and Value Networks Feed-forward neural networks are used to construct the pol-

icy networks and the value networks in all the tasks (both have two hidden layers and 32

tanh units per layer). We consider Gaussian stochastic policies, i.e. for any state s ∈ S ,

π(a|s) is Gaussian distributed. The mean of the Gaussian π(a|s), as a function of state, is

modeled by the policy network, and the covariance matrix of Gaussian is restricted to be

diagonal and independent of state. The policy networks and the value function networks

are initialized randomly, except for the ideal setup (TRPO from expert), which is initialized

as the expert.

Expert Policy The same sub-optimal expert is used by all algorithms (LOKI, DAG-

GERED, SLOLS, and THOR). It is obtained by running TRPO and stopping it before con-

vergence. The estimate of the expert value function Vπ? (required by SLOLS and THOR) is

learned by minimizing the sum of squared TD(0) error on a large separately collected set

of demonstrations of this expert. The final explained variance for all the tasks is more than

0.97 (see Section 5.A).

First-Order Oracles The on-policy advantage Aπn in the first-order oracles for TRPO,

SLOLS, and LOKI (in the reinforcement phase) is implemented using an on-policy value

function estimator and Generalized Advantage Estimator (GAE) (Schulman et al., 2015a).

For DAGGERED and the imitation phase of LOKI, the first-order oracle is calculated us-

83

ing (5.14). For SLOLS, we use the estimate Aπ?(st, at) ≈ c(st, at)+γV̂ π?(st+1)− V̂ π?(st).

And for THOR, AH,π
?

πn,t of the truncated-horizon problem is approximated by Monte-Carlo

samples with an on-policy value function baseline estimated by regressing on these Monte-

Carlo samples. Therefore, for all methods, an on-policy component is used in constructing

the first-order oracle. The exponential weighting in GAE is 0.98; the mixing coefficient λ

in SLOLS is 0.5; NM in LOKI is reported in Table 10.2 in Section 5.A, and Nm =
⌊

1
2
NM

⌋
,

and d = 3.

Mirror Descent After receiving an update direction gn from the first-order oracle, a KL-

divergence-based trust region is specified. This is equivalent to setting the strictly convex

function Rn in mirror descent to 1
2
θ>F (θn)θ and choosing a proper learning rate. In our

experiments, a larger KL-divergence limit (0.1) is selected for imitation gradient (5.14) (in

DAGGERED and in the imitation phase of LOKI), and a smaller one (0.01) is set for all

other algorithms. This decision follows the guideline provided by the theoretical analysis

in Section 5.3.2 and is because of the low variance in calculating the gradient of (5.14).

Empirically, we observe using the larger KL-divergence limit with policy gradient led to

high variance and instability.

5.7.3 Experimental Results

We report the performance of these algorithms on various tasks in Fig. 5.1. The perfor-

mance is measured by the accumulated rewards, which are directly provided by OpenAI

Gym.

We first establish the performance of two baselines, which represent standard RL (TRPO)

and standard IL (DAGGERED). TRPO is able to achieve considerable and almost monotonic

improvement from a randomly initialized policy. DAGGERED reaches the performance of

the suboptimal policy in a relatively very small number of iterations, e.g. 15 iterations in

2D Walker, in which the suboptimal policy to imitate is TRPO at iteration 100. However, it

84

0 20 40 60 80
Iteration

−1200

−1000

−800

−600

−400

−200

R
et

ur
n

Pendulum

0 25 50 75 100 125 150 175
Iteration

0

1000

2000

3000

4000

R
et

ur
n

Hopper

0 25 50 75 100 125 150 175
Iteration

0

500

1000

1500

2000

2500

3000

3500

R
et

ur
n

2D Walker

0 200 400 600 800
Iteration

500

1000

1500

2000

R
et

ur
n

3D Walker

0 100 200 300 400
Iteration

−800

−700

−600

−500

−400

−300

−200

R
et

ur
n

Reacher

0 200 400 600 800
Iteration

500

1000

1500

2000

2500

R
et

ur
n

3D Walker
LOKI
Ideal
THOR
TRPO
DAGGERED
SLOLS

Figure 5.1: Learning curves. Shaded regions correspond to ±1
2
-standard deviation.

fails to outperform the suboptimal expert.

Then, we evaluate the proposed algorithm LOKI and Ideal, the performance of which

we wish to achieve in theory. LOKI consistently enjoys the best of both TRPO and DAG-

GERED: it improves as fast as DAGGERED at the beginning, keeps improving, and then

finally matches the performance of Ideal after transitioning into the reinforcement phase.

Interestingly, the on-policy value function learned, though not used, in the imitation phase

helps LOKI transition from imitation phase to reinforcement phase smoothly.

Lastly, we compare LOKI to the two other baselines (SLOLS and THOR) that combine

RL and IL. LOKI outperforms these two baselines by a considerably large margin in Hopper,

2D Walker, and 3D Walker; but surprisingly, the performance of SLOLS and THOR are

inferior even to TRPO on these tasks. The main reason is that the first-order oracles of both

methods is based on an estimated expert value function V̂ π? . As V̂ π? is only regressed on

the data collected by running the expert policy, large covariate shift error could happen if the

dimension of the state and action spaces are high, or if the uncontrolled system is complex

or unstable. For example, in the low-dimensional Pendulum task and the simple Reacher

task, the expert value function can generalize better. As a result, in these two cases, LOLS

85

and THOR achieve super-expert performance. However, in more complex tasks, where the

effects of covariant shift amplifies exponentially with the dimension of the state space,

THOR and SLOLS start to suffer from the inaccuracy of V̂ π? , as illustrated in the 2D Walker

and 3D Walker tasks.

5.8 Conclusion

We present a simple, elegant algorithm, LOKI, that combines the best properties of RL

and IL. Theoretically, we show that, by randomizing the switching time, LOKI can per-

form as if running policy gradient steps directly from the expert policy. Empirically, LOKI

demonstrates superior performance compared with the expert policy and more complicated

algorithms that attempt to combine RL and IL.

5.A Task Details

Table 5.2: Experiment Details

Pendulum Hopper 2D Walker 3D Walker Reacher

Observation space dimension 3 11 17 41 21
Action space dimension 1 3 6 15 5
Number of samples per iteration 4k 16k 16k 16k 40k
Number of iterations 100 200 200 1000 500
Number of TRPO iterations for expert 50 50 100 500 100
Upper limit of number of imitation steps of LOKI 10 20 25 50 25
Truncated horizon of THOR 40 40 250 250 250

The expert value estimator V̂ π? needed by SLOLS and THOR were trained on a large set

of samples (50 times the number of samples used in each batch in the later policy learning),

and the final average TD error are: Pendulum (0.972), Hopper (0.989), 2D Walker (0.975),

3D Walker (0.983), and Reacher (0.973), measured in terms of explained variance, which

is defined as 1- (variance of error / variance of prediction).

86

5.B Proof of Section 5.4

5.B.1 Proof of Proposition 5.4.1

To prove Proposition 5.4.1, we first prove a useful Lemma 5.B.1.

Lemma 5.B.1. Let K be a convex set. Let h = E[g]. Suppose R is α-strongly convex with

respect to norm ‖ · ‖.

y = arg min
z∈K

〈g, z〉+
1

η
dR(z||x) =: Pg,η(x)

where η satisfies that −αη + βη2

2
≤ 0. Then it holds

E[〈h, y − x〉+
β

2
‖x− y‖2] ≤ 1

2

(
−αη +

βη2

2

)
E
[
‖H‖2

]
+

2η

α
E
[
‖g − h‖2

∗
]

where H = 1
η
(x−Ph,η(x)). In particular, if ‖ · ‖ = ‖ · ‖W for some positive definite matrix

W , R is quadratic, and K is Euclidean space,

E[〈h, y − x〉+
β

2
‖x− y‖2] ≤

(
−αη +

βη2

2

)
E
[
‖H‖2

]
+
βη2

2
E[‖H −G‖2]

Proof. Let G = 1
η
(x − Pg,η(x)). First we show for the special case (i.e. suppose R(x) =

1
2
〈x,Mx〉 for some positive definite matrixM , and thereforeG = M−1g andH = M−1h).

E[〈h, y − x〉] = −ηE[〈h,G〉] = −ηE[〈h,H〉] ≤ −αη‖H‖2

and because g is unbiased,

E
[
β

2
‖x− y‖2

]
= E

[
η2β

2
‖H‖2 +

η2β

2
‖G−H‖2

]

87

For general setups, we first separate the term into two parts

〈h, y − x〉 = 〈g, y − x〉+ 〈h− g, y − x〉

For the first term, we use the optimality condition

〈
g +

1

η
∇R(y)− 1

η
∇R(x), z − y

〉
≥ 0, ∀z ∈ K

which implies

〈g, x− y〉 ≥ 1

η
〈∇R(y)−∇R(x), y − x〉 ≥ α

η
‖x− y‖2

Therefore, we can bound the first term by

〈g, y − x〉 ≤ −α
η
‖x− y‖2 = −αη‖G‖2

On the other hand, for the second term, we first write

〈h− g, y − x〉 = −η 〈h− g,G〉

= −η 〈h− g,H〉+ η 〈h− g,H −G〉

and we show that

〈h− g,H −G〉 ≤ ‖h− g‖∗‖H −G‖ ≤
‖h− g‖2

∗
α

(5.16)

88

This can be proved by Legendre transform:

Pg,η(x) = arg min
z∈K

〈g, z〉+
1

η
dR(z||x)

= arg min
z∈K

〈
g − 1

η
∇R(x), z

〉
+

1

η
R(z)

= ∇
(

1

η
R

)∗(
1

η
∇R(x)− g

)

Because 1
η
R is α

η
-strongly convex with respect to norm ‖ · ‖,

(
1
η
R
)∗

is η
α

-smooth with

respect to norm ‖ · ‖∗, we have

‖H −G‖ ≤ 1

η

η

α
‖g − h‖∗ =

1

α
‖g − h‖∗

which proves (5.16). Putting everything together, we have

E[〈h, y − x〉+
β

2
‖x− y‖2]

≤ E
[(
−αη +

βη2

2

)
‖G‖2

]
+ E

[
−η 〈h− g,H〉+

η

α
‖g − h‖2

∗

]

= E
[(
−αη +

βη2

2

)
‖G‖2

]
+ E

[η
α
‖g − h‖2

∗

]

Because

‖H‖2 ≤ 2‖G‖2 + 2‖H −G‖2 ≤ 2‖G‖2 +
2

α2
‖h− g‖2

∗

it holds that

E[〈h, y − x〉+
β

2
‖x− y‖2]

≤ 1

2

(
−αη +

βη2

2

)
E
[
‖H‖2

]
+

2η

α
E
[
‖g − h‖2

∗
]

�

89

Proof of Proposition 5.4.1 We apply Lemma 5.B.1: By smoothness of J ,

E [J(πn+1)]− J(πn) ≤ E
[
〈∇J(πn), θn+1 − θn〉+

β

2
‖θn+1 − θn‖2

]

≤ 1

2

(
−αnηn +

βη2
n

2

)
E
[
‖∇̂θJ(πn)‖2

]
+

2ηn
αn
‖∇θJ(πn)− gn‖2

∗

This proves the statement in Proposition 5.4.1. We note that, in the above step, the general

result of Lemma 5.B.1. For the special case Lemma 5.B.1, we would recover the usual con-

vergence property of stochastic smooth nonconvex optimization, which shows on average

convergence to stationary points in expectation.

5.B.2 Proof of Proposition 5.4.2

We use a well-know result of mirror descent, whose proof can be found e.g. in (Juditsky

and Nemirovski, 2011).

Lemma 5.B.2. LetK be a convex set. SupposeR is α-strongly convex with respect to norm

‖ · ‖. Let g be a vector in some Euclidean space and let

y = arg min
z∈K

〈g, z〉+
1

η
dR(z||x) = Pg,η(x)

Then for all z ∈ K

η 〈g, x− z〉 ≤ DR(z||x)−DR(z||y) +
η2

2
‖g‖2

∗

Next we prove a lemma of performing online mirror descent with weighted cost. While

weighting it not required in proving Proposition 5.4.2, it will be useful to prove Theo-

rem 5.5.2 later in Section 5.C.

Lemma 5.B.3. Let fn be σ-strongly convex with respect to some strictly convex function

90

Rn, i.e.

fn(x) ≥ fn(y) + 〈∇fn(y), x− y〉+ σdRn(x||y)

and let {wn}Nn=1 be a sequence of positive numbers. Consider the update rule

xn+1 = arg min
z∈K

〈wngn, x〉+
1

ηn
dRn(z||xn)

where gn = ∇fn(xn) and ηn = 1
σ̂
∑n
m=1 wm

. Suppose σ̂ ≤ σ. Then for all x∗ ∈ K,

N ≥M ≥ 1, it holds that

N∑

n=M

wnfn(xn)− wnfn(x∗) ≤ σ̂dRM (x∗||xM)
M−1∑

n=1

wn +
1

2σ̂

N∑

n=1

w2
n‖gn‖2

∗∑n
m=1wm

Proof. The proof is straight forward by strong convexity of fn and Lemma 10.F.1.

N∑

n=M

wn(fn(xn)− fn(x∗))

≤
N∑

n=M

wn
(
〈gn, xn − x∗〉 − σdRn(x∗||xn)

)
(σ-strong convexity)

≤
N∑

n=M

1

ηn
dRn(x∗||xn)− 1

ηn
dRn(x∗||xn+1)− wnσdRn(x∗||xn) +

w2
nηn
2
‖gn‖2

∗ (Lemma 10.F.1)

≤ dRM (x∗||xM)

ηM−1

+
N∑

n=M

(
1

ηn
− 1

ηn−1

− wnσ
)
dRn(x∗||xn) +

w2
nηn
2
‖gn‖2

∗ (We define
1

η0

= 0)

= σ̂dRM (x∗||xM)
M−1∑

n=1

wn +
N∑

n=1

(wnσ̂ − wnσ) dRn(x∗||xn) +
1

2σ̂

N∑

n=1

w2
n‖gn‖2

∗∑n
m=1wm

≤ σ̂dRM (x∗||xM)
M−1∑

n=1

wn +
1

2σ̂

N∑

n=1

w2
n‖gn‖2

∗∑n
m=1 wm

�

Proof of Proposition 5.4.2 Now we use Lemma 5.B.3 to prove the final result. It’s easy

to see that if gn is an unbiased stochastic estimate of ∇fn(xn) in Lemma 5.B.3, then the

performance bound would hold in expectation since xn does not depend on gn. Finally, by

91

definition of εclass, this concludes the proof.

5.C Proof of Section 5.5

5.C.1 Proof of Theorem 5.5.1

Let wn = nd. The proof is similar to the proof of Proposition 5.4.2 but with weighted cost.

First we use Lemma 5.2.1 and bound the series of weighted accumulated loss

E

[
NM∑

n=Nm

wnJ(πn)

]
−
(

NM∑

n=Nm

wn

)
J(π?) ≤ Cπ?

1− γ

NM∑

n=Nm

wnln(πn)

Then we bound the right-hand side by using Lemma 5.B.3,

NM∑

n=Nm

wnln(πn)−min
π∈Π

NM∑

n=Nm

wnln(π) ≤ σ̂dR
Nm−1∑

n=1

wn +
1

2σ̂

NM∑

n=Nm

w2
n‖gn‖2

∗∑n
m=1wm

≤ σ̂dRNd+1
m

d+ 1
+
d+ 1

2σ̂

NM∑

n=Nm

‖gn‖2
∗n

d−1

where we use the fact that d ≥ 0,

nd+1 − (m− 1)d+1

d+ 1
≤

n∑

k=m

kd ≤ (n+ 1)d+1 −md+1

d+ 1

which implies w2
n∑n

m=1 wm
≤ (d+1)n2d

nd+1 ≤ (d+ 1)nd−1. Combining these two steps, we see that

the weighted accumulated loss on average can be bounded by

E

[∑NM
n=Nm

wnJ(πn)
∑NM

n=Nm
wn

]

≤ J(π?) +
Cπ?

1− γ

(
εwclass +

σ̂dRNd+1
m

(d+ 1)
∑NM

n=Nm
wn

+
d+ 1

2σ̂
∑NM

n=Nm
wn

NM∑

n=Nm

‖gn‖2
∗n

d−1

)

92

Because NM ≥ 2Nm and x
1−x ≤ 2x for x ≤ 1

2
, we have

Nd+1
m

(d+ 1)
∑NM

n=Nm
wn
≤ Nd+1

m

Nd+1
M − (Nm − 1)d+1

≤ Nd+1
m

Nd+1
M −Nd+1

m

=
1

(
NM
Nm

)d+1

− 1
≤ 2

(
Nm

NM

)d+1

≤ 2−d

and, for d ≥ 1,

d+ 1∑NM
n=Nm

wn

NM∑

n=Nm

nd−1 ≤ d+ 1

Nd+1
M − (Nm − 1)d+1

d+ 1

d

(
(NM + 1)d −Nd

m

)

≤ (d+ 1)2

d

(NM + 1)d

Nd+1
M −Nd+1

m

≤ (d+ 1)2

d

1
NM

(1 + 1
NM

)d

1−
(
Nm
NM

)d+1

≤ 16d

3NM

(
1 +

1

NM

)d
(NM ≥ 2Nm and d ≥ 1)

≤ 16d

3NM

exp

(
d

NM

)

and for d = 0,

d+ 1∑NM
n=Nm

wn

NM∑

n=Nm

nd−1 =
1∑NM

n=Nm
1

NM∑

n=Nm

1

n
≤ log(NM) + 1

NM −Nm

≤ 2 (log(NM) + 1)

NM

Thus, by the assumption that ‖gn‖∗ ≤ G almost surely, the weighted accumulated loss on

average has an upper bound

E

[∑NM
n=Nm

wnJ(πn)
∑NM

n=Nm
wn

]
≤ J(π?) +

Cπ?

1− γ

(
εwclass + 2−dσ̂dR +

G2CNM/σ̂

NM

)

By samplingK according to ws, this bound directly translates into the the bound on J(πK).

93

5.C.2 Proof of Theorem 5.6.1

For simplicity, we prove the result of deterministic problems. For stochastic problems, the

result can be extended to expected performance, similar to the proof of Proposition 5.4.2.

We first define the online learning problem of applying gn = ∇θl
λ
n(π)|π=πn to update the

policy. In the nth iteration, we define the per-round cost as

lλn(π) = EdπnEπ[(1− λ)Aπn + λAπ
?

] (5.17)

With the strongly convexity assumption and large enough step size, similar to the proof for

Proposition 5.4.2, we can show that

N∑

n=1

lλn(πn) ≤ min
π∈Π

N∑

n=1

(lλn(π) + ελregret)

= min
π∈Π

N∑

n=1

EdπnEπ[(1− λ)Aπn + λAπ
?

] +Nελregret

where ελregret = Õ
(

1
T

)
. Note by definition of Aπn , the left-hand-side in the above bound can

be written as

1

N

N∑

n=1

lλn(πn) =
N∑

n=1

EdπnEπn [(1− λ)Aπn + λAπ
?

] =
N∑

n=1

λEdπnEπn [Aπ
?

] (5.18)

94

To relate this to the performance bound, we invoke Lemma 5.2.1 and write

N∑

n=1

J(πn)− ((1− λ)J∗n + λJ(π?))

=
N∑

n=1

(1− λ) (J(πn)− J∗n) +
1

1− γ
N∑

n=1

λEdπnEπn [Aπ
?
]

≤
N∑

n=1

(1− λ) (J(πn)− J∗n)) + min
π∈Π

1

1− γ
N∑

n=1

EdπnEπ[(1− λ)Aπn + λAπ
?
] +

N

1− γ ε
λ
regret

= min
π∈Π

1

1− γ
N∑

n=1

EdπnEπ[(1− λ)Qπn + λAπ
?
] +

N

1− γ ε
λ
regret +

N∑

n=1

λ

(
−EdπnEπn [Qπn]

1− γ + J(πn)− J∗n
)

= min
π∈Π

1

1− γ
N∑

n=1

EdπnEπ[(1− λ)(Qπn − V ∗πn) + λ(Qπ
? − V π?)] +

N

1− γ ε
λ
regret

= min
π∈Π

1

1− γ
N∑

n=1

EdπnEπ[(1− λ)Qπn + λQπ
?
]− 1

1− γ
N∑

n=1

Edπn
[
(1− λ)V ∗πn + λV π?

]
+

N

1− γ ε
λ
regret

≤ N

1− γ ε
λ
class +

N

1− γ ε
λ
regret

where the second to the last equality is since EdπnEπn [Qπn] = (1−γ)J(πn). This concludes

the proof.

95

CHAPTER 6

CONVERGENCE OF VALUE AGGREGATION FOR IMITATION LEARNING

6.1 Introduction

We have shown in the previous chapters that imitation learning (IL) can be used to exploit

the domain knowledge about a problem to achieve faster policy learning. In IL, instead of

learning a policy from scratch, one leverages a black-box policy π?, called the expert, from

which the learner can query demonstrations. The goal of IL is to identify a policy π such

that its performance is similar to or better than π?. In particular, one powerful approach to

IL is based on the idea of data aggregation and online learning (Ross, Gordon, and Bagnell,

2011; Sun et al., 2017) (cf. Chapter 3). The algorithm starts with an empty dataset and an

initial policy π1; in the nth iteration, the algorithm uses the current policy πn to gather

new training data into the current dataset and then a supervised learning problem is solved

on the updated dataset to compute the next policy πn+1. By interleaving the optimization

and the data collection processes in an online fashion, it can overcome the covariate shift

problem in traditional batch IL (Ross, Gordon, and Bagnell, 2011).

This family of algorithms can be realized under the general framework of value ag-

gregation (Ross and Bagnell, 2014), which has gained increasing attention due to its non-

asymptotic performance guarantee. After N iterations, a good policy π exists in the gen-

erated policy sequence {πn}Nn=1 with performance J(π) ≤ J(π?) + Tε + Õ(1
N

), where

J is the performance index, ε is the error due to the limited expressiveness of the policy

class, and T is the horizon of the problem. While this result seems strong at first glance,

its guarantee concerns only the existence of a good policy and, therefore, is not ideal for

stochastic problems. In other words, in order to find the best policy in {πn}Nn=1 without in-

curring large statistical error, a sufficient amount of data must be acquired in each iteration,

96

or all policies have to be memorized for a final evaluation with another large dataset (Ross,

Gordon, and Bagnell, 2011). One can also opt to stop the algorithms randomly, as we did

in Chapter 5, but that would add extra randomness into the learning processes; in addition,

this scheme would rely on a priori guarantees, instead of a posteriori ones, because the

stopping point is chosen independently of how the policy actually learns.

This inconvenience incentivizes practitioners to just return the last policy πN (Laskey

et al., 2017), and, anecdotally, the last policy πN has been reported to have good empirical

performance (Pan et al., 2017a; Ross et al., 2013). Supporting this heuristic is the insight

that the last policy πN is trained with all observations and therefore ideally should per-

form the best. Indeed, such idealism works when all the data are sampled i.i.d., as in the

traditional batch learning problems (Vapnik, 1998). However, because here new data are

collected using the updated policy in each iteration, whether such belief applies depends

on the convergence of the distributions generated by the policy sequence.

While Ross and Bagnell (2014) alluded that “. . . the distribution of visited states con-

verges over the iterations of learning.”, we show this is not always true—the convergence

is rather problem-dependent. In this chapter, we identify a critical stability constant θ that

determines the convergence of the policy sequence. We show that there is a simple exam-

ple (in Section 6.4) in which the policy sequence diverges when θ > 1. In Section 6.5,

we provide tight non-asymptotic bounds on the performance of the last policy πN , in both

deterministic and stochastic problems, which implies that the policy sequence always con-

verges when θ < 1. Our new insight also suggests that the stability of the last policy πN

can be recovered by regularization, as discussed in Section 6.6. This chapter is partly based

on our paper published as (Cheng and Boots, 2018).

6.2 Problem Setup

We consider solving a discrete-time RL problem. Let S be the state space and A be the

action space of an agent, where S embeds time information. Let Π be the class of policies

97

and let T be the length of the planning horizon.1 The objective of the agent is to search for

a policy π ∈ Π to minimize an accumulated cost J(π):

min
π∈Π

J(π) := min
π∈Π

Es0,a0,...,aT−1∼ρπ(p)

[
T−1∑

t=0

c(st, at)

]
(6.1)

in which c(st, at) is the instantaneous cost at time t, and ρπ(p) denotes the trajectory dis-

tribution under policy at ∼ π(at|st) given an initial distribution p(s0). Note that we do not

place assumptions on the structure of S and A and the policy class Π, except that we will

impose time information into the definition of S for writing compactness. Note that we

write Ea∼π|s even if the policy is deterministic.

We denote Qπ(s, a) as the Q-function under policy π and V π(s) = Ea∼π|s[Qπ(s, a)] as

the associated value function. In addition, we introduce some shorthand: we denote dπt (s)

as the state distribution at time t generated by running the policy π for the first t steps, and

define the average distribution dπ(s) = 1
T

∑T−1
t=0 d

π
t (s). Due to space limitations, we will

often omit explicit dependencies on random variables in expectations, e.g. we will write

minπ∈Π Es∼dπEa∼π|s [c(s, a)] also as

min
π∈Π

EdπEπ [c] , (6.2)

which is equivalent to minπ∈Π
1
T
J(π) (by definition of dπ).

6.3 Value Aggregation

Solving general RL problems is challenging. In this chapter, we focus on a particular

scenario, in which the agent, or the learner, has access to an expert policy π? from which

the learner can query demonstrations. Here we embrace a general notion of expert. While

it is often preferred that the expert is nearly optimal in (6.1), the expert here can be any

policy, e.g. the agent’s initial policy. Note, additionally, that the RL problem considered

1A similar analysis can be applied to discounted infinite-horizon problems.

98

here is not necessarily directly related to a real-world application; it can be a surrogate

problem which arises in solving the true problem.

The goal of IL is to find a policy π that outperforms or behaves similarly to the expert

π? in the sense that J(π) ≤ J(π?) +O(T). That is, we treat IL as performing a robust, ap-

proximate policy iteration step from π?: ideally IL should lead to a policy that outperforms

the expert, but it at least returns a policy that performs similarly to the expert.

AGGREVATTE (Aggregate Value to Imitate) is an IL algorithm proposed by Ross and

Bagnell (2014) based on the idea of online learning (Hazan, 2016). Here we give a compact

derivation and discuss its important features in preparation for the analysis in Section 6.5.

To this end, we recall the performance difference lemma due to Kakade and Langford

(2002), which will be used as the foundation to derive AGGREVATTE (cf. Chapter 2).

Lemma 6.3.1. Let π and π′ be two policies and Aπ
′
(s, a) = Qπ′(s, a) − V π′(s) be the

(dis)advantage function with respect to running π′. Then it holds that

J(π) = J(π′) + TEs∼dπEa∼π|s[Aπ
′
(s, a)]. (6.3)

6.3.1 Motivation

The main idea of AGGREVATTE is to minimize the performance difference between the

learner’s policy and the expert policy, which, by Lemma 6.3.1, is given as 1
T

(J(π)− J(π?)) =

EdπEπ[Aπ
?
]. AGGREVATTE can be viewed as solving an RL problem with Aπ? as the in-

stantaneous cost:

min
π∈Π

EdπEπ
[
Aπ

?]
. (6.4)

Although the transformation from (6.2) to (6.4) seems trivial (it is just a constant shift

of the objective function), it unveils some critical properties. Most importantly, the range

of the problem in (6.4) is normalized. For example, regardless of the original definition

99

of c, if Π 3 π?, there exists at least a policy π ∈ Π such that (6.4) is non-positive (i.e.

J(π) ≤ J(π?)). As now the problem (6.4) is relative, it becomes possible to place a

qualitative assumption to bound the performance in (6.4) in terms of some measure of

expressiveness of the policy class Π.

We formalize this idea into Assumption 6.3.1, which is one of the core assumptions

implicitly imposed by Ross and Bagnell (2014).2 To simplify the notation, we define a

bifunction F such that for any two policies π, π′

F (π, π′) := EdπEπ′
[
Aπ

?]
(6.5)

This function captures the main structure in (6.4). By separating the roles of π (which con-

trols the state distribution) and π′ (which controls the reaction/prediction), the performance

of a policy class Π relative to an expert π? can be characterized with the approximation

error in a supervised learning problem.

Assumption 6.3.1. Given a policy π?, the policy class Π satisfies that for arbitrary sequence

of policies {πn ∈ Π}Nn=1, there exists a small constant εΠ,π? such that

min
π∈Π

1

N
l1:N(π) ≤ εΠ,π? , (6.6)

where ln(π) := F (πn, π) and l1:n(π) =
∑N

n=1 ln(π).

This assumption says that there exists at least a policy π ∈ Π which is as good as

π? in the sense that π can predict π? well in a cost-sensitive supervised learning problem,

with small error εΠ,π? , under the average state distribution generated by an arbitrary policy

sequence {πn ∈ Π}Nn=1.

Following this assumption, AGGREVATTE exploits another critical structural property

of the problem.

2The assumption is implicitly made when Ross and Bagnell (2014) assume the existence of εclass in The-
orem 2.1 on page 4.

100

Assumption 6.3.2. ∀π ∈ Π, F (π, π′) is a strongly convex function in π′.

While Ross and Bagnell (2014) did not explicitly discuss under which condition As-

sumption 6.3.2 holds, here we point out some examples (proved in Section 6.A).

Proposition 6.3.1. Suppose Π consists of deterministic linear policies (i.e. a = φ(s)>x

for some feature map φ(s) and weight x) and ∀s ∈ S, c(s, ·) is strongly convex. Assump-

tion 6.3.2 holds under any of the following when the state distribution is diverse enough:

1. V π?(s) is constant over S (in this case Aπ
?
(s, a) is equivalent to c(s, a) up to a

constant in a)

2. The problem is continuous-time and the dynamics are affine in action.

We further note that AGGREVATTE has demonstrated impressive empirical success

even when Assumption 6.3.2 cannot be verified (Pan et al., 2017a; Sun et al., 2017).

6.3.2 Algorithm and Performance

Given Assumption 6.3.2, AGGREVATTE treats ln(·) as the per-round loss in an online con-

vex optimization problem and updates the policy sequence as follows: Let π1 be an initial

policy. In the nth iteration of AggreVaTe, the policy is updated by3

πn+1 = arg min
π∈Π

l1:n(π). (6.7)

After N iterations, the best policy in the sequence {πn}Nn=1 is returned, i.e. π = π̂N , where

π̂N := arg min
π∈{πn}Nn=1

J(π). (6.8)

3We adopt a different notation from (Ross and Bagnell, 2014), in which the per-round loss EdπnEπ
[
Qπ

?]

was used. Note these two terms are equivalent up to an additive constant, as the optimization here is over π
with πn fixed.

101

As the update rule (6.7) (aka Follow-the-Leader) has a sublinear regret, it can be shown

that (cf. Section 6.5.1)

J(π̂N) ≤ J(π?) + T (εclass + εregret) , (6.9)

in which εregret = Õ(1
N

) is the average regret and

εclass := min
π∈Π

1

N

N∑

n=1

Edπn
[
Eπ[Qπ?]− Eπ? [Qπ?]

]

compares the best policy in the policy class Π and the expert policy π?. The term εclass

can be negative if there exists a policy in Π that is better than π? under the average state

distribution, 1
N

∑N
n=1 d

πn , generated by AGGREVATTE. By Assumption 6.3.1, εclass ≤

εΠ,π?; we know εclass at least should be small.

The performance bound in (6.9) satisfies the requirement of IL that J(π̂N) ≤ J(π?) +

O(T). Especially because εclass can be non-positive, AGGREVATTE can be viewed as ro-

bustly performing one approximate policy iteration step from π?.

One notable special case of AGGREVATTE is DAGGER (Ross, Gordon, and Bagnell,

2011). DAGGER tackles the problem of solving an unknown RL problem by imitating

a desired policy π?. The reduction to AGGREVATTE can be seen by setting c(s, a) =

Ea∗∼π? [‖a − a∗‖] in (6.1). In this case, π? is optimal for this specific choice of cost and

therefore V π?(s) = 0. By Proposition 6.3.1, Aπ?(s, a) = c(s, a) and εclass reduces to

minπ∈Π
1
N

∑N
n=1 EdπnEπ[c] ≥ 0, which is related to the expressiveness of the policy class.

6.4 Guarantee On the Last Policy?

The performance bound in Section 6.3 implicitly assumes that the problem is either de-

terministic or that infinite samples are available in each iteration. For stochastic problems,

l1:n can be approximated by finite samples or by function approximators (Ross and Bagnell,

102

2014). Suppose m samples are collected in each iteration to approximate ln. An additional

error in O(1√
mN

) will be added to the performance of π̂N . However, in practice, another

constant statistical error4 in O(1
m

) is introduced when one attempts to identify π̂N from the

sequence {πn}Nn=1.

This practical issue motivates us to ask whether a similar guarantee applies to the last

policy πN so that the selection process to find π̂N can be removed. In fact, the last policy

πn has been reported to have good performance empirically (Pan et al., 2017a; Ross et al.,

2013). It becomes interesting to know what one can say about πN . It turns out that running

AGGREVATTE does not always yield a policy sequence {πn}with reasonable performance,

as given in the example below.

A Motivating Example Consider a two-stage deterministic optimal control problem:

min
π∈Π

J(π) = min
π∈Π

c1(s1, a1) + c2(s2, a2) (6.10)

where the transition and costs are given as

s1 = 0, s2 = θ(s1 + a1),

c1(s1, a1) = 0, c2(s2, a2) = (s2 − a2)2.

Since the problem is deterministic, we consider a policy class Π consisting of open-loop

stationary deterministic policies, i.e. a1 = a2 = x for some x (for convenience π and x will

be used interchangeably). It can be easily seen that Π contains a globally optimal policy,

namely x = 0. We perform AGGREVATTE with a feedback expert policy a∗t = st and

some initial policy |x1| > 0. While it is a custom to initialize x1 = arg minx∈X F (x∗, x)

(which in this case would ideally return x1 = 0), setting |x1| > 0 simulates the effect of

4The original analysis in the stochastic case by Ross and Bagnell (2014) only guarantees the existence
of a good policy in the sequence. The O(1

m) error is due to identifying the best policy (Lee, Bartlett,
and Williamson, 1998) (as the function is strongly convex) and the O(1√

mN
) error is the generalization

error (Cesa-Bianchi, Conconi, and Gentile, 2004).

103

finite numerical precision.

We consider two cases (θ > 1 or θ < 1) to understand the behavior of AGGREVATTE.

First, suppose θ > 1. Without loss generality, take θ = 10 and x1 = 1. We can see running

AGGREVATTE will generate a divergent sequence x2 = 10, x3 = 55, x4 = 220 . . . (in

this case AGGREVATTE would return x1 as the best policy). Since J(x) = (θ − 1)2x2, the

performance {J(xn)} is an increasing sequence. Therefore, we see even in this simple case,

which can be trivially solved by gradient descent in O(1
n
), using AGGREVATTE results in

a sequence of policies with degrading performance, though the policy class Π includes

a globally optimal policy. Now suppose on the contrary θ < 1. We can see that {xn}

asymptotically converges to x∗ = 0.

This example illustrates several important properties of AGGREVATTE. It shows that

whether AGGREVATTE can generate a reasonable policy sequence or not depends on in-

trinsic properties of the problem (i.e. the value of θ). The non-monotonic property was also

empirically found in Laskey et al. (2017). In addition, it shows that εΠ,π? can be large while

Π contains an optimal policy.5 This suggests that Assumption 6.3.1 may be too strong,

especially in the case where Π does not contain π?.

6.5 Theoretical Analysis

Motivated by the example in Section 6.4, we investigate the convergence of the policy

sequence generated by AGGREVATTE in general problems. We assume the policy class Π

consists of policies parametrized by some parameter x ∈ X , in which X is a convex set in

a normed space with norm ‖ · ‖ (and ‖ · ‖∗ as its dual norm). With abuse of notation, we

abstract the RL problem in (6.4) as

min
x∈X

F (x, x) (6.11)

5In this example, εΠ,π? can be arbitrarily large unless X is bounded. However, even when εΠ,π? is
bounded, the performance of the policy sequence can be non-monotonic.

104

where we overload the notation F (π, π′) defined in (6.5) as F (π, π′) = F (x, y) when

π, π′ ∈ Π are parametrized by x, y ∈ X , respectively. Similarly, we will write ln(x) =

F (xn, x) for short. In this new notation, AGGREVATTE’s update rule in (6.7) can be simply

written as xn+1 = arg minx∈X l1:n(x).

Here we will focus on the bound on F (x, x), because, for π parameterized by x, this

result can be directly translated to a bound on J(π): by definition of F in (6.5) and

Lemma 6.3.1, J(π) = J(π?) + TF (π, π). For simplicity, we will assume for now F is

deterministic; the convergence in stochastic problems will be discussed at the end of the

section.

6.5.1 Classical Result

For completeness, we restate the structural assumptions made by AGGREVATTE in terms

of X and review the known convergence of AGGREVATTE (Ross and Bagnell, 2014).

Assumption 6.5.1. Let ∇2 denote the derivative with respect to the second argument.

1. F is uniformly α-strongly convex in the second argument: ∀x, y, z ∈ X , F (z, x) ≥

F (z, y) + 〈∇2F (z, y), x− y〉+ α
2
‖x− y‖2.

2. F is uniformly G2-Lipschitz continuous in the second argument: ∀x, y, z ∈ X ,

|F (z, x)− F (z, y)| ≤ G2‖x− y‖ .

Assumption 6.5.2. ∀{xn ∈ X}Nn=1, there exists a small constant εΠ,π? such that minx∈X
1
N
l1:N(x) ≤

εΠ,π? .

Theorem 6.5.1. Under Assumption 6.5.1 and 6.5.2, AGGREVATTE generates a sequence

such that, for all N ≥ 1,

F (x̂N , x̂N) ≤ 1

N

N∑

n=1

ln(xn) ≤ εΠ,π? +
G2

2

2α

ln(N) + 1

N

where x̂N := arg minx∈{xn}Nn=1
F (x, x).

105

Proof. Here we present a sketch (see Section 6.A for details). The first inequality is

straightforward. To bound the average performance, it can be shown that
∑N

n=1 ln(xn) ≤

minx∈X l1:N(x) +
∑N

n=1 l1:n(xn) − l1:n(xn+1). Since xn minimizes l1:n−1 and l1:n is nα-

strongly convex , l1:n(xn) is upper bounded by l1:n−1(xn)+ ‖∇ln(xn)‖2∗
2αn

, where ‖∇ln(xn)‖∗ ≤

G2. This concludes the proof. �

6.5.2 New Structural Assumptions

AGGREVATTE can be viewed as an attempt to solve the optimization problem in (6.11)

without any information (not even continuity) regarding how F (x, x) changes with pertur-

bations in the first argument. Since making even a local improvement for general Lipschitz

continuous problems is known to be NP-hard (Nesterov, 2013), the classical performance

guarantee of AGGREVATTE is made possible, only because of the additional structure given

in Assumption 6.5.2. However, as discussed in Section 6.4, Assumption 6.5.2 can be too

strong and is yet insufficient to determine if the performance of the last policy can im-

prove over iterations. Therefore, to analyze the performance of the last policy, we require

additional structure on F .

Here we introduce a continuity assumption.

Assumption 6.5.3. ∇2F is uniformly β-Lipschitz continuous in the first argument: ∀x, y, z ∈

X ‖∇2F (x, z)−∇2F (y, z)‖∗ ≤ β‖x− y‖.

Because the first argument of F in (6.5) defines the change of state distribution, As-

sumption 6.5.3 basically requires that the expectation over dπ changes continuously with

respect to π, which is satisfied in most RL problems. Intuitively, this quantifies the diffi-

culty of a problem in terms of how sensitive the state distribution is to policy changes.

In addition, we relax Assumption 6.5.2. As shown in Section 6.4, Assumption 6.5.2 is

sometimes too strong, because it might not be satisfied even when Π contains a globally

optimal policy. In the analysis of convergence, we instead rely on a necessary condition of

Assumption 6.5.2, which is satisfied by the example in Section 6.4.

106

Assumption 6.5.4. Let π be a policy parametrized by x. There exists a small constant ε̃π,π?

such that ∀x ∈ X , miny∈X F (x, y) ≤ ε̃Π,π? .

Compared with the global Assumption 6.5.2, the relaxed condition here is only local:

it only requires the existence of a good policy with respect to the state distribution visited

by running a single policy. It can be easily shown that ε̃Π,π? ≤ εΠ,π? .

6.5.3 Guarantee on the Last Policy

In our analysis, we define a stability constant θ = β
α

. One can verify that this definition

agrees with the θ used in the example in Section 6.4. This stability constant will play

a crucial role in determining the convergence of {xn}, similar to the spectral norm of the

Jacobian matrix in discrete-time dynamical systems (Antsaklis and Michel, 2007). We have

already shown above that if θ > 1 there is a problem such that AGGREVATTE generates a

divergent sequence {xn} with degrading performance over iterations. We now show that if

θ < 1, then limn→∞ F (xn, xn) ≤ ε̃Π,π? and moreover {xn} is convergent.

Theorem 6.5.2. Suppose Assumptions 6.5.1, 6.5.3, and 6.5.4 are satisfied. Let θ = β
α

. Then

for all N ≥ 1 it holds

F (xN , xN) ≤ ε̃Π,π? +

(
θe1−θG2

)2

2α
N2(θ−1)

and ‖xN − x̄N‖ = G2e1−θ

α
N θ−1, where x̄N = 1

N
x1:N . In particular, if θ < 1, then {xn}∞n=1

is convergent

Theorem 6.5.2 implies that the stability and convergence of AGGREVATTE depends

solely on the problem properties. If the state distribution dπ is sensitive to minor pol-

icy changes, running AGGREVATTE would fail to provide any guarantee on the last pol-

icy. Moreover, Theorem 6.5.2 also characterizes the performance of the average policy x̄N

when θ < 1, .

107

The upper bound in Theorem 6.5.2 is tight, as indicated in the next theorem. Note a

lower bound on F (xN , xN) leads directly to a lower bound on J(πN) for πN parametrized

by xN .

Theorem 6.5.3. There is a problem such that running AGGREVATTE for N iterations

results in F (xN , xN) ≥ ε̃Π,π? + Ω(N2(θ−1)). In particular, if θ > 1, the policy sequence

and performance sequence diverge.

Proof. The proof is based on analyzing the sequence in the example in Section 6.4. See

Section 6.A. �

6.5.4 Proof of Theorem 6.5.2

Now we give the proof of Theorem 6.5.2. Without using the first-order information of F in

the first argument, we construct our analysis based on the convergence of an intermediate

quantity, which indicates how fast the sequence concentrates toward its last element:

Sn :=

∑n−1
k=1 ‖xn − xk‖
n− 1

(6.12)

which is defined n ≥ 2 and S2 = ‖x2 − x1‖.

First, we use Assumption 6.5.3 to strengthen the bound ‖xn+1 − xn‖ = O(1
n
) used in

Theorem 6.5.1 by techniques from online learning with prediction (Rakhlin and Sridharan,

2012).

Lemma 6.5.1. Under Assumptions 6.5.1 and 6.5.3, running AGGREVATTE gives, for n ≥

2, ‖xn+1 − xn‖ ≤ θSn
n

.

Proof. First, because l1:n is nα-strongly convex,

nα

2
‖xn+1 − xn‖2 ≤ l1:n(xn)− l1:n(xn+1)

≤ 〈∇l1:n(xn), xn − xn+1〉 −
nα

2
‖xn − xn+1‖2.

108

Let l̄n = 1
n
l1:n. The above inequality implies

nα‖xn+1 − xn‖2 ≤ 〈∇ln(xn), xn − xn+1〉

≤
〈
∇ln(xn)−∇l̄n−1(xn), xn − xn+1

〉

≤ ‖∇ln(xn)−∇l̄n−1(xn)‖∗‖xn − xn+1‖

≤ βSn‖xn − xn+1‖

where the second inequality is due to xn = arg minx∈X l1:n−1(x) and the last inequality is

due to Assumption 6.5.3. Thus, ‖xn − xn+1‖ ≤ βSn
αn

. �

Using the refined bound provided by Lemma 6.5.1, we can bound the progress of Sn.

Proposition 6.5.1. Under the assumptions in Lemma 6.5.1, for n ≥ 2, Sn ≤ e1−θnθ−1S2

and S2 = ‖x2 − x1‖ ≤ G2

α
.

Proof. The bound on S2 = ‖x2 − x1‖ is due to that x2 = arg minx∈X l1(x) and that l1 is

α-strongly convex and G2-Lipschitz continuous.

To bound Sn, first we bound Sn+1 in terms of Sn by

Sn+1 ≤
(

1− 1

n

)
Sn + ‖xn+1 − xn‖

≤
(

1− 1

n
+
θ

n

)
Sn =

(
1− 1− θ

n

)
Sn

in which the first in equality is due to triangular inequality (i.e. ‖xk−xn+1‖ ≤ ‖xk−xn‖+

‖xn − xn+1‖) and the second inequality is due to Lemma 6.5.1. Let Pn = lnSn. Then we

can bound Pn − P2 ≤
∑n−1

k=2 ln
(
1− 1−θ

k

)
≤ ∑n−1

k=2 −1−θ
k
≤ −(1 − θ) (lnn− 1), where

we use the facts that ln(1 + x) ≤ x,
∑n

k=1
1
k
≥ ln(n + 1). This implies Sn = exp(Pn) ≤

e1−θnθ−1S2. �

More generally, define Sm:n =
∑n−1
k=m ‖xn−xk‖

n−m (i.e. Sn = S1:n). Using Proposition 6.5.1,

we give a bound on Sm:n. We see that the convergence of Sm:n depends mostly on n not m.

109

(The proof is given in appendix of this chapter.)

Corollary 6.5.1. Under the assumptions in Lemma 6.5.1, for n > m, Sm:n ≤ O(θ
(n−m)m2−θ+

1
n1−θ).

Now we are ready prove Theorem 6.5.2 by using the concentration of Sn in Proposi-

tion 6.5.1.

Proof of Theorem 6.5.2. First, we prove the bound onF (xN , xN). Let x∗n := arg minx∈X ln(x)

and let l̄n = 1
n
l1:n. Then by α-strongly convexity of ln,

ln(xn)−min
x∈X

ln(x) ≤ 〈∇ln(xn), xn − x∗n〉 −
α

2
‖xn − x∗n‖2

≤
〈
∇ln(xn)−∇l̄n−1(xn), xn − x∗n

〉
− α

2
‖xn − x∗n‖2

≤ ‖∇ln(xn)−∇l̄n−1(xn)‖∗‖xn − x∗n‖ −
α

2
‖xn − x∗n‖2

≤ ‖∇ln(xn)−∇l̄n−1(xn)‖2
∗

2α
≤ β2

2α
S2
n

where the second inequality uses the fact that xn = arg minx∈X l̄n−1(x), the second to the

last inequality takes the maximum over ‖xn − x∗n‖, and the last inequality uses Assump-

tion 6.5.3. Therefore, to bound ln(xn), we can use Proposition 6.5.1 and Assumption 6.5.4:

ln(xn) ≤ min
x∈X

ln(x) +
β2

2α
S2
n ≤ ε̃Π,π? +

β2

2α

(
e1−θnθ−1G2

α

)2

Rearranging the terms gives the bound in Theorem 6.5.2, and that ‖xn − x̄n‖ ≤ Sn gives

the second result.

Now we show the convergence of {xn} under the condition θ < 1. It is sufficient

to show that limn→∞
∑n

k=1 ‖xk − xk+1‖ < ∞. To see this, we apply Lemma 6.5.1 and

Proposition 6.5.1: for θ < 1,
∑n

k=1 ‖xk − xk+1‖ ≤ ‖x1 − x2‖ +
∑n

k=2
θ
k
Sk ≤ c1 +

c2

∑n
k=2

θ
k

S2

k1−θ <∞, where c1, c2 ∈ O(1). �

110

6.5.5 Stochastic Problems

We analyze the convergence of AGGREVATTE in stochastic problems using finite-sample

approximation: Define f(x; s) = Eπ[Aπ
?
] such that ln(x) = Es∼dπn [f(x; s)]. Instead of us-

ing ln(·) as the per-round loss in the nth iteration, we take its finite samples approximation

gn(·) =
∑mn

k=1 f(·; sn,k), where mn is the number of independent samples collected in the

nth iteration under distribution dπn . That is, the update rule in (6.7) in stochastic setting is

modified to πn+1 = arg minπ∈Π g1:n(π).

Theorem 6.5.4. In addition to Assumptions 6.5.3 and 6.5.4, assume f(x; s) is α-strongly

convex in x and ‖∇f(x; s)‖∗ < G2 almost surely. Let θ = β
α

and suppose mn = m0n
r for

some r ≥ 0. For all N > 0, with probability at least 1− δ,

F (xN , xN) ≤ ε̃Π,π? + Õ

(
θ2

c

ln(1/δ) + CX
Nmin{r,2,2−2θ}

)
+ Õ

(
ln(1/δ) + CX
cNmin{2,1+r}

)

where c = α
G2

2m0
and CX is a constant6 of the complexity of Π.

Proof. The proof is similar to the proof of Theorem 6.5.2. To handle the stochasticity, we

use a generalization of Azuma-Hoeffding inequality to vector-valued martingales (Hayes,

2005) to derive a high-probability bound on ‖∇gn(xn) −∇ln(xn)‖∗ and a uniform bound

on supx∈X
1
n
‖∇g1:n(x) − ∇l1:n(x)‖∗. These error bounds allow us to derive a stochastic

version of Lemma 6.5.1, Proposition 6.5.1, and then the performance inequality in the proof

of Theorem 6.5.2. See Section 6.B for the complete proof. �

The growth of sample sizemn over iterations determines the main behavior of AGGRE-

VATTE in stochastic problems. For r = 0, compared with Theorem 6.5.2, Theorem 6.5.4

has an additional constant error in Õ(1
m0

), which is comparable to the stochastic error in

selecting the best policy in the classical approach. However, the error here is due to approx-

6The constant CX can be thought as ln |X |, where |X | measures the size of X in e.g. Rademacher
complexity or covering number (Mohri, Rostamizadeh, and Talwalkar, 2012). For example, ln |X | can be
linear in dimX .

111

imating the gradient∇ln rather than the objective function ln. For r > 0, by slightly taking

more samples over iterations (e.g. r = 2− 2θ), we see the convergence rate can get closer

to Õ(N2−2θ) as in the ideal case given by Theorem 6.5.2. However, it cannot be better than

Õ(1
N

). Therefore, for stochastic problems, a stability constant θ < 1/2 and a growing rate

r > 1 does not contribute to faster convergence as opposed to the deterministic case in

Theorem 6.5.2.

Note while our analysis here is based on finite-sample approximation gn(·) =
∑mn

k=1 f(·; sn,k),

the same technique can also be applied to the scenario in the bandit setting and another

online regression problem is solved to learn ln(·) as in the case considered by Ross and

Bagnell (2014). A discussion is given in Section 6.C.

The analysis given as Theorem 6.5.4 can be viewed as a generalization of the analysis

of Empirical Risk Minimization (ERM) to non-i.i.d. scenarios, where the distribution de-

pends on the decision variable. For optimizing a strongly convex objective function with

i.i.d. samples, it has been shown by Shalev-Shwartz et al. (2009) that xN exhibits a fast

convergence to the optimal performance in O(1
N

). By specializing our general result in

Theorem 6.5.4 with θ, r = 0 to recover the classical i.i.d. setting, we arrive at a bound on

the performance of xN in Õ(1
N

), which matches the best known result up to a log factor.

However, Theorem 6.5.4 is proved by a completely different technique using the martin-

gale concentration of the gradient sequence. In addition, by Theorem 6.5.2, the theoretical

results of xN here can directly translate to that of the mean policy x̄N , which matches the

bound for the average decision x̄N given by Kakade and Tewari (2009).

6.6 Regularization

We have shown that whether AGGREVATTE generates a convergent policy sequence and

a last policy with the desired performance depends on the stability constant θ. Here we

show that by adding regularization to the problem we can make the problem stable. For

simplicity, here we consider deterministic problems or stochastic problems with infinite

112

samples.

6.6.1 Mixing Policies

We first consider the idea of using mixing policies to collect samples, which was originally

proposed as a heuristic by Ross, Gordon, and Bagnell (2011). It works as follows: in

the nth iteration of AGGREVATTE, instead of using F (πn, ·) as the per-round loss, it uses

F̂ (πn, ·) which is defined by

F̂ (πn, π) = Edπ̃nEπ[Aπ
?

] (6.13)

The state distribution dπ̃n(s) is generated by running π? with probability q and πn with

probability 1− q at each time step. Originally, Ross, Gordon, and Bagnell (2011) propose

to set q to decay exponentially over the iterations of AGGREVATTE. (The proofs are given

in Section 6.A.)

Here we show that the usage of mixing policies also has the effect of stabilizing the

problem.

Lemma 6.6.1. Let ‖p1 − p2‖1 denote the total variational distance between distributions

p1 and p2. Assume7 for any policy π, π′ parameterized by x, y it satisfies 1
T

∑T−1
t=0 ‖dπt −

dπ
′
t ‖1 ≤ β

2G2
‖x−y‖ and assume ‖∇xEπ[Aπ

?
](s)‖∗ ≤ G2.Then∇2F is uniformly (1−qT)β-

Lipschitz continuous in the second argument.

By Lemma 6.6.1, if θ > 1, then choosing a fixed q > (1 − 1
θ
)1/T ensures the stability

constant of F̂ to be θ̂ < 1. However, stabilizing the problem in this way incurs a constant

cost as shown in Corollary 6.6.1.

Corollary 6.6.1. Suppose Eπ[Aπ
?
] < M for all π. Define ∆N = (θ̂e1−θ̂G2)2

2α
N2(θ̂−1). Then

under the assumptions in Lemma 6.6.1 and Assumption 6.5.1.1, running AGGREVATTE

7These two are sufficient to Assumption 6.5.1.2 and 6.5.3.

113

with F̃ in (6.13) and a mixing rate q gives

F (xN , xN) ≤ ∆N + ε̃Π,π? + 2M min(1, T q)

Proof. The proof is similar to Lemma 6.6.1 and the proof of Ross, Gordon, and Bagnell,

2011, Theorem 4.1. �

6.6.2 Weighted Regularization

Here we consider another scheme for stabilizing the problem. Suppose F satisfies Assump-

tion 6.5.1 and 6.5.3. For some λ > 0, define

F̃ (x, x) = F (x, x) + λR(x) (6.14)

in which8 R(x) is an α-strongly convex regularization term such that R(x) ≥ 0, ∀x ∈ X

and miny∈X F (x, y)+λR(y) = (1+λ)O(ε̃Π,π?). For example,R can be F (π?, ·) when π? is

(close) to optimal (e.g. in the case of DAGGER), orR(x) = Es∼dπ?Ea∼π|sEa∗∼π?|s[d(a, a∗)],

where π is a policy parametrized by x and d(·, ·) is some metric of space A (i.e. it uses the

distance between π and π? as regularization).

It can be seen that F̃ is uniformly (1+λ)α-strongly convex in the second argument and

∇2F̃ is uniformly β-continuous in the second argument. That is, if we choose λ > θ − 1,

then the stability constant θ̃ of F̃ satisfies θ̃ < 1.

Corollary 6.6.2. Define ∆N = (θ̃e1−θ̃G2)2

2α
N2(θ̃−1). Running AGGREVATTE with F̃ in (6.14)

as the per-round loss has performance satisfies: for all N > 0,

F (xN , xN) ≤ (1 + λ) (O(ε̃Π,π?) + ∆N)

Proof. Because F (xN , xN) = F̃ (xN , xN) − λR(xN), the inequality can be proved by

8See Section 6.D for discussion of the case where R(·) = F (π?, ·) regardless of the condition R(x) ≥ 0.

114

applying Theorem 6.5.2 to F̃ (xN , xN). �

By Corollary 6.6.2, using AGGREVATTE to solve a weighted regularized problem

in (6.14) would generate a convergent sequence for λ large enough. Unlike using a mixing

policy, here the performance guarantee on the last policy is only worsened by a multiplica-

tive constant on ε̃Π,π? , which can be made small by choosing a larger policy class.

The result in Corollary 6.6.2 can be strengthened particularly when

R(x) = Es∼dπ?Ea∼π|sEa∗∼π?|s[d(a, a∗)]

is used. In this case, it can be shown that CR(x) ≥ F (x, x) for some C > 0 (usually

C > 1) (Pan et al., 2017a). That is, F (x, x) + λR(x) ≥ (1 + λ/C)F (x, x). Thus, the

multiplicative constant in Corollary 6.6.2 can be reduced from 1 + λ to 1+λ
1+λ/C

. It implies

that simply by adding a portion of demonstrations gathered under the expert’s distribution

so that the leaner can anchor itself to the expert while minimizing F (x, x), one does not

have to find the best policy in the sequence {πn}Nn=1 as in (6.8), but just return the last

policy πN .

6.7 Conclusion

We contribute a new analysis of value aggregation, unveiling several interesting theoretical

insights. Under a weaker assumption than the classical result, we prove that the conver-

gence of the last policy depends solely on a problem’s structural property and we provide

a tight non-asymptotic bound on its performance in both deterministic and stochastic prob-

lems. In addition, using the new theoretical results, we show that the stability of the last

policy can be reinforced by additional regularization with minor performance loss. This

suggests that under proper conditions a practitioner can just run AGGREVATTE and then

take the last policy, without performing an additional statistical test to find the best policy,

as required by the classical analysis. Finally, as our results concerning the last policy are

115

based on the perturbation of gradients, we believe this provides a potential explanation as

to why AGGREVATTE has demonstrated empirical success in non-convex problems with

neural-network policies.

6.A Missing Proofs

6.A.1 Proof of Proposition 6.3.1

Proposition 6.3.1. Suppose Π consists of deterministic linear policies (i.e. a = φ(s)>x

for some feature map φ(s) and weight x) and ∀s ∈ S, c(s, ·) is strongly convex. Assump-

tion 6.3.2 holds under any of the following when the state distribution is diverse enough:

1. V π?(s) is constant over S (in this case Aπ
?
(s, a) is equivalent to c(s, a) up to a

constant in a)

2. The problem is continuous-time and the dynamics are affine in action.

Proof. Let π be parametrized by x. We prove the sufficient conditions by showing that

Aπ
?
(s, a) is strongly convex in a for all s ∈ S, which by the linear policy assumption

implies ln(π) is strongly convex in x, provided that the state distribution is diverse enough.

For the first case, since Qπ?(s, a) = c(s, a) + Es′|s,a[V π?(s′)], given the constant as-

sumption, it follows that

Aπ
?

(s, a) = Qπ?(s, a)− V π?(s) = c(s, a) + const.

is strongly convex in terms of a.

For the second case, consider a system ds = (f(s) + g(s)a) dt+h(s)dw, where f, g, h

are some matrix functions and dw is a Wiener process. By Hamilton-Jacobi-Bellman equa-

tion (Bertsekas et al., 1995), the advantage function can be written as

Aπ
?

(s, a) = c(s, a) + ∂sV
π?(s)>g(s)a+ r(s)

116

where r(s) is some function in s. Therefore, Aπ?(s, a) is strongly convex in a. �

6.A.2 Proof of Theorem 6.5.1

Theorem 6.5.1. Under Assumption 6.5.1 and 6.5.2, AGGREVATTE generates a sequence

such that, for all N ≥ 1,

F (x̂N , x̂N) ≤ 1

N

N∑

n=1

ln(xn) ≤ εΠ,π? +
G2

2

2α

ln(N) + 1

N

where x̂N := arg minx∈{xn}Nn=1
F (x, x).

Proof. The proof is based on a basic perturbation lemma in convex analysis (Lemma 6.A.1),

which for example can be found in (McMahan, 2017), and a lemma for online learning

(Lemma 6.A.2).

Lemma 6.A.1. Let φ1 : Rd 7→ R
⋃{∞} be a convex function such that x1 = arg minx φt(x)

exits. Let ψ be a function such that φ2(x) = φ1(x)+ψ(x) is α-strongly convex with respect

to ‖ · ‖. Let x2 = arg minx φ2(x). Then, for any g ∈ ∂ψ(x1), we have

‖x1 − x2‖ ≤
1

α
‖g‖∗

and for any x′

φ2(x1)− φ2(x′) ≤ 1

2α
‖g‖2

∗

When φ1 and ψ are quadratics (with ψ possibly linear) the above holds with equality.

Lemma 6.A.2. Let ln(x) be a sequence of functions. Denote l1:n(x) =
∑n

τ=1 lτ (x). and let

x∗n = arg min
x∈K

l1:n(x)

117

Then for any sequence {x1, . . . , xN}, τ ≥ 1, and any x∗ ∈ K, it holds

N∑

n=τ

ln(xn) ≤ l1:N(x∗N)− l1:τ−1(x∗τ−1) +
N∑

n=τ

l1:n(xn)− l1:n(x∗n)

Proof. Introduce a slack loss function l0(·) = 0 and define x∗0 = 0 for index convenience.

This does not change the optimum, since l0:n(x) = l1:n(x).

N∑

n=τ

ln(xn) =
N∑

n=τ

l0:n(xn)− l0:n−1(xn)

≤
N∑

n=τ

l0:n(xn)− l0:n−1(x∗n−1)

= l0:N(x∗N)− l0:τ−1(x∗τ−1) +
N∑

n=τ

l0:n(xn)− l0:n(x∗n) �

Note Lemma 6.A.2 does not require ln to be convex and the minimum to be unique.

To prove Theorem 6.5.1, we first note that by definition of x̂N , it satisfies F (x̂N , x̂N) ≤
1
N

∑N
n=1 ln(xn). To bound the average performance, we use Lemma 6.A.2 and write

N∑

n=1

ln(xn) ≤ l1:N(xN+1) +
N∑

n=1

l1:n(xn)− l1:n(xn+1)

since xn = arg minx∈X l1:n−1(x). Then because l1:k is kα-strongly convex, by Lemma 6.A.1,

N∑

n=1

ln(xn) ≤ l1:N(x∗n) +
N∑

n=1

‖∇ln(xn)‖2
∗

2αn
.

Finally, dividing the upper-bound by n and using the facts that
∑n

k=1
1
k
≤ ln(n) + 1 and

min ai ≤ 1
n

∑
ai for any scalar sequence {an}, we have the desired result. �

6.A.3 Proof of Theorem 6.5.3

Theorem 6.5.3. There is a problem such that running AGGREVATTE for N iterations

results in F (xN , xN) ≥ ε̃Π,π? + Ω(N2(θ−1)). In particular, if θ > 1, the policy sequence

118

and performance sequence diverge.

Proof. Consider the example in Section 6.4. For this problem, T = 2, J(x∗) = 0, and

ε̃Π,π? = 0, implying F (x, x) = 1
2
J(x) = 1

2
(θ − 1)2x2. Therefore, to prove the theorem, we

focus on the lower bound of x2
N .

Since xn = arg minx∈X l1:n−1(x) and the cost is quadratic, we can write

xn+1 = arg min
x∈X

l1:n(x)

= arg min
x∈X

(n− 1)(x− xn)2 + (x− θxn)2

= (1− 1− θ
n

)xn

If θ = 1, then xN = x1 and the bound holds trivially. For general cases, let pn = ln(x2
n).

pN − p2 = 2
N−1∑

n=2

ln

(
1− 1− θ

n

)
≥ −2(1− θ)

N−1∑

n=2

1

n− (1− θ)

where the inequality is due to the fact that ln(1 − x) ≥ −x
1−x for x < 1. We consider two

scenarios. Suppose θ < 1.

pN − p2 ≥ −2(1− θ)
∫ N−1

1

1

x− (1− θ)dx

= −2(1− θ) ln(x− (1− θ))|N−1
1

= −2(1− θ) (ln(N + θ − 2)− ln(θ))

≥ −2(1− θ) ln(N + θ − 2)

Therefore, x2
N ≥ x2

2(N + θ − 2)2(θ−1) ≥ Ω(N2(θ−1)).

119

On the other hand, suppose θ > 1.

pN − p2 ≥ 2(θ − 1)

∫ N

2

1

x− (1− θ)dx

= 2(θ − 1) ln(x− (1− θ))|N2

= 2(θ − 1) (ln(N − 1 + θ)− ln(1 + θ))

Therefore, x2
N ≥ x2

2(N − 1 + θ)2(θ−1)(1 + θ)−2(θ−1) ≥ Ω(N2(θ−1)). Substituting the lower

bound on x2
N into the definition of F (x, x) concludes the proof. �

6.A.4 Proof of Corollary 6.5.1

Corollary 6.5.1. Under the assumptions in Lemma 6.5.1, for n > m, Sm:n ≤ O(θ
(n−m)m2−θ+

1
n1−θ).

Proof. To prove the corollary, we introduce a basic lemma

Lemma 6.A.3. (Lan, 2013, Lemma 1) Let γk ∈ (0, 1), k = 1, 2, . . . be given. If the

sequence {∆k}k≥0 satisfies

Λk+1 ≤ (1− γk)Λk +Bk,

then

Λk ≤ Γk + Γk

k∑

i=1

Bi

Γi+1

where Γ1 = Λ1 and Γk+1 = (1− γk)Γk.

To bound the sequence Sm:n+1, we first apply Lemma 6.5.1. Fixed m, for any n ≥

120

m+ 1, we have

Sm:n+1 ≤
(

1− 1

n−m+ 1

)
Sm:n + ‖xn+1 − xn‖

≤
(

1− 1

n−m+ 1

)
Sm:n +

θ

n
Sn

≤
(

1− 1

n−m+ 1

)
Sm:n +

θc

n2−θ

where c = S2e
1−θ.

Then we apply Lemma 6.A.3. Let k = n−m + 1 and define Rk = Sm:m+k−1 = Sm:n

for k ≥ 2. Then we rewrite the above inequality as

Rk+1 ≤
(

1− 1

k

)
Rk +

θc

(k +m− 1)2−θ

and define

Γk :=

1, k = 1

(1− 1
k−1

)Γk−1, k ≥ 2

By Proposition 6.5.1, the above conversion implies for some positive constant c,

R2 = Sm:m+1 = ‖xm+1 − xm‖ ≤
θSm
m
≤ θc

m2−θ

and Γk ≤ O(1/k) and Γk
Γi
≤ O(i

k
). Thus, by Lemma 6.A.3, we can derive

Rk ≤
1

k
R2 +O

(
θc

k∑

i=1

i

k

1

(i+m− 1)2−θ

)

≤ 1

k
R2 +O

(
θc

k

k

θ

1

(m+ k − 1)1−θ

)

=
1

k
R2 +O

(
1

(m+ k − 1)1−θ

)

≤ 1

k

θc

m2−θ +O

(
1

(m+ k − 1)1−θ

)
= O(

1

n1−θ)

121

where we use the following upper bound in the second inequality

k∑

i=1

i

(i+m− 1)2−θ ≤
∫ k

0

x

(x+m− 1)2−θ dx

=
m+ (1− θ)x− 1

θ(1− θ)(m+ x− 1)1−θ

∣∣∣∣
k

0

=
(1− θ)k +m− 1

θ(1− θ)(m+ k − 1)1−θ −
m− 1

θ(1− θ)(m− 1)1−θ

=
k

θ

1

(m+ k − 1)1−θ +
m− 1

θ(1− θ)

(
1

(m+ k − 1)1−θ −
1

(m− 1)1−θ

)

≤ k

θ

1

(m+ k − 1)1−θ �

6.A.5 Proof of Lemma 6.6.1

Lemma 6.6.1. Let ‖p1 − p2‖1 denote the total variational distance between distributions

p1 and p2. Assume9 for any policy π, π′ parameterized by x, y it satisfies 1
T

∑T−1
t=0 ‖dπt −

dπ
′
t ‖1 ≤ β

2G2
‖x−y‖ and assume ‖∇xEπ[Aπ

?
](s)‖∗ ≤ G2.Then∇2F is uniformly (1−qT)β-

Lipschitz continuous in the second argument.

Proof. Define δπt such that dπ;q(s) = (1−qt)δπt (s)+qtdπ
?
(s), and define gzt (s) = ∇zEπ[Qπ?](s),

for π parametrized by z; then by assumption, ‖gzt ‖∗ < G2. Let π, π′ be two policies pa-

9These two are sufficient to Assumption 6.5.1.2 and 6.5.3.

122

rameterized by x, y ∈ X , respectively. Then

‖∇2F̂ (x, z)−∇2F̂ (y, z)‖∗ = ‖Edπ̃ [gzt]− Edπ̃′ [g
z
t]‖∗

= ‖ 1

T

T−1∑

t=0

(1− qt)(Eδπ|t;q [gzt]− Eδπ′|t;q [g
z
t])‖∗

≤ (1− qT)
1

T

T−1∑

t=0

‖Eδπ|t;q [gzt]− Eδπ′|t;q [g
z
t]‖∗

≤ (1− qT)
2G2

T

T−1∑

t=0

‖δπ|t;q − δπ′|t;q‖1

≤ (1− qT)
2G2

T

T−1∑

t=0

‖dπt − dπ
′

t ‖1

≤ (1− qT)β‖x− y‖

in which the second to the last inequality is because the divergence between dπt and dπ′t is

the largest among all state distributions generated by the mixing policies. �

6.B Analysis of AGGREVATTE in Stochastic Problems

Here we give the complete analysis of the convergence of AGGREVATTE in stochastic

problems using finite-sample approximation. For completeness, we restate the results

below: Let f(x; s) = Eπ[Aπ
?
] (i.e. ln(x) = Edπn [f(x; s)], where policy π is a policy

parametrized by x. Instead of using ln(·) as the per-round loss in the nth iteration, we use

consider its finite samples approximation gn(·) =
∑mn

k=1 f(·; sn,k), where mn is the number

of independent samples collected in the nth iteration.

Theorem 6.5.4. In addition to Assumptions 6.5.3 and 6.5.4, assume f(x; s) is α-strongly

convex in x and ‖∇f(x; s)‖∗ < G2 almost surely. Let θ = β
α

and suppose mn = m0n
r for

some r ≥ 0. For all N > 0, with probability at least 1− δ,

F (xN , xN) ≤ ε̃Π,π? + Õ

(
θ2

c

ln(1/δ) + CX
Nmin{r,2,2−2θ}

)
+ Õ

(
ln(1/δ) + CX
cNmin{2,1+r}

)

123

where c = α
G2

2m0
and CX is a constant10 of the complexity of Π.

6.B.1 Uniform Convergence of Vector-Valued Martingales

To prove Theorem 6.5.4, we first introduces several concentration inequalities of vector-

valued martingales by (Hayes, 2005) in Section 6.B.1. Then we prove some basic lemmas

regarding the convergence the stochastic dynamical systems of ∇gn(x) specified by AG-

GREVATTE in Section 6.B.1 and 6.B.1. Finally, the lemmas in these two sections are

extended to provide uniform bounds, which are required to prove Theorem 6.5.4. In this

section, we will state the results generally without limiting ourselves to the specific func-

tions used in AGGREVATTE.

Generalization of Azuma-Hoeffding Lemma

First we introduce two theorems by Hayes (2005) which extend Azuma-Hoeffding lemma

to vector-valued martingales but without dependency on dimension.

Theorem 6.B.1. (Hayes, 2005, Theorem 1.8) Let {Xn} be a (very-weak) vector-valued

martingale such that X0 = 0 and for every n, ‖Xn −Xn−1‖ ≤ 1 almost surely. Then, for

every a > 0, it holds

Pr(‖Xn‖ ≥ a) < 2e exp

(−(a− 1)2

2n

)

Theorem 6.B.2. (Hayes, 2005, Theorem 7.4) Let {Xn} be a (very-weak) vector-valued

martingale such that X0 = 0 and for every n, ‖Xn −Xn−1‖ ≤ cn almost surely. Then, for

every a > 0, it holds

Pr(‖Xn‖ ≥ a) < 2 exp

(−(a− Y0)2

2
∑n

i=1 c
2
i

)

10The constant CX can be thought as ln |X |, where |X | measures the size of X in e.g. Rademacher
complexity or covering number (Mohri, Rostamizadeh, and Talwalkar, 2012). For example, ln |X | can be
linear in dimX .

124

where Y0 = max{1 + max ci, 2 max ci}.

Concentration of i.i.d. Vector-Valued Functions

Theorem 6.B.1 immediately implies the concentration of approximating vector-valued func-

tions with finite samples.

Lemma 6.B.1. Let x ∈ X and let f(x) = Eω[f(x;ω)], where f : X → E and E is

equipped with norm ‖·‖. Assume ‖f(x;ω)‖ ≤ G almost surely. Let g(x) = 1
M

∑M
m=1 f(x;ωk)

be its finite sample approximation. Then, for all ε > 0,

Pr(‖g(x)− f(x)‖ ≥ ε) < 2e exp

(
−(Mε

2G
− 1)2

2M

)

In particular, for 0 < ε ≤ 2G,

Pr(‖g(x)− f(x)‖ ≥ ε) < 2e2 exp

(
−Mε2

8G2

)

Proof. Define Xm = 1
2G

∑m
k=1 f(x;ωk) − f(x). Then Xm is vector-value martingale and

‖Xm −Xm−1‖ ≤ 1. By Theorem 6.B.1,

Pr(‖g(x)− f(x)‖ ≥ ε) = Pr(‖XM‖ ≥
Mε

2G
) < 2e exp

(
−(Mε

2G
− 1)2

2M

)

Suppose ε
2G

< 1. Then Pr(‖XM‖ ≥ ε) < 2e2 exp
(
−Mε2

8G2

)
. �

Concentration of the Stochastic Process of AGGREVATTE

Here we consider a stochastic process that shares the same characteristics of the dynamics

of 1
n
∇g1:n(x) in AGGREVATTE and provide a lemma about its concentration.

Lemma 6.B.2. Let n = 1 . . . N and {mi} be a non-decreasing sequence of positive in-

tegers. Given x ∈ X , let Yn := {vn(x;ωn,k)}mnk=1 be a set of random vectors in some

125

normed space with norm ‖ · ‖ defined as follows: Let Y1:n := {Yk}nk=1. Given Y1:n−1,

{vn(x;ωn,k)}mnk=1 aremn independent random vectors such that vn(x) := Eω[vn(x;ω)|Y1:n−1]

and ‖vn(x;ω)‖ ≤ G almost surely. Define gn(x) := 1
mn

∑mn
k=1 vn(x;ωn,k), and let ḡn =

1
n
g1:n and v̄n = 1

n
v1:n. Then for all ε > 0,

Pr(‖ḡn(x)− v̄n(x)‖ ≥ ε) < 2 exp

(
−(nM∗ε− Y0)2

8G2M∗2
∑n

i=1
1
mi

)

in which M∗ =
∏n

i=1 mi and Y0 = max{1 + 2M∗G
m0

, 22M∗G
m0
}. In particular, if 2M∗G

m0
> 1,

for 0 < ε ≤ Gm0

n

∑n
i=1

1
mi

,

Pr(‖ḡn(x)− v̄n(x)‖ ≥ ε) < 2e exp

(
−n2ε2

8G2
∑n

i=1
1
mi

)

Proof. Let M =
∑n

i=1mi. Consider a martingale, for m = l +
∑k−1

i=1 mi,

Xm =
M∗

mk

l∑

i=1

vk(x;ωk,i)− vk(x) +
k−1∑

i=1

M∗

mi

mi∑

j=1

vi(x;ωi,j)− vi(x).

That is, XM = nM∗(ḡn − v̄n) and ‖Xm − Xm−1‖ ≤ 2M∗G
mi

for some appropriate mi.

Applying Theorem 6.B.2, we have

Pr(‖ḡn − v̄n‖ ≥ ε) = Pr(‖XM‖ ≥ nM∗ε) < 2 exp

(
−(nM∗ε− Y0)2

2
∑M

m=1 c
2
m

)

where

M∑

m=1

c2
m =

n∑

i=1

mi∑

j=1

(
2GM∗

mi

)2

= 4G2M∗2
n∑

i=1

1

mi

.

In addition, by assumption mi ≤ mi−1, Y0 = max{1 + 2M∗G
m0

, 22M∗G
m0
}. This gives the first

inequality.

126

For the special case, the following holds

−(nM∗ε− Y0)2

2
∑M

m=1 c
2
m

=
−n2M∗2ε2

8G2M∗2
∑n

i=1
1
mi

+
2nM∗εY0 − Y 2

0

8G2M∗2
∑n

i=1
1
mi

≤ −n2ε2

4G2
∑n

i=1
1
mi

+ 1

if ε satisfies

2nM∗εY0 < 8G2M∗2
n∑

i=1

1

mi

=⇒ ε <
4G2M∗

Y0n

n∑

i=1

1

mi

Substituting the condition that Y0 = 4M∗G
m0

when 2M∗G
m0

> 1, a sufficient range of ε can be

obtained as

4G2M∗

Y0n

n∑

i=1

1

mi

=
Gm0

n

n∑

i=1

1

mi

≥ ε.

�

Uniform Convergence

The above inequality holds for a particular x ∈ X . Here we use the concept of covering

number to derive uniform bounds that holds for all x ∈ X . (Similar (and tighter) uniform

bounds can also be derived using Rademacher complexity.)

Definition 6.B.1. Let S be a metric space and η > 0. The covering number N (S, η) is

the minimal l ∈ N such that S is is covered by l balls of radius η. When S is compact,

N (S, η) is finite.

As we are concerned with vector-valued functions, let E be a normed space with norm

‖ · ‖. Consider a mapping f : X → B defined as f : x 7→ f(x, ·), where B = {g : Ω→ E}

is a Banach space of vector-valued functions with norm ‖g‖B = supω∈Ω ‖g(ω)‖. Assume

BX = {f(x, ·) : x ∈ X} is a compact subset in B. Then the covering number ofH is finite

and given as N (BX , η). That is, there exists a finite set CX = {xi ∈ X}N (BX ,η)
i=1 such that

∀x ∈ X , miny∈CX ‖f(x, ·)− f(y, ·)‖B < η.

127

Usually, the covering is a polynomial function of η. For example, suppose X is a ball

of radius R in a d-dimensional Euclidean space, and f is L-Lipschitz in x (i.e. ‖f(x, ·) −

f(y, ·)‖B ≤ L‖x−y‖). Then (Cucker and Zhou, 2007)N (BX , η) ≤ N (X , η
L

) ≤
(

2RL
η

+ 1
)d

.

Therefore, henceforth we will assume

lnN (BXX, η) ≤ CX ln(
1

η
) <∞ (6.15)

for some constant CX independent of η, which characterizes the complexity of X .

Using covering number, we derive uniform bounds for the lemmas in Section 6.B.1 and

6.B.1.

Lemma 6.B.3. Under the assumptions in Lemma 6.B.1, for 0 < ε ≤ 2G,

Pr(sup
x∈X
‖g(x)− f(x)‖ ≥ ε) < 2e2N (BX ,

ε

4
) exp

(
−Mε2

32G2

)

Proof. Choose CX be the set of the centers of the covering balls such that ∀x ∈ X ,

miny∈CX ‖f(x, ·)−f(y, ·)‖B < η. Since f(x) = Eω[f(x, ω)], it also holds miny∈CX ‖f(x)−

f(y)‖ < η. Let By be the η-ball centered for y ∈ CX . Then

sup
y∈X
‖g(x)− f(x)‖ ≤ max

y∈CX
sup
x∈By
‖g(x)− g(y)‖+ ‖g(y)− f(y)‖+ ‖f(y)− f(x)‖

≤ max
y∈CX
‖g(y)− f(y)‖+ 2η

Choose η = ε
4

and then it follows that

sup
x∈X
‖g(x)− f(x)‖ ≥ ε =⇒ max

y∈CX
‖g(y)− f(y)‖ ≥ ε

2

The final result can be obtained by first for each y ∈ CX applying the concentration in-

equality with ε/2 and then a uniform bound over CX . �

Similarly, we can give a uniform version of Lemma 6.B.2.

128

Lemma 6.B.4. Under the assumptions in Lemma 6.B.2, if 2M∗G
m0

> 1, for 0 < ε ≤
Gm0

n

∑n
i=1

1
mi

and for a fixed n ≥ 0,

Pr(sup
x∈X
‖ḡn(x)− l̄n(x)‖ ≥ ε) < 2eN

(
BX ,

ε

4

)
exp

(
−n2ε2

32G2
∑n

i=1
1
mi

)

6.B.2 Proof of Theorem 6.5.4

We now refine Lemma 6.5.1 and Proposition 6.5.1 to prove the convergence of AGGRE-

VATTE in stochastic problems. We use ·̄ to denote the average (e.g. l̄n = 1
n
l1:n.)

Bound on ‖xn+1 − xn‖

First, we show the error due to finite-sample approximation.

Lemma 6.B.5. Let ξn = ∇ln−∇gn. Running AGGREVATTE with gn(·) as per-round loss

gives, for n ≥ 2,

‖xn+1 − xn‖ ≤
θSn
n

+
1

nα

(
‖ξn(xn)‖∗ + ‖ξ̄n−1(xn)‖∗

)

Proof. Because g1:n(x) is nα-strongly convex in x, we have

nα‖xn+1 − xn‖2 ≤ 〈∇gn(xn), xn − xn+1〉

≤ 〈∇gn(xn)−∇ḡn−1(xn), xn − xn+1〉

≤ ‖∇ln(xn)−∇l̄n−1(xn)‖∗‖xn − xn+1‖

+ ‖∇ln(xn)−∇gn(xn)−∇l̄n−1(xn) +∇ḡn−1(xn)‖∗‖xn − xn+1‖

where the second inequality is because xn = arg minx∈X g1:n−1(x). Now we use the fact

129

that the smoothness applies to f (not necessarily to g) and derive the statement

‖xn+1 − xn‖ ≤
θSn
n

+
1

nα
‖∇ln(xn)−∇gn(xn)−∇l̄n−1(xn) +∇ḡn−1(xn)‖∗

≤ θSn
n

+
1

nα

(
‖ξn(xn)‖∗ + ‖ξ̄n−1(xn)‖∗

)
�

Given the intermediate step in Lemma 6.B.5, we apply Lemma 6.B.1 to bound the norm

of ξk and give the refinement of Lemma 6.5.1 for stochastic problems.

Lemma 6.B.6. Supposemn = m0n
r for some r ≥ 0. Under previous assumptions, running

AGGREVATTE with gn(·) as per-round loss, the following holds with probability at least

1− δ: For a fixed n ≥ 2,

‖xn+1 − xn‖ ≤
θSn
n

+O

(
G2

nα
√
m0

(√
ln(1/δ)

nmin{r,2} +

√
CX/n

nmin{r,1}

))

where CX is a constant depending on the complexity of X and the constant term in big-O

is some universal constant.

Proof. To show the statement, we bound ‖ξn(xn)‖∗ and ‖ξ̄1:n−1(xn)‖∗ in Lemma 6.B.5

using the concentration lemmas derived in Section 6.B.1.

The First Term: To bound ‖ξn(xn)‖∗, because the sampling of ξn is independent of

xn, bounding ‖ξn(xn)‖∗ does not require a uniform bound. Here we use Lemma 6.B.1 and

consider ε1 such that

2e2 exp

(
−mnε

2
1

8G2
2

)
=
δ

2
=⇒ ε1 =

√
8G2

2

mn

ln

(
4e2

δ

)
= O

(√
G2

2

mn

ln

(
1

δ

))
(6.16)

Note we we used the particular range of ε in Lemma 6.B.1 for convenience, which is valid if

we choose m0 > 2G2 ln
(

4e2

δ

)
. This condition is not necessary; it is only used to simplify

the derivation, and using a different range of ε would simply lead to a different constant.

130

The Second Term: To bound ‖ξ̄n−1(xn)‖∗, we apply a uniform bound using Lemma 6.B.4.

For simplicity, we use the particular range 0 < ε ≤ G2m0

n

∑n
i=1

1
mi

and assume 2M∗G2

m0
> 1

(which implies Y0 = 4M∗G2

m0
) (again this is not necessary). We choose ε2 such that

2eN (BX ,
ε2
4

) exp

(
−(n− 1)2ε22

32G2
2

∑n−1
i=1

1
mi

)
≤ δ

2

=⇒ ln(2e) + lnN (BX ,
ε2
4

) +
−(n− 1)2ε22

32G2
2

∑n−1
i=1

1
mi

≤ − ln(
2

δ
)

Since lnN (BX , ε24) = CX ln
(

4
ε2

)
≤ csCX ε

−s
2 for arbitrary s > 0 and some cs, a sufficient

condition can be obtained by solving for ε2 such that

c0

εs2
− c2ε

2
2 = −c1 =⇒ c2ε

2+s
2 − c1ε

s
2 − c0 = 0

where c0 = csCX , c2 = (n−1)2

32G2
2

∑n−1
i=1

1
mi

, and c1 = ln(4e
δ

). To this end, we use a basic lemma

of polynomials.

Lemma 6.B.7. Cucker and Zhou, 2007, Lemma 7.2 Let c1, c2, . . . , cl > 0 and s > q1 >

q2 > · · · > ql−1 > 0. Then the equation

xs − c1x
q1 − c2x

q2 − · · · − cl−1x
ql−1 − cl = 0

has a unique solution x∗. In addition,

x∗ ≤ max
{

(lc1)1/(s−q1), (lc2)1/(s−q2), . . . , (lcl−1)1/(s−ql−1), (lc1)1/s
}

131

Therefore, we can choose an ε2 which satisfies

ε2 ≤ max

{(
2c1

c2

)1/2

,

(
2c0

c2

)1/(2+s)
}

= max

(
64 ln(4e

δ
)G2

2

∑n−1
i=1

1
mi

(n− 1)2

)1/2

,

(
64csCXG

2
2

∑n−1
i=1

1
mi

(n− 1)2

)1/(2+s)

≤ O

√√√√
(
CX + ln

(
1

δ

))
G2

2

n2

n∑

i=1

1

mi

Error Bound Suppose mn = m0n
r, for r ≥ 0. Now we combine the two bounds above:

fix n ≥ 2, with probability at least 1− δ,

‖ξn(xn)‖∗ + ‖ξ̄n−1(xn)‖∗ ≤ O

√

G2
2

m0nr
ln

(
1

δ

)
+

√√√√
(
CX + ln

(
1

δ

))
G2

2

m0n2

n∑

i=1

1

ir

Due to the nature of harmonic series, we consider two scenarios.

1. If r ∈ [0, 1], then the bound can be simplified as

O

√

G2
2

m0nr
ln

(
1

δ

)
+

√√√√
(
CX + ln

(
1

δ

))
G2

2

m0n2

n∑

i=1

1

ir

= O

(√
G2

2

m0nr
ln

(
1

δ

)
+

√(
CX + ln

(
1

δ

))
G2

2n
1−r

m0n2

)

= O

G2

√
ln(1/δ)

m0nr
+G2

√
CX

m0n1+r

132

2. If r > 1, then the bound can be simplified as

O

√

G2
2

m0nr
ln

(
1

δ

)
+

√√√√
(
CX + ln

(
1

δ

))
G2

2

m0n2

n∑

i=1

1

ir

= O

(√
G2

2

m0nr
ln

(
1

δ

)
+

√(
CX + ln

(
1

δ

))
G2

2

m0n2

)

= O

G2

√
ln(1/δ)

m0nmin{r,2}

+O

(
G2

√
CX
m0n2

)

Therefore, we conclude for r ≥ 0,

‖ξn(xn)‖∗ + ‖ξ̄n−1(xn)‖∗ = O

√
G2

2 ln(1/δ)

m0nmin{r,2} +

√
G2

2CX
m0n1+min{r,1}

Combining this inequality with Lemma 6.B.5 gives the final statement. �

Bound on Sn

Now we use Lemma 6.B.6 to refine Proposition 6.5.1 for stochastic problems.

Proposition 6.B.1. Under the assumptions Proposition 6.5.1, suppose mn = m0n
r. For a

fixed n ≥ 2, the following holds with probability at least 1− δ.

Sn ≤ Õ

(
G2

α
√
m0

(√
ln(1/δ)

nmin{r/2,1,1−θ} +

√
CX

nmin{(1+r)/2,1,1−θ}

))

Proof. The proof is similar to that of Proposition 6.5.1, but we use the results from Lemma 6.B.6.

Note Lemma 6.B.6 holds for a particular n. Here need the bound to apply for all n =

1 . . . N so we can apply the bound for each Sn. This will add an additional
√

lnN factor to

the bounds in Lemma 6.B.6.

133

First, we recall that

Sn+1 ≤
(

1− 1

n

)
Sn + ‖xn+1 − xn‖

By Lemma 6.B.6, let c1 =
G2

√
ln(1/δ)

nα
√
m0

and c2 = G2
√
CX

nα
√
m0

, and it holds that

‖xn+1 − xn‖ ≤
θSn
n

+O

(
G2

nα
√
m0

(√
ln(1/δ)

nmin{r,2} +

√
CX

n1+min{r,1}

))

=
θSn
n

+O(
c1

n1+min{r,2}/2 +
c2

n3/2+min{r,1}/2)

which implies

Sn+1 ≤
(

1− 1

n

)
Sn + ‖xn+1 − xn‖ ≤

(
1− 1− θ

n

)
Sn +O(

c1

n1+min{r,2}/2 +
c2

n3/2+min{r,1}/2).

Recall

Lemma 6.A.3. (Lan, 2013, Lemma 1) Let γk ∈ (0, 1), k = 1, 2, . . . be given. If the

sequence {∆k}k≥0 satisfies

Λk+1 ≤ (1− γk)Λk +Bk,

then

Λk ≤ Γk + Γk

k∑

i=1

Bi

Γi+1

where Γ1 = Λ1 and Γk+1 = (1− γk)Γk.

From Proposition 6.5.1, we know the unperturbed dynamics is bounded by e1−θnθ−1S2

(and can be shown in Θ(nθ−1) as in the proof of Theorem 6.5.3). To consider the effect of

the perturbations, due to linearity we can treat each perturbation separately and combine

the results by superposition. Suppose a particular perturbation is of the form O(C2

n1+s) for

134

some C2 and s > 0. By Lemma 6.A.3, suppose θ + s < 1,

Sn ≤ O(nθ−1) +O

(
nθ−1

n∑

k=1

k1−θ C2

k1+s

)
≤ O(nθ−1) +O

(
C2n

θ−1n1−s−θ)

= O(nθ−1) +O
(
C2n

−s)

For θ − s = 1, Sn ≤ O(nθ−1) + O(C2n
θ−1 ln(n)); for θ + s > 1, Sn ≤ O(nθ−1) +

O(C2n
θ−1). Therefore, we can conclude Sn ≤ C1n

θ−1 + Õ(C2n
−min{s,1−θ}), where the

constant C1 = e1−θS2. Finally, using S2 ≤ G2

α
and setting C2 as c1 or c2 gives the final

result

Sn ≤ Õ

(
G2

α
√
m0

(√
ln(1/δ)

nmin{r/2,1,1−θ} +

√
CX

nmin{(1+r)/2,1,1−θ}

))

�

Performance Guarantee

Given Proposition 6.B.1, now we can prove the performance of the last iterate.

Theorem 6.5.4. In addition to Assumptions 6.5.3 and 6.5.4, assume f(x; s) is α-strongly

convex in x and ‖∇f(x; s)‖∗ < G2 almost surely. Let θ = β
α

and suppose mn = m0n
r for

some r ≥ 0. For all N > 0, with probability at least 1− δ,

F (xN , xN) ≤ ε̃Π,π? + Õ

(
θ2

c

ln(1/δ) + CX
Nmin{r,2,2−2θ}

)
+ Õ

(
ln(1/δ) + CX
cNmin{2,1+r}

)

where c = α
G2

2m0
and CX is a constant11 of the complexity of Π.

Proof. The proof is similar to the proof of Theorem 6.5.2. Let x∗n := arg minx∈X ln(x).

11The constant CX can be thought as ln |X |, where |X | measures the size of X in e.g. Rademacher
complexity or covering number (Mohri, Rostamizadeh, and Talwalkar, 2012). For example, ln |X | can be
linear in dimX .

135

Then

ln(xn)−min
x∈X

ln(x)

≤ 〈∇ln(xn), xn − x∗n〉 −
α

2
‖xn − x∗n‖2

≤
〈
∇ln(xn)−∇l̄n−1(xn), xn − x∗n

〉
+
〈
∇l̄n−1(xn)−∇ḡn−1(xn), xn − x∗n

〉
− α

2
‖xn − x∗n‖2

≤ ‖∇ln(xn)−∇l̄n−1(xn)‖∗‖xn − x∗n‖+ ‖∇ḡn−1(xn)−∇l̄n−1(xn)‖∗‖xn − x∗n‖ −
α

2
‖xn − x∗n‖2

≤ (‖∇ln(xn)−∇l̄n−1(xn)‖∗ + ‖∇ḡn−1(xn)−∇l̄n−1(xn)‖∗)2

2α

≤ ‖∇ln(xn)−∇l̄n−1(xn)‖2
∗ + ‖∇ḡn−1(xn)−∇l̄n−1(xn)‖2

∗
α

where the second inequality is due to xn = arg minx∈X ḡn−1(x). To bound the first term,

recall the fact that ‖∇ln(xn)−∇l̄n−1(xn)‖∗ < βSn and recall by Proposition 6.B.1 that

Sn ≤ Õ

(
G2

α
√
m0

(√
ln(1/δ)

nmin{r/2,1,1−θ} +

√
CX

nmin{(1+r)/2,1,1−θ}

))

For the second term, we use the proof in Lemma 6.B.6 with an additional ln(N) factor, i.e.

‖∇ḡn−1(xn)−∇l̄n−1(xn)‖∗ = Õ

(
G2√
m0

√
ln(1/δ) + CX
n1+min{r,1}

)

Let c = αm0

G2
2

. Therefore, combining all the results, we have the following with probability

136

at least 1− δ:

ln(xn)−min
x∈X

ln(x)

≤ ‖∇ln(xn)−∇l̄n−1(xn)‖2
∗ + ‖∇ḡn−1(xn)−∇l̄n−1(xn)‖2

∗
α

≤ β2S2
n

α
+
‖∇ḡn−1(xn)−∇l̄n−1(xn)‖2

∗
α

≤ Õ

(
θ2G2

2

αm0

ln(1/δ)

n2 min{r/2,1,1−θ}

)
+ Õ

(
θ2G2

2

αm0

CX
n2 min{(r+1)/2,1,1−θ}

)
+ Õ

(
G2

2

αm0

ln(1/δ) + CX
n1+min{r,1}

)

= Õ

(
θ2

c

ln(1/δ)

n2 min{r/2,1,1−θ}

)
+ Õ

(
θ2

c

CX
n2 min{(r+1)/2,1,1−θ}

)
+ Õ

(
1

c

ln(1/δ) + CX
n1+min{r,1}

)

≤ Õ

(
θ2

c

ln(1/δ) + CX
n2 min{r/2,1,1−θ}

)
+ Õ

(
ln(1/δ) + CX
cn1+min{r,1}

)

Note the last inequality is unnecessary and is used to simplify the result. It can be seen that

the upper bound originally has a weaker dependency on CX .

�

6.C AGGREVATTE with Function Approximations

Here we give a sketch of applying the techniques used in Theorem 6.5.4 to problems where

a function approximator is used to learn f(·; s), as in the case considered by Ross, Gordon,

and Bagnell (2011) for learning the Q-function.

We consider a meta learning scenario where a linear function approximator f̂(x, s) =

φ(x, s)>w is used to approximate f(x; s). We assume φ(x, s)>w satisfies Assumption 6.5.1

and Assumption 6.5.3 with some appropriate constants.

Now we analyze the case where
∑mn

i=1 f̂(·, sn,i) is used as the per-round loss in AGGRE-

VATTE. Specifically, in the nth iteration of AGGREVATTE, mn samples{f(xn; sn,k)}mnk=1

are first collected, and then wn is updated by

wn = arg min
w∈W

n∑

i=1

mi∑

j=1

(
f(xi; si,j)− φ(xi, si,j)

>w
)2

(6.17)

137

whereW is the domain of w. Given the new wn, the policy is updated by

xn+1 = arg min
x∈X

n∑

i=1

mi∑

j=1

φ(xi, si,j)
>wn (6.18)

To prove the performance, we focus on the inequality used in the proof of performance

in Theorem 6.5.4.

ln(xn)−min
x∈X

ln(x) ≤ 〈∇ln(xn), xn − x∗n〉 −
α

2
‖xn − x∗n‖2

And we expand the inner product term:

〈∇ln(xn), xn − x∗n〉 =
〈
∇ḡn;wn−1(xn), xn − x∗n

〉
+
〈
∇ḡn;wn −∇ḡn;wn−1 , xn − x∗n

〉

+ 〈∇ln(xn)−∇ḡn;wn , xn − x∗n〉

where ḡn;wn is the finite-sample approximation usingwn . By (6.18), xn = arg minx∈X ḡn;wn−1(x),

and therefore

〈∇ln(xn), xn − x∗n〉 ≤
〈
∇ḡn;wn −∇ḡn;wn−1 , xn − x∗n

〉
+ 〈∇ln(xn)−∇ḡn;wn , xn − x∗n〉

In the first term, ‖∇ḡn;wn −∇ḡn;wn−1‖∗ ≤ O(‖wn − wn−1‖). As wn is updated by another

value aggregation algorithm, this term can be further bounded similarly as in Lemma 6.5.1,

by assuming a similar condition like Assumption 6.5.3 but on the change of the gradi-

ent in the objective function in (6.17). In the second term, ‖∇ln(xn) − ∇ḡn;wn‖∗ can be

bounded by the uniform bound of vector-valued martingale in Lemma 6.B.4. Given these

two bounds, it follows that

ln(xn)−min
x∈X

ln(x) ≤ ‖∇ḡn;wn −∇ḡn;wn−1‖2
∗ + ‖∇ln(xn)−∇ḡn;wn‖2

∗

α

Compared with Theorem 6.5.4, since here additional Lipschitz constant is introduced to

138

bound the change ‖∇ḡn;wn − ∇ḡn;wn−1‖∗, one can expect that the stability constant θ for

this meta-learning problem will increase.

6.D Weighted Regularization

Here we discuss the case where R(x) = F (π?, x) regardless the condition R(x) ≥ 0.

Corollary 6.D.1. Let F̃ (x, x) = F (x, x)+λF (π?, x). Suppose ∀x ∈ X , minx∈X F̃ (x, x) ≤

(1 + λ)ε̃Π,π? . Define ∆N = (1 + λ) (θ̃e1−θ̃G2)2

2α
N2(θ̃−1). Running AGGREVATTE with F̃

in (6.14) as the per-round loss has performance satisfies: for all N > 0,

F (xN , xN) ≤ (1 + λ)ε̃Π,π? − λF (x∗, xN) + ∆N

≤ ∆N + ε̃Π,π? + λG2

(
2λG2

α
+

√
2∆N

α

)

Proof. The first inequality can be seen by the definition F (xN , xN) = F̃ (xN , xN) −

λF (x∗, xN) and then by applying Theorem 6.5.2 to F̃ (xN , xN).

The second inequality shows that−F (x∗, xN) cannot be too large. Let l∗(x) = F (x∗, x)

and x∗N = arg minx∈X lN(x). Then

lN(xN) = lN(xN) + λl∗(xN)− λl∗(xN)

≤ ∆N − λl∗(xN) + min
x∈X

lN(x) + λl∗(x)

≤ ∆N + lN(x∗N) + λ(l∗(x
∗
N)− l∗(xN))

≤ ∆N + lN(x∗N) + λG2‖x∗N − xN‖

where the first inequality is due to Theorem 6.5.2 and the third inequality is due to l∗ is

G2-Lipschitz continuous. Further, since lN is α-strongly convex,

α

2
‖x∗N − xN‖2 ≤ lN(xN)− lN(x∗N) ≤ ∆N + λG2‖x∗N − xN‖

139

which implies

‖x∗N − xN‖ ≤
λG2 +

√
λ2G2 + 2α∆N

α
≤ 2λG2 +

√
2α∆N

α

Therefore,

lN(xN) ≤ ∆N + lN(x∗N) + λG2‖x∗N − xN‖

≤ ∆N + ε̃Π,π? + λG2

(
2λG2

α
+

√
2∆N

α

)
�

Corollary 6.D.1 indicates that when π? is better than all policies under the distribution of

π? (i.e. F (x∗, x) ≥ 0,∀x ∈ X), then using AGGREVATTE with the weighted problem such

that θ̃ < 1 generates a convergent sequence and then the performance on the last iterate

is bounded by (1 + λ)ε̃Π,π? + ∆N . That is, it only introduces a multiplicative constant

on ε̃Π,π? . Therefore, the bias due to regularization can be ignored by choosing a larger

policy class. This suggests for applications like DAGGER introducing additional weighted

cost λF (x∗, x) (i.e. demonstration samples collected under the expert policy’s distribution)

does not hurt.

However, in generally, F (x∗, xN) can be negative, when there is a better policy in Π

than π? in sense of the state distribution dπ?(s) generated by the expert policy π?. Corol-

lary 6.D.1 also shows this additional bias introduced by AGGREVATTE is bounded at most

O(
λ2G2

2

α
).

140

CHAPTER 7

ACCELERATING IMITATION LEARNING WITH PREDICTIVE MODELS

7.1 Introduction

As shown in the previous chapters, imitation learning (IL) has recently received attention

for its ability to speed up policy learning when solving reinforcement learning problems

(RL) (Abbeel and Ng, 2005; Chang et al., 2015; Le et al., 2018; Ross and Bagnell, 2014;

Ross, Gordon, and Bagnell, 2011; Sun et al., 2017). Unlike pure RL techniques, which rely

on uniformed random exploration to locally improve a policy, IL leverages prior knowledge

about a problem in terms of expert demonstrations. At a high level, this additional informa-

tion provides policy learning with an informed search direction toward the expert policy.

The goal of IL is to quickly learn a policy that can perform at least as well as the expert

policy. Because the expert policy may be suboptimal with respect to the RL problem of

interest, performing IL is often used to provide a good warm start to the RL problem, so

that the number of interactions with the environment can be minimized. Sample efficiency

is especially critical when learning is deployed in applications like robotics, where every

interaction incurs real-world costs.

By reducing IL to an online learning problem, online IL (Ross, Gordon, and Bagnell,

2011) provides a framework for convergence analysis and mitigates the covariate shift prob-

lem encountered in batch IL (Argall et al., 2009; Bojarski et al., 2017). In particular, under

proper assumptions, the performance of a policy sequence updated by Follow-the-Leader

(FTL) can converge on average to the performance of the expert policy (Ross, Gordon, and

Bagnell, 2011). Recently, it was shown that this rate is sufficient to make IL more efficient

than solving an RL problem from scratch (Cheng et al., 2018a) (see Chapter 5).

In this chapter, we further accelerate the convergence rate of online IL. Inspired by

141

the observation we made in Chapter 6 (Cheng and Boots, 2018) that the online learning

problem of IL is not truly adversarial, we propose two MOdel-Based IL (MOBIL) algo-

rithms, MOBIL-VI and MOBIL-PROX, that can achieve a fast rate of convergence. Under

the same assumptions of Ross, Gordon, and Bagnell (2011), these algorithms improve on-

average convergence to O(1/N2), e.g., when a dynamics model is learned online, where N

is the number of iterations of policy update.

The improved speed of our algorithms is attributed to using a model oracle to predict

the gradient of the next per-round loss in online learning. This model can be realized, e.g.,

using a simulator based on a (learned) dynamics model, or using past demonstrations. We

first conceptually show that this idea can be realized as a variational inequality problem in

MOBIL-VI. Next, we propose a practical first-order stochastic algorithm MOBIL-PROX,

which alternates between the steps of taking the true gradient and of taking the model

gradient. MOBIL-PROX is a generalization of stochastic MIRROR-PROX proposed by Ju-

ditsky, Nemirovski, and Tauvel (2011) to the case where the problem is weighted and the

vector field is unknown but learned online. In theory, we show that having a weighting

scheme is pivotal to speeding up convergence, and this generalization is made possible by

a new constructive FTL-style regret analysis, which greatly simplifies the original alge-

braic proof (Juditsky, Nemirovski, and Tauvel, 2011). The performance of MOBIL-PROX

is also empirically validated in simulation. This chapter is partly based on our paper pub-

lished as (Cheng et al., 2019b).

7.2 Preliminaries

7.2.1 Problem Setup: RL and IL

Let S and A be the state and the action spaces, respectively. The objective of RL is to

search for a stationary policy π inside a policy class Π with good performance. This can

be characterized by the stochastic optimization problem with expected cost1 J̄(π) defined

1Our definition of J̄(π) corresponds to the average accumulated cost in the RL literature.

142

below:

min
π∈Π

J̄(π), J̄(π) := Es∼dπEa∼π|s [c(s, a)] , (7.1)

in which s ∈ S, a ∈ A, c is the instantaneous cost, dπ is a average state distribution

induced by executing policy π, and πs is the distribution of action a given state s of π. The

policies here are assumed to be parametric. To make the writing compact, we will abuse

the notation π to also denote its parameter, and assume Π is a compact convex subset of

parameters in some normed space with norm ‖ · ‖.

Recall from Chapter 2 that, based on the abstracted distribution dπ, the formulation

in (7.1) subsumes multiple discrete-time RL problems. For example, a γ-discounted infinite-

horizon problem can be considered by defining the joint distribution dπ(s) = (1−γ)
∑∞

t=0 γ
tdπt (s),

in which dπt (s) denotes the probability distribution of state s at time t under policy π. Sim-

ilarly, a T -horizon RL problem can be considered by setting dπ(s) = 1
T

∑T−1
t=0 d

π
t (s), when

we embed time information into the definition of S. Note that while we use the notation

Ea∼π|s, the policy is allowed to be deterministic; in this case, the notation means evaluation.

For notational compactness, we will often omit the random variable inside the expectation

(e.g. we shorten (7.1) to EdπEπ [c]). In addition, we denote Qπ as the Q-function2 with

respect to π.

In this chapter, we consider IL, which is an indirect approach to solving the RL problem.

We assume there is a black-box oracle π?, called the expert policy, from which demonstra-

tion a∗ ∼ π(a∗|s∗) can be queried for any state s ∈ S. To satisfy the querying requirement,

usually the expert policy is an algorithm; for example, it can represent a planning algo-

rithm which solves a simplified version of (10.1), or some engineered, hard-coded policy

(see e.g. Pan et al., 2017a).

The purpose of incorporating the expert policy into solving (7.1) is to quickly obtain a

2For example, in a T -horizon problem, for a state s ∈ S at time t, Qπ(s, a) =
c(s, a) + Eρπ(s,a) [

∑T−1
τ=t cτ (sτ , aτ)], where ρπ(s, a) denotes the distribution of future trajectory

(st, at, st+1, . . . sT−1, aT−1) conditioned on st = s, at = a.

143

policy π that has reasonable performance. Toward this end, we consider solving a surrogate

problem of (10.1),

min
π∈Π

Es∼dπ [D(π(·|s)||π(·|s))], (7.2)

where D is a function that measures the difference between two distributions over ac-

tions (e.g. KL divergence; see Chapter 3). Importantly, the objective in (7.2) has the

property that D(π?(·|s)||π?(·|s)) = 0 for any s ∈ S and there is constant Cπ? ≥ 0

such that ∀t ∈ N, s ∈ S, π ∈ Π, it satisfies Ea∼π|s[Qπ?(s, a)] − Ea∗∼π|s[Qπ?(s, a∗)] ≤

Cπ?D(π(·|s)||π(·|s)), in which N denotes the set of natural numbers. For simplicity, we

will also write D(π(·|s)||π′(·|s)) = D(π||π′), for some policies π and π′. Then by the

Performance Difference Lemma (Kakade and Langford, 2002), it can be shown that the

inequality above implies (see also Chapter 6),

J̄(π)− J̄(π?) ≤ Cπ?Edπ [D(π?||π)]. (7.3)

Therefore, solving (7.2) can lead to a policy that performs similarly to the expert policy π?.

7.2.2 Imitation Learning as Online Learning

The surrogate problem in (7.2) is more structured than the original RL problem in (10.1).

In particular, when the distance-like function D is given, and we know that D(π?||π) is

close to zero when π is close to π?. On the contrary, Ea∼π|s[c(s, a)] in (7.1) generally

can still be large, even if π is a good policy (since it also depends on the state). This

normalization property is crucial for the reduction from IL to online learning, as we showed

in Chapter 6 (Cheng and Boots, 2018).

The reduction is based on observing that, with the normalization property, the expres-

144

siveness of the policy class Π can be described with a constant εΠ defined as,

εΠ ≥ max
{πn∈Π}

min
π∈Π

1

N

N∑

n=1

Edπn [D(π?||π)], (7.4)

for all N ∈ N, which measures the average difference between Π and π? with respect to

D and the state distributions visited by a worst possible policy sequence. Ross, Gordon,

and Bagnell (2011) make use of this property and reduce (7.2) into an online learning

problem by distinguishing the influence of π on dπ and on D(π?||π) in (7.2). To make this

transparent, we define a bivariate function

F (π, π′) := Edπ [D(π?||π′)]. (7.5)

Using this bivariate function F , the online learning setup can be described as follows: in

round n, the learner applies a policy πn ∈ Π and then the environment reveals a per-round

loss

ln(π) := F (πn, π) = Edπn [D(π?||π)]. (7.6)

Ross, Gordon, and Bagnell (2011) show that if the sequence {πn} is selected by a no-regret

algorithm, then it will have good performance in terms of (7.2). For example, DAGGER

updates the policy by FTL, πn+1 = arg minπ∈Π l1:n(π) and has the following guarantee (cf.

(Cheng and Boots, 2018)), where we define the shorthand l1:n =
∑n

m=1 lm.

Theorem 7.2.1. Let µl > 0. If each ln is µl-strongly convex and ‖∇ln(π)‖∗ ≤ G,∀π ∈ Π,

then DAGGER has performance on average satisfying

1

N

N∑

n=1

J̄(πn) ≤ J̄(π?) + Cπ?
(
G2

2µl

lnN + 1

N
+ εΠ

)
. (7.7)

First-order variants of DAGGER based on Follow-the-Regularized-Leader (FTRL) have

145

also been proposed by Sun et al. (2017) and Cheng et al. (2018a), which have the same

performance but only require taking a stochastic gradient step in each iteration without

keeping all the previous cost functions (i.e. data) as in the original FTL formulation. The

bound in Theorem 7.2.1 also applies to the expected performance of a policy randomly

picked out of the sequence {πn}Nn=1, although it does not necessarily translate into the

performance of the last policy πN+1, as we showed in Chapter 6 (Cheng and Boots, 2018).

7.3 Accelerating IL with Predictive Models

The reduction-based approach to solving IL has demonstrated sucess in speeding up policy

learning. However, because interactions with the environment are necessary to approxi-

mately evaluate the per-round loss, it is interesting to determine if the convergence rate

of IL can be further improved. A faster convergence rate will be valuable in real-world

applications where data collection is expensive.

We answer this question affirmatively. We show that, by modeling3 ∇2F the conver-

gence rate of IL can potentially be improved by up to an order, where ∇2 denotes the

derivative to the second argument. The improvement comes through leveraging the fact

that the per-round loss ln defined in (7.6) is not completely unknown or adversarial as it

is assumed in the most general online learning setting. Because the same function F is

used in (7.6) over different rounds, the online component actually comes from the reduc-

tion made by Ross, Gordon, and Bagnell (2011), which ignores information about how

F changes with the left argument; in other words, it omits the variations of dπ when π

changes, as we showed in Chapter 6. Therefore, we argue that the original reduction pro-

posed by Ross, Gordon, and Bagnell (2011), while allowing the use of (7.4) to characterize

the performance, loses one critical piece of information present in the original RL problem:

both the system dynamics and the expert are the same across different rounds of online

learning.

3We define ∇2F as a vector field∇2F : π 7→ ∇2F (π, π)

146

We propose two model-based algorithms (MOBIL-VI and MOBIL-PROX) to accel-

erate IL. The first algorithm, MOBIL-VI, is conceptual in nature and updates policies by

solving variational inequality (VI) problems (Facchinei and Pang, 2007). This algorithm

is used to illustrate how modeling ∇2F through a predictive model ∇2F̂ can help to speed

up IL, where F̂ is a model bivariate function.4 The second algorithm, MOBIL-PROX is

a first-order method. It alternates between taking stochastic gradients by interacting with

the environment and querying the model∇2F̂ . We will prove that this simple yet practical

approach has the same performance as the conceptual one: when ∇2F̂ is learned online

and ∇2F is realizable, e.g. both algorithms can converge in O
(

1
N2

)
, in contrast to DAG-

GER’s O
(

lnN
N

)
convergence. In addition, we show the convergence results of MOBIL

under relaxed assumptions, e.g. allowing stochasticity, and provide several examples of

constructing predictive models. (See Section 7.A for a summary of notation used in this

chapter.)

7.3.1 Performance and Average Regret

Before presenting the two algorithms, we first summarize the core idea of the reduction

from IL to online learning in a simple lemma, which builds the foundation of our algorithms

(proved in Section 7.B.1).

Lemma 7.3.1. For arbitrary sequences {πn ∈ Π}Nn=1 and {wn > 0}Nn=1, it holds that

E

[
N∑

n=1

wnJ̄(πn)

w1:N

]
≤ J̄(π?) + Cπ?

(
εwΠ + E

[
regretwN(Π)

w1:N

])

where l̃n is an unbiased estimate of ln, regretwN(Π) := maxπ∈Π

∑N
n=1 wnl̃n(πn)−wnl̃n(π),

εwΠ is given in Definition 7.4.1, and the expectation is due to sampling l̃n.

In other words, the on-average performance convergence of an online IL algorithm is

4While we only concern predicting the vector field ∇2F , we adopt the notation F̂ to better build up the
intuition, especially of MOBIL-VI; we will discuss other approximations that are not based on bivariate
functions in Section 7.3.3.

147

determined by the rate of the expected weighted average regret E [regretwN(Π)/w1:N]. For

example, in DAGGER, the weighting is uniform and E [regretwN(Π)] is in O(logN); by

Lemma 7.3.1 this rate directly proves Theorem 7.2.1.

7.3.2 Algorithms

From Lemma 7.3.1, we know that improving the regret bound implies a faster conver-

gence of IL. This leads to the main idea of MOBIL-VI and MOBIL-PROX: to use model

information to approximately play Be-the-Leader (BTL) (Kalai and Vempala, 2005), i.e.

πn+1 ≈ arg minπ∈Π l1:n+1(π). To understand why playing BTL can minimize the regret,

we recall a classical regret bound of online learning.5

Lemma 7.3.2 (Strong FTL Lemma (McMahan, 2017)). For any sequence of decisions

{xn ∈ X} and loss functions {ζn}, regretN(X) ≤∑N
n=1 ζ1:n(xn) − ζ1:n(x?n), where x?n ∈

arg minx∈X ζ1:n(x), where X is the decision set.

Namely, if the decision πn+1 made in round n in IL is close to the best decision in round

n+1 after the new per-round loss ln+1 is revealed (which depends on πn+1), then the regret

will be small.

The two algorithms are summarized in Algorithm 2, which mainly differ in the policy

update rule (line 5). Like DAGGER, they both learn the policy in an interactive manner. In

round n, both algorithms execute the current policy πn in the real environment to collect

data to define the per-round loss functions (line 3): l̃n is an unbiased estimate of ln in (7.6)

for policy learning, and h̃n is an unbiased estimate of the per-round loss hn for model

learning. Given the current per-round losss, the two algorithms then update the model (line

4) and the policy (line 5) using the respective rules. Here we use the set F̂ , abstractly,

to denote the family of predictive models to estimate ∇2F , and hn is defined as an upper

bound of the prediction error. For example, F̂ can be a family of dynamics models that are

5We use notation ln and ζn to distinguish general online learning problems from online IL problems.

148

used to simulate the predicted gradients, and h̃n is the empirical loss function used to train

the dynamics models (e.g. the KL divergence of prediction).

A Conceptual Algorithm: MOBIL-VI

We first present our conceptual algorithm MOBIL-VI, which is simpler to explain. We

assume that ln and hn are given, as in Theorem 7.2.1. This assumption will be removed

in MOBIL-PROX later. To realize the idea of BTL, in round n, MOBIL-VI uses a newly

learned predictive model ∇2F̂n+1 to estimate of ∇2F in (7.5) and then updates the policy

by solving the VI problem below: finding πn+1 ∈ Π such that ∀π′ ∈ Π,

〈Φn(πn+1), π′ − πn+1〉 ≥ 0, (7.8)

where the vector field Φn is defined as

Φn(π) =
n∑

m=1

wm∇lm(π) + wn+1∇2F̂n+1(π, π)

Suppose ∇2F̂n+1 is the partial derivative of some bivariate function F̂n+1. If wn = 1,

then the VI problem6 in (7.8) finds a fixed point πn+1 satisfying πn+1 = arg minπ∈Π l1:n(π)+

F̂n+1(πn+1, π). That is, if F̂n+1 = F exactly, then πn+1 plays exactly BTL and by Lemma 10.F.2

the regret is non-positive. In general, we can show that, even with modeling errors, MOBIL-

VI can still reach a faster convergence rate such as O
(

1
N2

)
, if a non-uniform weighting

scheme is used, the model is updated online, and ∇2F is realizable within F̂ . The details

will be presented in Section 7.4.2.

6 Because Π is compact, the VI problem in (7.8) has at least one solution (Facchinei and Pang, 2007).
If ln is strongly convex, the VI problem in line 6 of Algorithm 2 is strongly monotone for large enough n
and can be solved e.g. by basic projection method (Facchinei and Pang, 2007). Therefore, for demonstration
purpose, we assume the VI problem of MOBIL-VI can be exactly solved.

7MOBIL-VI assumes l̃n = ln and h̃n = hn

149

Algorithm 2 MOBIL
Input: π1, N , p
Output: π̄N

1: Set weights wn = np for n = 1, . . . , N and sample integer K with P (K = n) ∝ wn
2: for n = 1 . . .K − 1 do
3: Run πn in the real environment to collect data to define l̃n and h̃n7

4: Update the predictive model to ∇2F̂n+1; e.g., using FTL F̂n+1 =
arg minF̂∈F̂

∑n
m=1

wm
m h̃m(F̂)

5: Update policy to πn+1 by (7.8) (MOBIL-VI) or by (7.9) (MOBIL-PROX)
6: end for
7: Set π̄N = πK

A Practical Algorithm: MOBIL-PROX

While the previous conceptual algorithm achieves a faster convergence, it requires solving a

nontrivial VI problem in each iteration. In addition, it assumes ln is given as a function and

requires keeping all the past data to define l1:n. Here we relax these unrealistic assumptions

and propose MOBIL-PROX. In round n of MOBIL-PROX, the policy is updated from πn

to πn+1 by taking two gradient steps:

π̂n+1 = arg min
π∈Π

n∑

m=1

wm
(
〈gm, π〉+ rm(π)

)
,

πn+1 = arg min
π∈Π

wn+1 〈ĝn+1, π〉+
n∑

m=1

wm
(
〈gm, π〉+ rm(π)

) (7.9)

We define rn as an αnµl-strongly convex function (with αn ∈ (0, 1]; we recall µl is the

strongly convexity modulus of ln) such that πn is its global minimum and rn(πn) = 0 (e.g. a

Bregman divergence). And we define gn and ĝn+1 as estimates of∇ln(πn) = ∇2F (πn, πn)

and∇2F̂n+1(π̂n+1, π̂n+1), respectively. Here we only require gn = ∇l̃n(πn) to be unbiased,

whereas ĝn could be a biased estimate of∇2F̂n+1(π̂n+1, π̂n+1).

MOBIL-PROX treats π̂n+1, which plays FTL with gn from the real environment, as

a rough estimate of the next policy πn+1 and uses it to query an gradient estimate ĝn+1

from the model ∇2F̂n+1. Therefore, the learner’s decision πn+1 can approximately play

BTL. If we compare the update rule of πn+1 and the VI problem in (7.8), we can see that

150

MOBIL-PROX linearizes the problem and attempts to approximate ∇2F̂n+1(πn+1, πn+1)

by ĝn+1. While the above approximation is crude, interestingly it is sufficient to speed up

the convergence rate to be as fast as MOBIL-VI under mild assumptions, as shown later in

Section 7.4.3.

7.3.3 Predictive Models

MOBIL uses ∇2F̂n+1 in the update rules (7.8) and (7.9) at round n to predict the unseen

gradient at round n + 1 for speeding up policy learning. Ideally F̂n+1 should approximate

the unknown bivariate function F so that ∇2F and ∇2F̂n+1 are close. This condition can

be seen from (7.8) and (7.9), in which MOBIL concerns only ∇2F̂n+1 instead of F̂n+1

directly. In other words,∇2F̂n+1 is used in MOBIL as a first-order oracle, which leverages

all the past information (up to the learner playing πn in the environment at round n) to

predict the future gradient ∇2Fn+1(πn+1, πn+1), which depends on the decision πn+1 the

learner is about to make. Hence, we call it a predictive model.

To make the idea concrete, we provide a few examples of these models. By definition

of F in (7.5), one way to construct the predictive model ∇2F̂n+1 is through a simulator

with an (online learned) dynamics model, and define ∇2F̂n+1 as the simulated gradient

(computed by querying the expert along the simulated trajectories visited by the learner). If

the dynamics model is exact, then ∇2F̂n+1 = ∇2F . Note that a stochastic/biased estimate

of∇2F̂n+1 suffices to update the policies in MOBIL-PROX.

Another idea is to construct the predictive model through l̃n (the stochastic estimate of

ln) and indirectly define F̂n+1 such that ∇2F̂n+1 = ∇l̃n. This choice is possible, because

the learner in IL collects samples from the environment, as opposed to, literally, gradients.

Specifically, we can define gn = ∇l̃n(πn) and ĝn+1 = ∇l̃n(π̂n+1) in (7.9). The approxima-

tion error of setting ĝn+1 = ∇l̃n(π̂n+1) is determined by the convergence and the stability of

the learner’s policy. If πn visits similar states as π̂n+1, then∇l̃n can approximate∇2F well

at π̂n+1. Note that this choice is different from using the previous gradient (i.e. ĝn+1 = gn)

151

in optimistic mirror descent/FTL (Rakhlin and Sridharan, 2012), which would have a larger

approximation error due to additional linearization.

Finally, we note that while the concept of predictive models originates from estimating

the partial derivatives∇2F , a predictive model does not necessarily have to be in the same

form. A parameterized vector-valued function can also be directly learned to approximate

∇2F , e.g., using a neural network and the sampled gradients {gn} in a supervised learning

fashion.

7.4 Theoretical Analysis

Now we prove that using predictive models in MOBIL can accelerate convergence, when

proper conditions are met. Intuitively, MOBIL converges faster than the usual adversarial

approach to IL (like DAGGER), when the predictive models have smaller errors than not

predicting anything at all (i.e. setting ĝn+1 = 0). In the following analyses, we will focus

on bounding the expected weighted average regret, as it directly translates into the average

performance bound by Lemma 7.3.1. We define, for wn = np,

R(p) := E [regretwN(Π)/w1:N] (7.10)

Note that the results below assume that the predictive models are updated using FTL as

outlined in Algorithm 2. This assumption applies, e.g., when a dynamics model is learned

online in a simulator-oracle as discussed above. We provide full proofs in Section 7.B and

provide a summary of notation in Section 7.A.

7.4.1 Assumptions

We first introduce several assumptions to more precisely characterize the online IL prob-

lem.

152

Predictive models Let F̂ be the class of predictive models. We assume these models are

Lipschitz continuous in the following sense.

Assumption 7.4.1. There is L ∈ [0,∞) such that ‖∇2F̂ (π, π)−∇2F̂ (π′, π′)‖∗ ≤ L‖π −

π′‖, ∀F̂ ∈ F̂ and ∀π, π′ ∈ Π.

per-round losss The per-round loss ln for policy learning is given in (7.6), and we define

hn(F̂) as an upper bound of ‖∇2F (πn, πn) − ∇2F̂ (πn, πn)‖2
∗ (see e.g. Section 7.C). We

make structural assumptions on l̃n and h̃n, similar to the ones made by Ross, Gordon, and

Bagnell (2011) (cf. Theorem 7.2.1).

Assumption 7.4.2. Let µl, µh > 0. With probability 1, l̃n is µl-strongly convex, and

‖∇l̃n(π)‖∗ ≤ Gl, ∀π ∈ Π; h̃n is µh-strongly convex, and ‖∇h̃n(F̂)‖∗ ≤ Gh, ∀F̂ ∈ F̂ .

By definition, these properties extend to ln and hn. We note they can be relaxed to solely

convexity and our algorithms still improve the best known convergence rate (see Table 7.1

and Section 7.D).

Table 7.1: Convergence Rate Comparison8

h̃n convex h̃n strongly convex Without model

l̃n convex O(N−3/4) O(N−1) O(N−1/2)

l̃n strongly convex O(N−3/2) O(N−2) O(N−1)

Expressiveness of hypothesis classes We introduce two constants, εwΠ and εwF̂ , to charac-

terize the policy class Π and model class F̂ , which generalize the idea of (7.4) to stochastic

and general weighting settings. When l̃n = ln and θn is constant, Definition 7.4.1 agrees

with (7.4). Similarly, we see that if π? ∈ Π and F ∈ F̂ , then εwΠ and εwF̂ are zero.

8The rates here assume σĝ, σg, εwF̂ = 0. In general, the rate of MOBIL-PROX becomes the improved
rate in the table plus the ordinary rate multiplied by C = σ2

g + σ2
ĝ + εwF̂ . For example, when f̃ is convex

and h̃ is strongly convex, MOBIL-PROX converges in O(1/N + C/
√
N), whereas DAGGER converges in

O(G2
l /
√
N).

153

Definition 7.4.1. A policy class Π is εwΠ-close to π?, if for all N ∈ N and weight sequence

{θn > 0}Nn=1 with θ1:N = 1, E
[

max{πn∈Π}minπ∈Π

∑N
n=1 θnl̃n(π)

]
≤ εwΠ. Similarly, a

model class F̂ is εwF̂ -close to F , if E
[

max{πn∈Π}minF̂∈F̂
∑N

n=1 θnh̃n(F̂)
]
≤ εwF̂ . The

expectations above are due to sampling l̃n and h̃n.

7.4.2 Performance of MOBIL-VI

Here we show the performance for MOBIL-VI when there is prediction error in∇2F̂n. The

main idea is to treat MOBIL-VI as online learning with prediction (Rakhlin and Sridharan,

2012) and take F̂n+1(πn+1, ·) obtained after solving the VI problem (7.8) as an estimate of

ln+1.

Proposition 7.4.1. For MOBIL-VI with p = 0,R(0) ≤ G2
l

2µlµh

1
N

+
εw
F̂

2µl

lnN+1
N

.

By Lemma 7.3.1, this means that if the model class is expressive enough (i.e εwF̂ = 0),

then by adapting the model online with FTL, we can improve the original convergence rate

in O(lnN/N) of Ross, Gordon, and Bagnell (2011) to O(1/N). While removing the lnN

factor does not seem like much, we will show that running MOBIL-VI can improve the

convergence rate to O(1/N2), when a non-uniform weighting is adopted.

Theorem 7.4.1. For MOBIL-VI with p > 1, R(p) ≤ Cp

(
pG2

h

2(p−1)µh

1
N2 +

εw
F̂
pN

)
, where Cp =

(p+1)2ep/N

2µl
.

The key is that regretwN(Π) can be upper bounded by the regret of the online learning for

models, which has per-round loss wn
n
hn. Therefore, if εwF̂ ≈ 0, randomly picking a policy

out of {πn}Nn=1 proportional to weights {wn}Nn=1 has expected convergence in O
(

1
N2

)
if

p > 1.9

7.4.3 Performance of MOBIL-PROX

As MOBIL-PROX uses gradient estimates, we additionally define two constants σg and σĝ

to characterize the estimation error, where σĝ also entails potential bias.
9If p = 1, it converges in O

(
lnN
N2

)
; if p ∈ [0, 1), it converges in O

(
1

N1+p

)
. See Section 7.B.2.

154

Assumption 7.4.3. E[‖gn −∇2F (πn, πn)‖2
∗] ≤ σ2

g and E[‖ĝn −∇2F̂n(π̂n, π̂n)‖2
∗] ≤ σ2

ĝ

We show this simple first-order algorithm achieves similar performance to MOBIL-VI.

Toward this end, we introduce a stronger lemma than Lemma 10.F.2.

Lemma 7.4.1 (Stronger FTL Lemma). Let x?n ∈ arg minx∈X ζ1:n(x). For any sequence

of decisions {xn} and losses {ζn}, regretN(X) =
∑N

n=1 ζ1:n(xn) − ζ1:n(x?n) −∆n, where

∆n+1 := ζ1:n(xn+1)− ζ1:n(x?n) ≥ 0.

The additional −∆n term in Lemma 10.F.3 is pivotal to prove the performance of

MOBIL-PROX.

Theorem 7.4.2. For MOBIL-PROX with p > 1 and αn = α ∈ (0, 1], it satisfies

R(p) ≤ (p+ 1)2e
p
N

αµl

(
G2
h

µh

p

p− 1

1

N2
+

2

p

σ2
g + σ2

ĝ + εwF̂
N

)
+

(p+ 1)νp
Np+1

,

where νp = O(1) and nceil = d2e
1
2 (p+1)LGl
αµl

e.

Proof sketch. Here we give a proof sketch in big-O notation (see Section 7.B.3 for the de-

tails). To boundR(p), recall the definition regretwN(Π) =
∑N

n=1wnl̃n(πn)−minπ∈Π

∑N
n=1wnl̃n(π).

Now define l̄n(π) := 〈gn, π〉+rn(π). Since l̃n is µl-strongly convex, rn is αµl-strongly con-

vex, and r(πn) = 0, we know that l̄n satisfies that l̃n(πn)− l̃n(π) ≤ l̄n(πn)− l̄n(π), ∀π ∈ Π.

This implies R(p) ≤ E[regretwNp(Π)/w1:N], where regretwNp(Π) :=
∑N

n=1wnl̄n(πn) −

minπ∈Π

∑N
n=1wnl̄n(π).

The following lemma upper bounds regretwNp(Π) by using Stronger FTL lemma (Lemma 10.F.3).

Lemma 7.4.2. regretwNp(Π) ≤ p+1
2αµl

∑N
n=1 n

p−1‖gn− ĝn‖2
∗− αµl

2(p+1)

∑N
n=1(n− 1)p+1‖πn−

π̂n‖2.

Since the second term in Lemma 7.4.2 is negative, we just need to upper bound the

expectation of the first item. Using the triangle inequality, we bound the model’s prediction

error of the next per-round loss.

155

Lemma 7.4.3. E[‖gn − ĝn‖2
∗] ≤ 4(σ2

g + σ2
ĝ + L2E[‖πn − π̂n‖2] + E[h̃n(F̂n)]).

With Lemma 7.4.3 and Lemma 7.4.2, it is now clear that E[regretwNp(Π)] ≤ E[
∑N

n=1 ρn‖πn−

π̂n‖2] +O(Np)(σ2
g + σ2

ĝ) +O(E[
∑N

n=1 n
p−1h̃n(F̂n)]), where ρn = O(np−1− np+1). When

n is large enough, ρn ≤ 0, and hence the first term is O(1). For the third term, because the

model is learned online using, e.g., FTL with strongly convex cost np−1h̃n we can show

that E[
∑N

n=1 n
p−1h̃n(F̂n)] = O(Np−1 + NpεwF̂). Thus, E[regretwNp(Π)] ≤ O(1 + Np−1 +

(εwF̂ + σ2
g + σ2

ĝ)N
p). Substituting this bound into R(p) ≤ E[regretwNp(Π)/w1:N] and using

that the fact w1:N = Ω(Np+1) proves the theorem. �

The main assumption in Theorem 7.4.2 is that ∇2F̂ is L-Lipschitz continuous (As-

sumption 7.4.1). It does not depend on the continuity of ∇2F . Therefore, this condition

is practical as we are free to choose F̂ . Compared with Theorem 7.4.1, Theorem 7.4.2

considers the inexactness of l̃n and h̃n explicitly; hence the additional term due to σ2
g and

σ2
ĝ . Under the same assumption of MOBIL-VI that ln and hn are directly available, we can

actually show that the simple MOBIL-PROX has the same performance as MOBIL-VI,

which is a corollary of Theorem 7.4.2.

Corollary 7.4.1. If l̃n = ln and h̃n = hn, for MOBIL-PROX with p > 1, R(p) ≤ O(1
N2 +

εw
F̂
N

).

The proof of Theorem 7.4.1 and 7.4.2 are based on assuming the predictive models

are updated by FTL (see Section 7.C for a specific bound when online learned dynamics

models are used as a simulator). However, we note that these results are essentially based

on the property that model learning also has no regret; therefore, the FTL update rule (line

4) can be replaced by a no-regret first-order method without changing the result. This

would make the algorithm even simpler to implement. The convergence of other types of

predictive models (like using the previous cost function discussed in Section 7.3.3) can

also be analyzed following the major steps in the proof of Theorem 7.4.2, leading to a

performance bound in terms of prediction errors. Finally, it is interesting to note that the

156

accelerated convergence is made possible when model learning puts more weight on costs

in later rounds (because p > 1).

7.4.4 Comparison

We compare the performance of MOBIL in Theorem 7.4.2 with that of DAGGER in The-

orem 7.2.1 in terms of the constant on the 1
N

factor. MOBIL has a constant in O(σ2
g +

σ2
ĝ + εwF̂), whereas DAGGER has a constant in G2

l = O(G2 + σ2
g), where we recall Gl and

G are upper bounds of ‖∇l̃n(π)‖∗ and ‖∇ln(π)‖∗, respectively.10 Therefore, in general,

MOBIL-PROX has a better upper bound than DAGGER when the model class is expressive

(i.e. εF̂ ≈ 0), because σ2
ĝ (the variance of the sampled gradients) can be made small as

we are free to design the model. Note that, however, the improvement of MOBIL may be

smaller when the problem is noisy, such that the large σ2
g becomes the dominant term.

An interesting property that arises from Theorems 7.4.1 and 7.4.2 is that the conver-

gence of MOBIL is not biased by using an imperfect model (i.e. εwF̂ > 0). This is shown in

the term εwF̂/N . In other words, in the worst case of using an extremely wrong predictive

model, MOBIL would just converge more slowly but still to the performance of the expert

policy.

MOBIL-PROX is closely related to stochastic Mirror-Prox (Juditsky, Nemirovski, and

Tauvel, 2011; Nemirovski, 2004). In particular, when the exact model is known (i.e.

∇2F̂n = ∇2F) and MOBIL-PROX is set to convex-mode (i.e. rn = 0 for n > 1, and

wn = 1/
√
n; see Section 7.D), then MOBIL-PROX gives the same update rule as stochastic

Mirror-Prox with step size O(1/
√
n) (See Section 7.E for a thorough discussion). There-

fore, MOBIL-PROX can be viewed as a generalization of Mirror-Prox: 1) it allows non-

uniform weights; and 2) it allows the vector field∇2F to be estimated online by alternately

taking stochastic gradients and predicted gradients. The design of MOBIL-PROX is made

possible by our Stronger FTL lemma (Lemma 10.F.3), which greatly simplifies the origi-

10Theorem 7.2.1 was stated by assuming ln = l̃n. In the stochastic setup here, DAGGER has a similar
convergence rate in expectation but with G replaced by Gl.

157

0 20 40 60 80
Iteration

0

200

400

600

800

1000

M
ea

nS
um

O
fR

ew
ar

ds

True Dynamics
Learned Dynamics
Last Cost Function
No Model
Expert

0 20 40 60 80
Iteration

0

200

400

600

800

1000

M
ea

nS
um

O
fR

ew
ar

ds

True Dynamics
Learned Dynamics
Last Cost Function
No Model
Expert

0 20 40 60 80
Iteration

900

800

700

600

500

400

300

M
ea

nS
um

O
fR

ew
ar

ds

True Dynamics
Learned Dynamics
Last Cost Function
No Model
Expert

0 20 40 60 80
Iteration

900

800

700

600

500

400

300

M
ea

nS
um

O
fR

ew
ar

ds

True Dynamics
Learned Dynamics
Last Cost Function
No Model
Expert

0 20 40 60 80
Iteration

0

200

400

600

800

1000

M
ea

nS
um

O
fR

ew
ar

ds

True Dynamics
Learned Dynamics
Last Cost Function
No Model
Expert

(a) CartPole p = 0

0 20 40 60 80
Iteration

0

200

400

600

800

1000

M
ea

nS
um

O
fR

ew
ar

ds
True Dynamics
Learned Dynamics
Last Cost Function
No Model
Expert

(b) CartPole p = 2

0 20 40 60 80
Iteration

900

800

700

600

500

400

300

M
ea

nS
um

O
fR

ew
ar

ds

True Dynamics
Learned Dynamics
Last Cost Function
No Model
Expert

(c) Reacher3D p = 0

0 20 40 60 80
Iteration

900

800

700

600

500

400

300

M
ea

nS
um

O
fR

ew
ar

ds

True Dynamics
Learned Dynamics
Last Cost Function
No Model
Expert

(d) Reacher3D p = 2

Figure 7.1: Experimental results of MOBIL-PROX with neural network (1st row) and linear
policies (2nd row). The shaded regions represent 0.5 standard deviation

nal algebraic proof in (Juditsky, Nemirovski, and Tauvel, 2011; Nemirovski, 2004). Using

Lemma 10.F.3 reveals more closely the interactions between model updates and policy up-

dates. In addition, it more clearly shows the effect of non-uniform weighting, which is

essential to achieving O(1
N2) convergence. To the best of our knowledge, even the analysis

of the original (stochastic) Mirror-Prox from the FTL perspective is new.

7.5 Experiments

We experimented with MOBIL-PROX in simulation to study how weights wn = np and

the choice of model oracles affect the learning. We used two weight schedules: p = 0 as

baseline, and p = 2 suggested by Theorem 7.4.2. And we considered several predictive

models: (a) a simulator with the true dynamics (b) a simulator with online-learned dynam-

ics (c) the last cost function (i.e. ĝn+1 = ∇l̃n(π̂n+1) (d) no model (i.e. ĝn+1 = 0; in this

case MOBIL-PROX reduces to the first-order version of DAGGER (Cheng et al., 2018a),

which is considered as a baseline here).

158

7.5.1 Setup and Results

Two robot control tasks (CartPole and Reacher3D) powered by the DART physics en-

gine (Lee et al., 2018b) were used as the task environments. The learner was either a

linear policy or a small neural network. For each IL problem, an expert policy that shares

the same architecture as the learner was used, which was trained using policy gradients.

While sharing the same architecture is not required in IL, here we adopted this constraint

to remove the bias due to the mismatch between policy class and the expert policy to clar-

ify the experimental results. For MOBIL-PROX, we set rn(π) = µlαn
2
‖π − πn‖2 and set

αn such that
∑
wnαnµl = (1 + cnp+1/2)/ηn, where c = 0.1 and ηn was adaptive to the

norm of the prediction error. This leads to an effective learning rate ηnwp/(1 + cnp+1/2)

which is optimal in the convex setting (cf. Table 7.1). For the dynamics model, we used a

neural network and trained it using FTL. The results reported are averaged over 24 (Cart-

Pole) and 12 (Reacher3D) seeds. Figure 10.4 shows the results of MOBIL-PROX. While

the use of neural network policies violates the convexity assumptions in the analysis, it is

interesting to see how MOBIL-PROX performs in this more practical setting. We include

the experiment details in Section 7.F for completeness.

7.5.2 Discussions

We observe that, when p = 0, having model information does not improve the perfor-

mance much over standard online IL (i.e. no model), as suggested in Proposition 7.4.1.

By contrast, when p = 2 (as suggested by Theorem 7.4.2), MOBIL-PROX improves the

convergence and performs better than not using models.11 It is interesting to see that this

trend also applies to neural network policies.

From Figure 10.4, we can also study how the choice of predictive models affects the

convergence. As suggested in Theorem 7.4.2, MOBIL-PROX improves the convergence

11We note that the curves between p = 0 and p = 2 are not directly comparable; we should only compare
methods within the same p setting as the optimal step size varies with p. The multiplier on the step size was
chosen such that MOBIL-PROX performs similarly in both settings.

159

only when the model makes non-trivial predictions. If the model is very incorrect, then

MOBIL-PROX can be slower. This can be seen from the performance of MOBIL-PROX

with online learned dynamics models. In the low-dimensional case of CartPole, the simple

neural network predicts the dynamics well, and MOBIL-PROX with the learned dynam-

ics performs similarly as MOBIL-PROX with the true dynamics. However, in the high-

dimensional Reacher3D problem, the learned dynamics model generalizes less well, creat-

ing a performance gap between MOBIL-PROX using the true dynamics and that using the

learned dynamics. We note that MOBIL-PROX would still converge at the end despite the

model error. Finally, we find that the performance of MOBIL with the last-cost predictive

model is often similar to MOBIL-PROX with the simulated gradients computed through

the true dynamics.

7.6 Conclusion

We propose two novel model-based IL algorithms MOBIL-PROX and MOBIL-VI with

strong theoretical properties: they are provably up-to-and-order faster than the state-of-the-

art IL algorithms and have unbiased performance even when using imperfect predictive

models. Although we prove the performance under convexity assumptions, we empirically

find that MOBIL-PROX improves the performance even when using neural networks. In

general, MOBIL accelerates policy learning when having access to an predictive model that

can predict future gradients non-trivially. While the focus of the current paper is theoretical

in nature, the design of MOBIL leads to several interesting questions that are important to

reliable application of MOBIL-PROX in practice, such as end-to-end learning of predictive

models and designing adaptive regularizations for MOBIL-PROX.

160

7.A Notation

Table 7.2: Summary of Symbols

Symbol Definition

N the total number of rounds in online learning

J̄(π) the average accumulated cost, EdπEπ[ct] of RL in (7.1)

dπ the generalized stationary state distribution

D(q||p) the difference between distributions p and q

π? the expert policy

Π the hypothesis class of policies

πn the policy run in the environment at the nth online learning iteration

F̂ the hypothesis class of models (elements denoted as F̂)

F̂n the model used at the n− 1 iteration to predict the future gradient of the nth iteration

εwΠ the policy class complexity (Definition 7.4.1)

εwF̂ the model class complexity (Definition 7.4.1)

F (π′, π) the bivariate function Edπ′ [D(π?||π)] in (7.5)

ln(π) F (πn, π) in (7.6)

l̃n(π) an unbiased estimate of ln(π)

hn(F̂) an upper bound of ‖∇2F (πn, πn)−∇2F̂ (πn, πn)‖2∗
h̃n(F̂) an unbiased estimate of hn(F̂)

µl the modulus of strongly convexity of l̃n (Assumption 7.4.2)

Gl an upper bound of ‖∇l̃n‖∗ (Assumption 7.4.2)

G an upper bound of ‖∇ln‖∗ (Theorem 7.2.1)

µh modulus of strongly convexity of h̃n (Assumption 7.4.2)

Gh an upper bound of ‖∇h̃n‖∗ (Assumption 7.4.2)

L the Lipschitz constant such that ‖∇2F̂ (π, π)−∇2F̂ (π′, π′)‖∗ ≤ L‖π − π′‖ (Assumption 7.4.1)

R(p) the expected weighted average regret, E
[

regretwN (Π)
w1:N

]
in (7.10)

regretwN the weighted regret, defined in Lemma 7.3.1

{wn} the sequence of weights used to define regretwN ; we set wn = np

161

7.B Missing Proofs

7.B.1 Proof of Section 7.3.1

Lemma 7.3.1. For arbitrary sequences {πn ∈ Π}Nn=1 and {wn > 0}Nn=1, it holds that

E

[
N∑

n=1

wnJ̄(πn)

w1:N

]
≤ J̄(π?) + Cπ?

(
εwΠ + E

[
regretwN(Π)

w1:N

])

where l̃n is an unbiased estimate of ln, regretwN(Π) := maxπ∈Π

∑N
n=1 wnl̃n(πn)−wnl̃n(π),

εwΠ is given in Definition 7.4.1, and the expectation is due to sampling l̃n.

Proof of Lemma 7.3.1. By inequality in (7.3) and definition of ln,

E

[
N∑

n=1

wn(J̄(πn)− J̄(π?))

]
≤ Cπ?E

[
N∑

n=1

wnln(πn)

]
= Cπ?E

[
N∑

n=1

wnl̃n(πn)

]
,

where the last equality is due to πn is non-anticipating. This implies that

E

[
N∑

n=1

wnJ̄(πn)

]
≤ w1:N J̄(π?) + Cπ?E

[
N∑

n=1

wnl̃n(πn)

]

= w1:N J̄(π?) + Cπ?E

[
min
π∈Π

N∑

n=1

wnl̃n(π) + regretwN(Π)

]

The statement is obtained by dividing both sides by w1:N and by the definition of εwF̂ . �

7.B.2 Proof of Section 7.4.2

Theorem 7.4.1. For MOBIL-VI with p > 1, R(p) ≤ Cp

(
pG2

h

2(p−1)µh

1
N2 +

εw
F̂
pN

)
, where Cp =

(p+1)2ep/N

2µl
.

Proof. We prove a more general version of Theorem 7.4.1 below. �

162

Theorem 7.B.1. For MOBIL-VI,

R(p) ≤

G2
h

4µlµh

p(p+1)2e
p
N

p−1
1
N2 + 1

2µl

(p+1)2e
p
N

p
1
N
εwF̂ , for p > 1

G2
h

µlµh

ln(N+1)
N2 + 2

µl

1
N
εwF̂ , for p = 1

G2
h

4µlµh
(p+ 1)2 O(1)

Np+1 + 1
2µl

(p+1)2e
p
N

p
1
N2 ε

w
F̂ , for 0 < p < 1

G2
h

2µlµh

1
N

+ 1
2µl

lnN+1
N

εwF̂ , for p = 0

Proof. The solution πn+1 of the VI problem (7.8) satisfies the optimality condition of

πn+1 = arg min
π∈Π

n∑

m=1

wmlm(πn) + wn+1F̂n+1(πn+1, π).

Therefore, we can derive the bound ofR(p)12 as

R(p) =
regretwN(Π)

w1:N

≤ p+ 1

2µlw1:N

N∑

n=1

np−1‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2
∗ (Lemma 7.G.5)

≤ p+ 1

2µlw1:N

N∑

n=1

np−1hn(πn) (Property of hn) (7.11)

Next, we treat np−1hn as the per-round loss for an online learning problem, and utilize

Lemma 7.G.6 to upper bound the accumulated cost. In particular, we setwn in Lemma 7.G.6

to np−1 and ζn to hn. Finally, w1:N =
∑N

n=1 n
p can be lower bounded using Lemma 7.G.1.

Hence, for p > 1, we have

R(p) ≤ p+ 1

2µl

p+ 1

Np+1

(
G2
h

2µh

p

p− 1
(N + 1)p−1 +

1

p
(N + 1)pεwF̂

)

=
G2
h

4µlµh

p(p+ 1)2

p− 1

(
N + 1

N

)p−1
1

N2
+

1

2µl

(p+ 1)2

p

(
N + 1

N

)p
1

N
εwF̂

≤ G2
h

4µlµh

p(p+ 1)2e
p
N

p− 1

1

N2
+

1

2µl

(p+ 1)2e
p
N

p

1

N
εwF̂ ,

12The expectation ofR(p) is not required here because MOBIL-VI assumes the problem is deterministic.

163

where in the last inequality we utilize the fact that 1 + x ≤ ex,∀x ∈ R. Cases other than

p > 1 follow from straightforward algebraic simplification. �

Proposition 7.4.1. For MOBIL-VI with p = 0,R(0) ≤ G2
l

2µlµh

1
N

+
εw
F̂

2µl

lnN+1
N

.

Proof. Proved in Theorem 7.B.1 by setting p = 0. �

7.B.3 Proof of Section 7.4.3

Lemma 10.F.3 (Stronger FTL Lemma). Let x?n ∈ arg minx∈X ζ1:n(x). For any sequence

of decisions {xn} and losses {ζn}, regretN(X) =
∑N

n=1 ζ1:n(xn) − ζ1:n(x?n) −∆n, where

∆n+1 := ζ1:n(xn+1)− ζ1:n(x?n) ≥ 0.

Proof. The proof is based on observing ζn = ζ1:n − ζ1:n−1 and ζ1:N as a telescoping sum:

regretN(X) =
N∑

n=1

ζn(xn)− ζ1:N(x?N)

=
N∑

n=1

(ζ1:n(xn)− ζ1:n−1(xn))−
N∑

n=1

(
ζ1:n(x?n)− ζ1:n−1(x?n−1)

)

=
N∑

n=1

(ζ1:n(xn)− ζ1:n(x?n)−∆n) ,

where for notation simplicity we define ζ1:0 ≡ 0. �

Lemma 7.4.2. regretwNp(Π) ≤ p+1
2αµl

∑N
n=1 n

p−1‖gn− ĝn‖2
∗− αµl

2(p+1)

∑N
n=1(n− 1)p+1‖πn−

π̂n‖2.

Proof. We utilize our new Lemma 10.F.3. First, we bound
∑N

n=1 ζ1:n(πn)−ζ1:n(π?n), where

π?n = arg minπ∈Π ζ1:n(π). We achieve this by Lemma 7.G.4. Let ζn = wnl̄n = wn(〈gn, π〉+

rn(π)). To use Lemma 7.G.4, we note that because rn is centered at πn, πn+1 satisfies

πn+1 = arg min
π∈Π

n∑

m=1

wml̄(π) + wn+1 〈ĝn+1, π〉

= arg min
π∈Π

n∑

m=1

wml̄(π)︸ ︷︷ ︸
ζn(π)

+ wn+1 〈ĝn+1, π〉+ wn+1rn+1(πn+1)︸ ︷︷ ︸
vn+1(π)

164

Because by definition ζn is wnαµl-strongly convex, it follows from Lemma 7.G.4 and

Lemma 7.G.1 that

N∑

n=1

ζ1:n(πn)− ζ1:n(π?n) ≤ 1

αµl

N∑

n=1

w2
n

w1:n

‖ĝn − gn‖2
∗ ≤

p+ 1

2αµl

N∑

n=1

np−1‖gn − ĝn‖2
∗.

Next, we bound ∆n+1 as follows

∆n+1 = ζ1:n(πn+1)− ζ1:n(π?n)

≥ 〈∇ζ1:n(π?n), πn+1 − π?n〉+
αµlw1:n

2
‖πn+1 − π?n‖2 (Strong convexity)

≥ αµlw1:n

2
‖πn+1 − π?n‖2 (Optimality condition of π∗n)

=
αµlw1:n

2
‖πn+1 − π̂n+1‖2 (Definition of π̂n+1)

≥ αµln
p+1

2(p+ 1)
‖πn+1 − π̂n+1‖2. (Definition of wn and Lemma 7.G.1)

Combining these results proves the bound. �

Lemma 7.4.3. E[‖gn − ĝn‖2
∗] ≤ 4(σ2

g + σ2
ĝ + L2E[‖πn − π̂n‖2] + E[h̃n(F̂n)]).

Proof. By Lemma 7.G.3, we have

E
[
‖gn − ĝn‖2

∗
]
≤ 4
(
E
[
‖gn −∇2F (πn, πn)‖2

∗
]

+ E
[
‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2

∗
]
+

E
[
‖∇2F̂n(πn, πn)−∇2F̂n(π̂n, π̂n)‖2

∗
]

+ E
[
‖∇2F̂n(π̂n, π̂n)− ĝn‖2

∗
])
.

Because the random quantities are generated in order . . . , πn, gn, F̂n+1, π̂n+1, ĝn+1, πn+1, gn+1 . . . ,

by the variance assumption (Assumption 7.4.3), the first and fourth terms can be bounded

by

E
[
‖gn −∇2F (πn, πn)‖2

∗
]

= Eπn
[
Egn [‖gn −∇2F (πn, πn)‖2

∗|πn]
]
≤ σ2

g ,

E
[
‖∇2F̂n(π̂n, π̂n)− ĝn‖2

∗
]

= EF̂n,π̂n
[
Eĝn [‖∇2F̂n(π̂n, π̂n)− ĝn‖2

∗
∣∣π̂n, F̂n]

]
≤ σ2

ĝ .

165

And, for the second term, we have

E
[
‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2

∗
]
≤ E

[
hn(F̂n)

]
= E

[
h̃n(F̂n)

]

Furthermore, due to the Lipschitz assumption of ∇2F̂n+1 (Assumption 7.4.1), the third

term is bounded by

E
[
‖∇2F̂n(πn, πn)−∇2F̂n(π̂n, π̂n)‖2

∗
]
≤ L2E

[
‖πn − π̂n‖2

]
.

Combing the bounds above, we conclude the lemma.

�

Theorem 7.4.2. For MOBIL-PROX with p > 1 and αn = α ∈ (0, 1], it satisfies

R(p) ≤ (p+ 1)2e
p
N

αµl

(
G2
h

µh

p

p− 1

1

N2
+

2

p

σ2
g + σ2

ĝ + εwF̂
N

)
+

(p+ 1)νp
Np+1

,

where νp = O(1) and nceil = d2e
1
2 (p+1)LGl
αµl

e.

Proof. We prove a more general version of Theorem 7.4.1 below. �

Theorem 7.B.2. For MOBIL-PROX,

R(p) ≤ 4

α
RMOBIL-VI(p) + εwΠ + σ(p)

(
σ2
g + σ2

ĝ

)
+

(p+ 1)νp
Np+1

,

σ(p) ≤

2
αµl

(p+1)2e
p
N

p
1
N
, if p > 0

2
αµl

lnN+1
N

, if p = 0

ν(p) = 2e

(
(p+ 1)LGl

αµl

)2 nceil∑

n=2

n2p−2 − eG2
l

2

nceil∑

n=2

(n− 1)p+1np−1 = O(1),

nceil = d2e
1
2 (p+ 1)LGl

αµl
e

where RMOBIL-VI(p) is the upper bound of the average regret R(p) in Theorem 7.B.1, and

166

the expectation is due to sampling l̃n and h̃n.

Proof. RecallR(p) = E[
regretwN (Π)

w1:N
], where

regretwN(Π) =
N∑

n=1

wnl̃n(πn)−min
π∈Π

N∑

n=1

wnl̃n(π).

Define l̄n(π) := 〈gn, π〉+ rn(π). Since l̃n is µl-strongly convex, rn is αµl-strongly convex,

and r(πn) = 0, l̄n satisfies

l̃n(πn)− l̃n(π) ≤ l̄n(πn)− l̄n(π), ∀π ∈ Π.

which impliesR(p) ≤ E[
regretw;path

N (Π)

w1:N
], where

regretw;path
N (Π) :=

N∑

n=1

wnl̄n(πn)−min
π∈Π

N∑

n=1

wnl̄n(π)

is regret of an online learning problem with per-round loss wnl̄n.

upper bounds regretw;path
N (Π) by using Stronger FTL lemma (Lemma 10.F.3). Since

the second term in Lemma 7.4.2 is negative, which is in our favor, we just need to upper

bound the expectation of the first item. Using triangular inequality, we proceed to bound

E
[
‖gn − ĝn‖2

∗
]
, which measures how well we are able to predict the next per-round loss

using the model. By substituting the result of Lemma 7.4.3 into Lemma 7.4.2, we see

E
[
regretw;path

N (Π)
]
≤ E

[N∑

n=1

ρn‖πn − π̂n‖2
]

+

(
2(p+ 1)

αµl

N∑

n=1

np−1

)
(
σ2
g + σ2

ĝ

)
+

2(p+ 1)

αµl
E
[N∑

n=1

np−1h̃n(F̂n)
]

(7.12)

where ρn = 2(p+1)L2

αµl
np−1 − αµl

2(p+1)
(n− 1)p+1. When n is large enough, ρn ≤ 0, and hence

167

the first term of (7.12) is O(1). To be more precise, ρn ≤ 0 if

2(p+ 1)L2

αµl
np−1 ≤ αµl

2(p+ 1)
(n− 1)p+1

⇐⇒ (n− 1)2 ≥
(

2(p+ 1)LGl

αµl

)2(
n

n− 1

)p−1

⇐= (n− 1)2 ≥
(

2(p+ 1)LGl

αµl

)2

e
p−1
n−1

⇐= (n− 1)2 ≥
(

2(p+ 1)LGl

αµl

)2

e (Assume n ≥ p)

⇐= n ≥ 2e
1
2 (p+ 1)LGl

αµl
+ 1

Therefore, we just need to bound the first nceil = d2e
1
2 (p+1)LGl
αµl

e terms of ρn‖πn − π̂n‖2.

Here we use a basic fact of convex analysis in order to bound ‖πn − π̂n‖2

Lemma 7.B.1. Let X be a compact and convex set and let f, g be convex functions. Sup-

pose f+g is µ-strongly convex. Let x1 ∈ arg minx∈X f(x) and x2 = arg minx∈X (f(x) + g(x)).

Then ‖x1 − x2‖ ≤ ‖∇g(x1)‖∗
µ

.

Proof of Lemma 7.B.1. Let h = f+g. Because h is µ-strongly convex and x2 = arg minx∈X h(x)

µ

2
‖x1 − x2‖2 ≤ h(x1)− h(x2) ≤ 〈∇h(x1), x1 − x2〉 −

µ

2
‖x1 − x2‖2

≤ 〈∇g(x1), x1 − x2〉 −
µ

2
‖x1 − x2‖2

This implies µ‖x1 − x2‖2 ≤ 〈∇g(x1), x1 − x2〉 ≤ ‖∇g(x1)‖∗‖x1 − x2‖. Dividing both

sides by ‖x1 − x2‖ concludes the lemma. �

168

Utilizing Lemma 7.B.1 and the definitions of πn and π̂n, we have, for n ≥ 2,

‖πn − π̂n‖2 ≤ 1

αµlw1:n−1

‖wnĝn‖2
∗

≤ (p+ 1)G2
l

αµl

n2p

(n− 1)p+1
(Bounded ĝn and Lemma 7.G.1)

≤ (p+ 1)e
p+1
n−1G2

l

αµl
np−1 (1 + x ≤ ex)

≤ e(p+ 1)G2
l

αµl
np−1 (Assume n ≥ p+ 2).

and therefore, after assuming initialization π1 = π̂1, we have the bound

nceil∑

n=2

ρn‖πn − π̂n‖2 ≤ 2e

(
(p+ 1)LGl

αµl

)2 nceil∑

n=2

n2p−2 − eG2
l

2

nceil∑

n=2

(n− 1)p+1np−1 (7.13)

For the third term of (7.12), we can tie it back to the bound ofR(p) of MOBIL-VI, which

we denoteRMOBIL-VI(p). More concretely, recall that for MOBIL-VI in (7.11), we have

R(p) ≤ p+ 1

2µlw1:N

N∑

n=1

np−1hn(πn),

and we derived the upper bound (RMOBIL-VI(p)) for the RHS term. By observing that the

third term of (7.12) after averaging is

2(p+ 1)

αµlw1:N

E
[N∑

n=1

np−1h̃n(F̂n)
]

= E
[4

α

(
p+ 1

2µlw1:N

N∑

n=1

np−1h̃n(F̂n)

)]

≤ 4

α
E
[
RMOBIL-VI(p)

]

=
4

α
RMOBIL-VI(p).

(7.14)

169

Dividing (7.12) by w1:N , and plugging in (7.13), (7.14), we see

R(p) ≤ E[regretw;path
N (Π)/w1:N]

≤ 4

α
RMOBIL-VI(p) +

1

w1:N

(
νp +

(
2(p+ 1)

αµl

N∑

n=1

np−1

)
(
σ2
g + σ2

ĝ

)
)

where νp = 2e
(

(p+1)LGl
αµl

)2∑nceil

n=2 n
2p−2− eG2

l

2

∑nceil

n=2(n−1)p+1np−1, nceil = d2e
1
2 (p+1)LGl
αµl

e.

Finally, we consider the case p > 1 as stated in Theorem 7.4.2

R(p) ≤ 4

α

(
G2
h

4µlµh

p(p+ 1)2e
p
N

p− 1

1

N2
+

1

2µl

(p+ 1)2e
p
N

p

1

N
εwF̂

)

+
p+ 1

Np+1

(
νp +

(
2(p+ 1)

αµl

np

p

)(
σ2
g + σ2

ĝ

))

≤ (p+ 1)2e
p
N

αµl

(
G2
h

µh

p

p− 1

1

N2
+

2

p

σ2
g + σ2

ĝ + εwF̂
N

)
+

(p+ 1)νp
Np+1

,

where νp = 2e
(

(p+1)LGl
αµl

)2 (
(nceil+1)2p−1

2p−1
− 1
)
− eG2

l

2
(nceil−1)2p+1

2p+1
, nceil = d2e

1
2 (p+1)LGl
αµl

e. �

7.C Model Learning through Learning Dynamics Models

So far we have stated model learning rather abstractly, which only requires hn(F̂) to be

an upper bound of ‖∇2F (πn, πn) − ∇2F̂ (πn, πn)‖2
∗. Now we give a particular example

of hn and h̃n when the predictive model is constructed as a simulator with online learned

dynamics models. Specifically, we consider learning a transition modelM ∈M online that

induces a bivariate function F̂ , whereM is the class of transition models. Let DKL denote

the KL divergence and let dπnM be the average state distribution (cf. (10.1)) generated

by running policy πn under transition model M . We define, for Mn ∈ M, F̂n(π′, π) :=

Edπ′ (Mn)[D(π?||π)]. We show the error of F̂n can be bounded by the KL-divergence error

of Mn.

Lemma 7.C.1. Assume ∇D(π?||·) is LD-Lipschitz continuous with respect to ‖ · ‖∗. It

170

holds that ‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2
∗ ≤ 2−1(LDDiam(S))2DKL(dπn||dπn(Mn)).

Directly minimizing the marginal KL-divergence DKL(dπn , dπn(Mn)) is a nonconvex

problem and requires backpropagation through time. To make the problem simpler, we

further upper bound it in terms of the KL divergence between the true and the modeled

transition probabilities.

To make the problem concrete, here we consider T -horizon RL problems.

Proposition 7.C.1. For a T -horizon problem with dynamics P , let Mn be the modeled dy-

namics. Then ∃C > 0 s.t ‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2
∗ ≤ C

T

∑T−1
t=0 (T−t)Edπnt Eπ [DKL(P ||Mn)].

Therefore, we can simply takes hn as the upper bound in Proposition 7.C.1, and h̃ as its

empirical approximation by sampling state-action transition triples through running policy

πn in the real environment. This construction agrees with the causal relationship assumed

in the Section 7.3.2.

7.C.1 Proofs

Lemma 7.C.1. Assume ∇D(π?||·) is LD-Lipschitz continuous with respect to ‖ · ‖∗. It

holds that ‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2
∗ ≤ 2−1(LDDiam(S))2DKL(dπn||dπn(Mn)).

Proof. First, we use the definition of dual norm

‖∇2F̂ (πn, πn)−∇2F (πn, πn)‖∗ = max
δ:‖δ‖≤1

(Edπn − Edπn (Mn)) [〈δ,∇D(π?||πn)〉] (7.15)

and then we show that 〈δ,∇D(π?||πn)〉 is LD-Lipschitz continuous: for π, π′ ∈ Π,

〈δ,∇D(π?||π)−∇D(π?||π′)〉 ≤ ‖δ‖‖∇D(π?||π)−∇D(π?||π′)‖∗ ≤ LD‖π − π′‖

Note in the above equations∇ is with respect to D(π?||·).

Next we bound the right hand side of (7.15) using Wasserstein distance DW , which is

defined as follows (Gibbs and Su, 2002): for two probability distributions p and q defined

171

on a metric space DW (p, q) := supf :Lip(f(·))≤1 Ex∼p[f(x)]− Ex∼q[f(x)].

Using the property that 〈δ,∇D(π?||πn)〉 is LD-Lipschitz continuous, we can derive

‖∇2F̂ (πn, πn)−∇2F (πn, πn)‖∗ ≤ LDDW (dπn , d̂πn) ≤ LDDiam(S)√
2

√
DKL(dπn||d̂nπn)

in which the last inequality is due to the relationship between DKL and DW (Gibbs and Su,

2002). �

Proposition 7.C.1. For a T -horizon problem with dynamics P , let Mn be the modeled dy-

namics. Then ∃C > 0 s.t ‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2
∗ ≤ C

T

∑T−1
t=0 (T−t)Edπnt Eπ [DKL(P ||Mn)].

Proof. Let ρπ,t be the state-action trajectory up to time t generated by running policy π,

and let ρ̂π,t be that of the dynamics model. To prove the result, we use a simple fact:

Lemma 7.C.2. Let p and q be two distributions.

KL[p(x, y)||q(x, y)] = KL[p(x)||q(x)] + Ep(x)KL[p(y|x)||q(y|x)]

Then the rest follows from Lemma 7.C.1 and the following inequality.

DKL(dπn||d̂πn) ≤ 1

T

T−1∑

t=0

DKL(ρπn,t||ρ̂πn,t)

=
1

T

T−1∑

t=0

Eρπn,t

[
t−1∑

τ=0

ln
pM(sτ+1|sτ , aτ)
pM̂(sτ+1|sτ , aτ)

]

=
1

T

T−1∑

t=0

(T − t)Edπt Eπ [DKL(pM ||pM̂)] �

7.D Relaxation of Strong Convexity Assumption

The strong convexity assumption (Assumption 7.4.2) can be relaxed to just convexity. We

focus on studying the effect of l̃n and/or h̃n being just convex on R(p) in Theorem 7.2.1

and Theorem 7.4.2 in big-O notation. Suggested by Lemma 10.F.2, when strong convexity

172

is not assumed, additional regularization has to be added in order to keep the stabilization

terms ζ1:n(xn)− ζ1:n(x?n) small.

Lemma 7.D.1 (FTRL with prediction). Let ζn be convex with bounded gradient and let

X be a compact set. In round n, let regularization rn be µn-strongly convex for some

µn ≥ 0 such that rn(xn) = 0 and xn ∈ arg minX rn(x), and let vn+1 be a (non)convex

function such that
∑n

m=1wm (ζn + rn) + wn+1vn+1 is convex. Suppose that learner plays

Follow-The-Regularized-Leader (FTRL) with prediction, i.e.

xn+1 = arg min
x∈X

n∑

m=1

(wm (ζn + rn) + wn+1vn+1) (x)

and suppose that
∑n

m=1wmµm = Ω(nk) > 0 and
∑n

m=1wmrn(x) ≤ O(nk) for all x ∈ X

and some k ≥ 0. Then, for wn = np,

regretwN(X) = O(Nk) +
N∑

n=1

O
(
n2p−k) ‖∇ζn(xn)−∇vn(xn)‖2

∗

Proof. The regret of the online learning problem with convex per-round loss wnζn can be

bounded by the regret of the online learning problem with strongly convex per-round loss

wn (ζn + rn) as follows. Let x?n ∈ arg minx∈X
∑N

n=1wnζn(x).

regretwN(X) =
N∑

n=1

wnζn(xn)−min
x∈X

N∑

n=1

wnζn(x)

=
N∑

n=1

wn (ζn(xn) + rn(xn))−
N∑

n=1

wn (ζn(x?n) + rn(x?n)) +
N∑

n=1

wnrn(x?n)

≤
(

N∑

n=1

wn (ζn(xn) + rn(xn))−min
x∈X

N∑

n=1

wn (ζn(x) + rn(x))

)
+O(Nk).

Since the first term is the regret of the online learning problem with strongly convex per-

round loss wn (ζn + rn), and xn+1 = arg minX (
∑n

m=1wm (ζn + rn) + wn+1vn+1), we can

bound the first term via Lemma 7.G.5 by setting wn = np and
∑n

m=1wmµm = O(nk). �

173

The lemma below is a corollary of Lemma 7.D.1.

Lemma 7.D.2 (FTRL). Under the same condition in Lemma 7.D.1, suppose that learner

plays FTRL, i.e. xn+1 = arg minX
∑n

m=1wm (ζn + rn). Then, for wn = np with p > −1
2
,

choose {rn} such that
∑n

m=1 wmµm = Ω(np+1/2) > 0 and it achieves regretwN(X) =

O(Np+ 1
2) and regretwN (X)

w1:N
= O(N−1/2).

Proof. Let
∑n

m=1wmµm = Θ(nk) > 0 for some k ≥ 0. First, if 2p − k > −1, then we

have

regretN(X) ≤ O(Nk) +
N∑

n=1

O
(
n2p−k) ‖∇ζn(xn)‖2

∗ (Lemma 7.D.1)

≤ O(Nk) +
N∑

n=1

O
(
n2p−k) (ζn has bounded gradient)

≤ O(Nk) +O
(
N2p−k+1

)
(Lemma 7.G.1)

In order to have the best rate, we balance the two terms O(Nk) and O
(
N2p−k+1

)

k = 2p− k + 1 =⇒ k = p+
1

2
,

That is, p > −1
2
, because 2p − (p + 1

2
) > −1. This setting achieves regret in O(Np+ 1

2).

Because w1:N = O(Np+1), the average regret is in O(N−
1
2). �

With these lemmas, we are ready to derive the upper bounds of R(p) when either l̃n or

h̃n is just convex, with some minor modification of Algorithm 2. For example, when l̃n is

only convex, rn will not be αµl strongly; instead we will concern the strongly convexity

of
∑n

m=1wnrn. Similarly, if h̃n is only convex, the model cannot be updated by FTL as in

line 5 of Algorithm 2; instead it has to be updated by FTRL.

In the following, we will derive the rate for MOBIL-VI (i.e. l̃n = ln and h̃ = h) and

assume εwF̂ = 0 for simplicity. The same rate applies to the MOBIL-PROX when there is

174

no noise. To see this, for example, if l̃n is only convex, we can treat rn as an additional

regularization and we can see

R(p) = E
[regretwN(Π)

w1:N

]
≤ 1

w1:N

E
[N∑

n=1

wnl̄n(πn)−min
π∈Π

N∑

n=1

wnl̄n(π)

︸ ︷︷ ︸
regretw;path

N (Π)

+
N∑

n=1

wnrn(π?N)
]

where π?N = arg minπ∈Π

∑N
n=1 l̃n(π). As in the proof of Theorem 7.4.2, regretw;path

N is

decomposed into several terms: the h̃n part in conjunction with
∑N

n=1wnrn(π?N) constitute

the sameR(p) part for MOBIL-VI, while other terms in regretw;path
N are kept the same.

Strongly convex l̃n and convex h̃n Here we assume p > 1
2
. Under this condition, we

have

regretwN(Π) =
N∑

n=1

O(np−1)h̃n(F̂n) (Lemma 7.G.5)

= O
(
Np− 1

2

)
(Lemma 7.D.2)

Because w1:N = Ω(Np+1), the average regretR(p) = O(N−3/2).

Convex l̃n and strongly convex h̃n Here we assume p > 0. Suppose r1:n is Θ(nk)-

strongly convex and 2p− k > 0. Under this condition, we have

regretwN(Π) = O(Nk) +
N∑

n=1

O
(
n2p−k) h̃n(F̂n+1) (Lemma 7.D.1)

= O
(
Nk
)

+O
(
N2p−k) . (Lemma 7.G.6)

We balance the two terms and arrive at

k = 2p− k =⇒ k = p,

175

which satisfies the condition 2p− k > 0, if p > 0. Because w1:N = Ω(Np+1), the average

regretR(p) = O(N−1).

Convex l̃n and convex h̃n Here we assume p ≥ 0. Suppose r1:n is Θ(nk)-strongly convex

and 2p− k > −1
2
. Under this condition, we have

regretwN(Π) = O(Nk) +
N∑

n=1

O
(
n2p−k) h̃n(F̂n+1) (Lemma 7.D.1)

= O
(
Nk
)

+O
(
N2p−k+ 1

2

)
(Lemma 7.D.1)

We balance the two terms and see

k = 2p− k +
1

2
=⇒ k = p+

1

4
,

which satisfies the condition 2p−k > −1
2
, if p ≥ 0. Because w1:N = Ω(Np+1), the average

regretR(p) = O(N−3/4).

Convex ln without model Setting p = 0 in Lemma 7.D.2, we have regretN(Π) =

O(N
1
2).

Therefore, the average regret becomes O(N−
1
2).

Stochastic problems The above rates assume that there is no noise in the gradient and

the model is realizable. If the general case, it should be selected k = p + 1 for strongly

convex l̃n and k = p + 1
2

for convex l̃n. The convergence rate will become O(
εF̂+σ2

g+σĝ2

N
)

and O(
εF̂+σ2

g+σĝ2√
N

), respectively.

7.E Connection with Stochastic Mirror-Prox

In this section, we discuss how MOBIL-PROX generalizes stochastic MIRROR-PROX by Ju-

ditsky, Nemirovski, and Tauvel (2011) and Nemirovski (2004) and how the new Stronger

176

FTL Lemma 10.F.3 provides more constructive and flexible directions to design new algo-

rithms.

7.E.1 Variational Inequality Problems

MIRROR-PROX (Nemirovski, 2004) was first proposed to solve VI problems with mono-

tone operators, which is a unified framework of “convex-like” problems, including con-

vex optimization, convex-concave saddle-point problems, convex multi-player games, and

equilibrium problems, etc (see (Facchinei and Pang, 2007) for a tutorial). Here we give the

definition of VI problems and review some of its basic properties.

Definition 7.E.1. Let X be a convex subset in an Euclidean space E and let F : X → E be

an operator, the VI problem, denoted as VI(X , F), is to find a vector x∗ ∈ X such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ X .

The set of solutions to this problem is denoted as SOL(X , F)

It can be shown that, when X is also compact, then VI(X , F) admits at least one solu-

tion (Facchinei and Pang, 2007). For example, if F (x) = ∇f(x) for some function f , then

solving VI(X , F) is equivalent to finding stationary points.

VI problems are, in general, more difficult than optimization. To make the problem

more structured, we will consider the problems equipped with some general convex struc-

ture, which we define below. When F (x) = ∇f(x) for some convex function f , the below

definitions agree with their convex counterparts.

Definition 7.E.2. An operator F : X → E is called

1. pseudo-monotone on X if for all x, y ∈ X ,

〈F (y), x− y〉 ≥ 0 =⇒ 〈F (x), x− y〉 ≥ 0

177

2. monotone on X if for all x, y ∈ X ,

〈F (x)− F (y), x− y〉 ≥ 0

3. strictly monotone on X if for all x, y ∈ X ,

〈F (x)− F (y), x− y〉 > 0

4. µ-strongly monotone on X if for all x, y ∈ X ,

〈F (x)− F (y), x− y〉 ≥ µ‖x− y‖2

A VI problem is a special case of general equilibrium problems (Bianchi and Schaible,

1996). Therefore, for a VI problem, we can also define its dual VI problem.

Definition 7.E.3. Given a VI problem VI(X , F), the dual VI problem, denoted as DVI(X , F),

is to find a vector x∗D ∈ X such that

〈F (x), x− x∗D〉 ≥ 0, ∀x ∈ X .

The set of solutions to this problem is denoted as DSOL(X , F).

The solution sets of the primal and the dual VI problems are connected as given in next

proposition, whose proof e.g. can be found in (Konnov and Schaible, 2000).

Proposition 7.E.1.

1. If F is pseudo-monotone, then SOL(X , F) ⊆ DSOL(X , F).

2. If F is continuous, then DSOL(X , F) ⊆ SOL(X , F).

178

However, unlike primal VI problems, a dual VI problem does not always have a so-

lution even if X is compact. To guarantee the existence of solution to DSOL(X , F) it

needs stronger structure, such as pseudo-monotonicity as shown in Proposition 7.E.1. Like

solving primal VI problems is related to finding local stationary points in optimization,

solving dual VI problems is related to finding global optima when F (x) = ∇f(x) for

some function f (Komlósi, 1999).

7.E.2 Stochastic Mirror-Prox

Stochastic MIRROR-PROX solves a monotone VI problem by indirectly finding a solution

to its dual VI problem using stochastic first-order oracles. This is feasible because of

Proposition 7.E.1. The way it works is as follows: given an initial condition x1 ∈ X ,

it initializes x̂1 = x1; at iteration n, it receives unbiased estimates gn and ĝn satisfying

E[gn] = F (xn) and E[ĝn] = F (x̂n) and then performs updates

xn+1 = Proxx̂n(γnĝn)

x̂n+1 = Proxx̂n(γngn+1)

(7.16)

where γn > 0 is the step size, and the proximal operator Prox is defined as

Proxy(g) = arg min
x∈X

〈g, x〉+Bω(x||y)

and Bω(x||y) = ω(x)− ω(y)− 〈∇ω(y), x− y〉 is the Bregman divergence with respect to

an α-strongly convex function ω. At the end, stochastic MIRROR-PROX outputs

x̄N =

∑N
n=1 γnxn
γ1:n

as the final decision.

For stochastic MIRROR-PROX, the accuracy of an candidate solution x is based on the

179

error

ERR(x) := max
y∈X
〈F (y), x− y〉 .

This choice of error follows from the optimality criterion of the dual VI problem in Defini-

tion 7.E.3. That is, ERR(x) ≤ 0 if and only if x ∈ DSOL(X , F). From Proposition 7.E.1,

we know that if the problem is pseudo-monotone, a dual solution is also a primal solution.

Furthermore, we can show an approximate dual solution is also an approximate primal

solution.

Let Ω2 = maxx,y∈X Bω(x||y). Now we recap the main theorem of (Juditsky, Ne-

mirovski, and Tauvel, 2011).13

Theorem 7.E.1. (Juditsky, Nemirovski, and Tauvel, 2011) Let F be monotone. Assume F

is L-Lipschitz continuous, i.e.

‖F (x)− F (y)‖∗ ≤ L‖x− y‖ ∀x, y ∈ X

and for all n, the sampled vectors are unbiased and have bounded variance, i.e.

E[gn] = F (xn), E[ĝn] = F (x̂n)

E[‖gn − F (xn)‖2
∗] ≤ σ2, E[‖ĝn − F (x̂n)‖2

∗] ≤ σ2

Then for γn = γ with 0 < γn ≤ α√
3L

, it satisfies that

E[ERR(x̄N)] ≤ 2αΩ2

Nγ
+

7γσ2

α

13Here simplify the condition they made by assuming F is Lipschitz continuous and gn and ĝn are unbi-
ased.

180

In particular, if γ = min{ α√
3L
, αΩ

√
2

7Nσ2}, then

E[ERR(x̄N)] ≤ max

{
7

2

Ω2L

α

1

N
,Ω

√
14σ2

N

}

If the problem is deterministic, the original bound of Nemirovski (2004) is as follows.

Theorem 7.E.2. (Nemirovski, 2004) Under the same assumption in Theorem 7.E.1, sup-

pose the problem is deterministic. For γ ≤ α√
2L

,

ERR(x̄N) ≤
√

2
Ω2L

α

1

N

Unlike the uniform scheme above, a recent analysis by Ho-Nguyen and Kılınç-Karzan

(2018) also provides a performance bound the weighted average version of MIRROR-PROX

when the problem is deterministic.

Theorem 7.E.3. (Ho-Nguyen and Kılınç-Karzan, 2018) Under the same assumption in

Theorem 7.E.1, suppose the problem is deterministic. Let {wn ≥ 0} be a sequence of

weights and let the step size to be γn = α
L

w1:n

maxm wm
.

ERR(x̄N) ≤ Ω2L

α

maxnwn
w1:N

Theorem 7.E.3 (withwn = w) tightens Theorem 7.E.1 and Theorem 7.E.2 by a constant

factor.

181

7.E.3 Connection with MOBIL-PROX

To relate stochastic MIRROR-PROX and MOBIL-PROX, we first rename the variables

in (7.16) by setting x̂n+1 := x̂n and γn+1 := γn

xn+1 = Proxx̂n(γnĝn)

x̂n+1 = Proxx̂n(γngn+1)

⇐⇒
xn+1 = Proxx̂n+1(γn+1ĝn+1)

x̂n+2 = Proxx̂n+1(γn+1gn+1)

and then reverse the order of updates and write them as

x̂n+1 = Px̂n(γngn)

xn+1 = Px̂n+1(γn+1ĝn+1)

(7.17)

Now we will show that the update in (7.17) is a special case of (7.9), which we recall

below

π̂n+1 = arg min
π∈Π

n∑

m=1

wm
(
〈gm, π〉+ rm(π)

)
,

πn+1 = arg min
π∈Π

n∑

m=1

wm
(
〈gm, π〉+ rm(π)

)
+ wn+1 〈ĝn+1, π〉 ,

(7.9)

That is, we will show that xn = πn and x̂ = π̂n under certain setting.

Proposition 7.E.2. Suppose wn = γn, F̂n = F , r1(π) = Bω(π||π1) and rn = 0 for n > 1.

If Π = X is unconstrained, then xn = πn and x̂n = π̂n as defined in (7.17) and (7.9).

Proof. We prove the assertion by induction. For n = 1, it is trivial, since π1 = π̂1 = x1 =

x̂1. Suppose it is true for n. We show it also holds for n+ 1.

182

We first show x̂n+1 = π̂n+1. By the optimality condition of π̂n+1, it holds that

0 =
n∑

m=1

wmgm +∇ω(π̂n+1)−∇ω(π1)

= (wngn +∇ω(π̂n+1)−∇ω(π̂n)) +

(
n−1∑

m=1

wmgm +∇ω(π̂n)−∇ω(π1)

)

= wngn +∇ω(π̂n+1)−∇ω(π̂n)

where the last equality is by the optimality condition of π̂n. This is exactly the optimality

condition of x̂n+1 given in (7.17), as x̂n = π̂n by induction hypothesis and wn = γn.

Finally, because Prox is single-valued, it implies x̂n+1 = π̂n+1.

Next we show that πn+1 = xn+1. By optimality condition of πn+1, it holds that

0 = wn+1ĝn+1 +
n∑

m=1

wmgm +∇ω(πn+1)−∇ω(π1)

= (wn+1ĝn+1 +∇ω(πn+1)−∇ω(π̂n+1)) +

(
n∑

m=1

wmgm +∇ω(π̂n+1)−∇ω(π1)

)

= wn+1ĝn+1 +∇ω(πn+1)−∇ω(π̂n+1)

This is the optimality condition also for xn+1, since we have shown that π̂n+1 = x̂n+1. The

rest of the argument follows similarly as above. �

In other words, stochastic MIRROR-PROX is a special case of MOBIL-PROX, when

F̂n = F (i.e. the update of πn also queries the environment not the simulator) and the

regularization is constant. The condition that X and Π are unconstrained is necessary to

establish the exact equivalence between Prox-based updates and FTL-based updates. This

is a known property in the previous studies on the equivalence between lazy mirror descent

and FTRL (McMahan, 2017). Therefore, when F̂n = F , we can view MOBIL-PROX

as a lazy version of MIRROR-PROX. It has been empirical observed the FT(R)L version

sometimes empirically perform better than the Prox version (McMahan, 2017).

183

With the connection established by Proposition 7.E.2, we can use a minor modification

of the strategy used in Theorem 7.4.2 to prove the performance of MOBIL-PROX when

solving VI problems. To show the simplicity of the FTL-style proof compared with the

algebraic proof of Juditsky, Nemirovski, and Tauvel (2011), below we will prove from

scratch but only using the new Stronger FTL Lemma (Lemma 10.F.3).

To do so, we introduce a lemma to relate expected regret and ERR(x̄N).

Lemma 7.E.1. Let F be a monotone operator. For any {xn ∈ X}Nn=1 and {wn ≥ 0},

E[ERR(x̄N)] ≤ E

[
max
x∈X

1

w1:N

N∑

n=1

wn 〈F (xn), xn − x〉
]

where x̄N =
∑N
n=1 wnxn
w1:n

.

Proof. Let x? ∈ arg maxx∈X 〈F (x), x̄N − x〉. By monotonicity, for all xn, 〈F (x?), xn − x?〉 ≤

〈F (xn), xn − x?〉. and therefore

E[ERR(x̄N)] = E

[
1

w1:N

N∑

n=1

wn 〈F (x?), xn − x?〉
]

≤ E

[
1

w1:N

N∑

n=1

wn 〈F (xn), xn − x?〉
]
≤ E

[
max
x∈X

1

w1:N

N∑

n=1

wn 〈F (xn), xn − x〉
]

�

Theorem 7.E.4. Under the same assumption as in Theorem 7.E.1. Suppose wn = np and

rn(x) = βnBω(x||xn), where βn is selected such that
∑N

n=1wnβn = 1
η
nk for some k ≥ 0

and η > 0. If k > p, then

E[ERR(x̄N)] ≤ 1

w1:N

(
αΩ2

η
Nk +

3σ2η

α

N∑

n=1

n2p−k

)
+
O(1)

w1:N

184

Proof. To simplify the notation, define ζn(x) = wn(〈F (xn), x〉+ rn(x)) and let

regretwN(X) =
N∑

n=1

wn 〈F (xn), xn〉 −min
x∈X

N∑

n=1

wn 〈F (xn), x〉

Rw(X) =
N∑

n=1

ζn(xn)−min
x∈X

N∑

n=1

ζn(x)

By this definition, it holds that

regretwN(X) ≤ Rw(X) + max
x∈X

N∑

n=1

wnrn(x)

In the following, we bound the two terms in the upper bound above. First, by applying

Stronger FTL Lemma (Lemma 10.F.3) with ζn and we can show that

Rw(X) ≤
N∑

n=1

ζ1:n(xn)− ζ1:n(x?n)−∆n

≤
N∑

n=1

η

2α
n2p−k‖gn − ĝn‖2

∗ −
α(n− 1)k−1

2η
‖xn − x̂n‖2

where x?n := arg maxx∈X ζ1:n(x). Because by Lemma 7.G.3 and Lipschitz continuity of F ,

it holds

‖gn − ĝn‖2
∗ ≤ 3(L2‖xn − x̂n‖2 + 2σ2) (7.18)

Therefore, we can bound

Rw(X) ≤
N∑

n=1

(
3

2

L2η

α
n2p−k − α

2η
(n− 1)k

)
‖xn − x̂n‖2 +

3σ2η

α

N∑

n=1

n2p−k (7.19)

If k > p, then the first term above is O(1) independent of N . On the other hand,

max
x∈X

N∑

n=1

wnrn(x) ≤ αΩ2

η
Nk (7.20)

185

Combining the two bounds and Lemma 7.E.1, i.e. E[ERR(x̄N)] ≤ E
[

regretwN (X)

w1:N

]
con-

cludes the proof. �

Deterministic Problems For deterministic problems, we specialize the proof Theorem 7.E.4

gives. We set k = p = 0, x1 = arg minx∈X ω(x), which removes the 2 factor in (7.20), and

modify 3 to 1 in (7.18) (because the problem is deterministic). By recovering the constant

in the proof, we can show that

E[ERR(x̄N)] ≤ 1

N

(
αΩ2

η
+

N∑

n=1

(
1

2

L2η

α
− α

2η

)
‖xn − x̂n‖2

)

Suppose . We choose η to make the second term non-positive, i.e.

1

2

L2η

α
− α

2η
≤ 0 ⇐= η ≤ α

L

and the error bound becomes

E[ERR(x̄N)] ≤ LΩ2

N

This bound and the condition on η matches that in (Ho-Nguyen and Kılınç-Karzan, 2018).

Stochastic Problems For stochastic problems, we use the condition specified in Theo-

rem 7.E.4. Suppose 2p − k > −1. To balance the second term in (7.19) and (7.20), we

choose

2p− k + 1 = k =⇒ k = p+
1

2

186

To satisfy the hypothesis 2p−k > −1, it requires p > −1
2
. Note with this choice, it satisfies

the condition k > p required in Theorem 7.E.4. Therefore, the overall bound becomes

E[ERR(x̄N)] ≤ 1

w1:N

(
αΩ2

η
Np+ 1

2 +
3σ2η

α

N∑

n=1

np−
1
2

)
+
O(1)

w1:N

≤ p+ 1

Np+1

(
αΩ2

η
+

3ησ2

α(p+ 1
2
)

)
(N + 1)p+

1
2 +

O(1)

Np+1

≤ e
p+1/2
N (p+ 1)

(
αΩ2

η
+

3ησ2

α(p+ 1
2
)

)
N−

1
2 +

O(1)

Np+1

where we use Lemma 7.G.1 and (N+1
N

)p+1/2 ≤ e
p+1/2
N . If we set η such that

αΩ2

η
=

3ησ2

α(p+ 1
2
)

=⇒ η = α
Ω

σ

√
p+ 1

2

3

Then

E[ERR(x̄N)] ≤ 2e
p+1/2
N (p+ 1)Ωσ

√
3

p+ 1
2

N−
1
2 +

O(1)

Np+1
(7.21)

For example, if p = 0, then

E[ERR(x̄N)] ≤ O(1)

N
+

2
√

6σΩe
p+1/2
N√

N

which matches the bound in by Juditsky, Nemirovski, and Tauvel (2011) with a slightly

worse constant. We leave a complete study of tuning p as future work.

7.E.4 Comparison of stochastic MIRROR-PROX and MOBIL-PROX in Imitation Learning

The major difference between stochastic MIRROR-PROX and MOBIL-PROX is whether

the gradient from the environment is used to also update the decision πn+1. It is used in the

MIRROR-PROX, whereas MOBIL-PROX uses the estimation from simulation. Therefore,

187

for N iterations, MOBIL-PROX requires only N interactions, whereas MIRROR-PROX

requires 2N interactions.

The price MOBIL-PROX pays extra when using the estimated gradient is that a sec-

ondary online learning problem has to be solved. This shows up in the term, for example

of strongly convex problems,

(p+ 1)G2
h

2µh

1

N2
+
εwF̂ + σ2

g + σ2
ĝ

N

in Theorem 7.4.2. If both gradients are from the environment, then εwF̂ = 0 and σ2
ĝ = σ2

g .

Therefore, if we ignore the O(1
N2) term, using an estimated gradient to update πn+1 is

preferred, if it requires less interactions to get to the magnitude of error, i.e.

2× 2σ2
g ≥ εwF̂ + σ2

ĝ + σ2
g

in which the multiplier of 2 on the left-hand side is due to MOBIL-PROX only requires one

interaction per iterations, whereas stochastic MIRROR-PROX requires two.

Because σ2
g is usually large in real-world RL problems and σ2

ĝ can be made close to

zero easily (by running more simulations), if our model class is reasonably expressive,

then MOBIL-PROX is preferable. Essentially, this is because MOBIL-PROX can roughly

cut the noise of gradient estimates by half.

The preference over MOBIL-PROX would be more significant for convex problems,

because the error decays slower over iterations (e.g. 1√
N

) and therefore more iterations are

required by the stochastic MIRROR-PROX approach to counter balance the slowness due to

using noisy gradient estimator.

188

7.F Experimental Details

7.F.1 Tasks

Two robot control tasks (Cartpole and Reacher3D) powered by the DART physics engine

[19] were used as the task environments.

Cartpole The Cart-Pole Balancing task is a classic control problem, of which the goal

is to keep the pole balanced in an upright posture with force only applied to the cart. The

state and action spaces are both continuous, with dimension 4 and 1, respectively. The state

includes the horizontal position and velocity of the cart, and the angle and angular velocity

of the pole. The time-horizon of this task is 1000 steps. There is a small uniformly random

perturbation injected to initial state, and the transition is deterministic. The agent receives

+1 reward for every time step it stays in a predefined region, and a rollout terminates when

the agent steps outside the region.

Reacher3D In this task, a 5-DOF (degrees-of-freedom) manipulator is controlled to reach

a random target position in a 3D space. The reward is the sum of the negative distance to the

target point from the finger tip and a control magnitude penalty. The actions correspond

to the torques applied to the 5 joints. The time-horizon of this task is 500 steps. At the

beginning of each rollout, the target point to reach is reset to a random location.

7.F.2 Algorithms

Policies We employed Gaussian policies in our experiments, i.e. for any state s ∈ S, πs

is Gaussian distributed. The mean of πs was modeled by either a linear function or a neural

network that has 2 hidden layers of size 32 and tanh activation functions. The covariance

matrix of πs was restricted to be diagonal and independent of state. The expert policies

in the IL experiments share the same architecture as the corresponding learners (e.g. a

189

linear learner is paired with a linear expert) and were trained using actor-critic-based policy

gradients.

Imitation learning loss With regard to the IL loss, we set D(π?s ||πs) in (7.2) to be the

KL-divergence between the two Gaussian distributions: D(π?s ||πs) = KL[πs||π?s]. (We

observed that using KL[πs||π?s] converges noticeably faster than using KL[π?s ||πs]).

Implementation details of MOBIL-PROX The regularization of MOBIL-PROX was set

to rn(π) = µlαn
2
‖π− πn‖2 such that

∑
wnαnµl = (1 + cnp+1/2)/ηn, where c = 0.1 and ηn

was adaptive to the norm of the prediction error. Specifically, we used ηn = ηλn: η > 0

and λn is a moving-average estimator of the norm of en = gn − ĝn defined as

λ̄n = βλ̄n−1 + (1− β)‖en‖2

λn = λ̄n/(1− βn)

where β was chosen to be 0.999. This parameterization is motivated by the form of the

optimal step size of MOBIL-PROX in Theorem 7.4.2, and by the need of having adaptive

step sizes so different algorithms are more comparable. The model-free setting was imple-

mented by setting ĝn = 0 in MOBIL-PROX, and the same adaptation rule above was used

(which in this case effectively adjusts the learning rate based on ‖gn‖). In the experiments,

η was selected to be 0.1 and 0.01 for p = 0 and p = 2, respectively, so the areas under

the effective learning rate ηnwp/(1 + cnp+1/2) for p = 0 and p = 2 are close, making

MOBIL-PROX perform similarly in these two settings.

In addition to the update rule of MOBIL-PROX, a running normalizer, which estimates

the upper and the lower bounds of the state space, was used to center the state before it was

fed to the policies.

190

Dynamics model learning The dynamics model used in the experiments is determin-

istic (the true model is deterministic too). It is represented by a neural network with 2

hidden layers of size 64 and tanh activation functions. Given a batch of transition triples

{(stk , atk , stk+1)}Kk=1 collected by running πn under the true dynamics in each round, we

set the per-round loss for model learning as 1
K

∑K
k=1 ‖stk+1

−M(stk , atk)‖2
2, where M is

the neural network dynamics model. It can be shown that this loss is an upper bound of

‖∇2F (πn, πn)−∇2F̂n(πn, πn)‖2
∗ by applying a similar proof as in Section 7.C. The mini-

mization was achieved through gradient descent using ADAM Kingma and Ba, 2014 with

a fixed number of iterations (2048) and fixed-sized mini-batches (128). The step size of

ADAM was set to 0.001.

191

7.G Useful Lemmas

This section summarizes some useful properties of polynomial partial sum, sequence in

Banach space, and variants of FTL in online learning. These results will be useful to the

proofs in Section 7.B.

7.G.1 Polynomial Partial Sum

Lemma 7.G.1. This lemma provides estimates of
∑N

n=1 n
p.

1. For p > 0, N
p+1

p+1
=
∫ N

0
xpdx ≤∑N

n=1 n
p ≤

∫ N+1

1
xpdx ≤ (N+1)p+1

p+1
.

2. For p = 0,
∑N

n=1 n
p = N .

3. For −1 < p < 0,

(N+1)p+1−1
p+1

=
∫ N+1

1
xpdx ≤∑N

n=1 n
p ≤ 1 +

∫ N
1
xpdx = Np+1+p

p+1
≤ (N+1)p+1

p+1
.

4. For p = −1, ln(N + 1) ≤∑N
n=1 n

p ≤ lnN + 1.

5. For p < −1,
∑N

n=1 n
p ≤ Np+1+p

p+1
= O(1). For p = −2,

∑N
n=1 n

p ≤ N−1−2
−2+1

≤ 2.

Lemma 7.G.2. For p ≥ −1, N ∈ N,

S(p) =
N∑

n=1

n2p

∑n
m=1m

p
≤

p+1
p

(N + 1)p, for p > 0

ln(N + 1), for p = 0

O(1), for − 1 < p < 0

2, for p = −1

.

192

Proof. If p ≥ 0, by Lemma 7.G.1,

S(p) = (p+ 1)
N∑

n=1

np−1 ≤

p+1
p

(N + 1)p, for p > 0

ln(N + 1), for p = 0

.

If −1 < p < 0, by Lemma 7.G.1, S(p) ≤ (p + 1)
∑N

n=1
n2p

(n+1)p+1−1
. Let an = n2p

(n+1)p+1−1
,

and bn = np−1. Since limn→∞
an
bn

= 1 and by Lemma 7.G.1
∑∞

n=0 bn converges, thus
∑∞

n=0 an converges too. Finally, if p = −1, by Lemma 7.G.1, S(−1) ≤∑N
n=1

1
n2 ln(n+1)

≤
∑N

n=1
1
n2 ≤ 2. �

7.G.2 Sequence in Banach Space

Lemma 7.G.3. Let {a = x0, x1, · · · , xN = b} be a sequence in a Banach space with norm

‖ · ‖. Then for any N ∈ N+, ‖a− b‖2 ≤ N
∑N

n=1 ‖xn−1 − xn‖2.

Proof. First we note that by triangular inequality it satisfies that ‖a− b‖ ≤∑N
n=1 ‖xn−1−

xn‖. Then we use the basic fact that 2ab ≤ a2 + b2 in the second inequality below and

prove the result.

‖a− b‖2 ≤
N∑

n=1

‖xn−1 − xn‖2 +
N∑

n=1

N∑

m=1;m 6=n

‖xn−1 − xn‖‖xm−1 − xm‖

≤
N∑

n=1

‖xn−1 − xn‖2 +
N∑

n=1

N∑

m=1;m6=n

1

2

(
‖xn−1 − xn‖2 + ‖xm−1 − xm‖2

)

=
N∑

n=1

‖xn−1 − xn‖2 +
N − 1

2

N∑

n=1

‖xn−1 − xn‖2 +
1

2

N∑

n=1

N∑

m=1;m6=n

‖xm−1 − xm‖2

=
N∑

n=1

‖xn−1 − xn‖2 + (N − 1)
N∑

n=1

‖xn−1 − xn‖2

= N

N∑

n=1

‖xn−1 − xn‖2 �

193

7.G.3 Basic Regret Bounds of Online Learning

For this chapter to be self-contained, we summarize some fundamental results of regret

bound when the learner in an online problem updates the decisions by variants of FTL.

Here we consider a general setup and therefore use a slightly different notation from the

one used in the main part of this chapter for policy optimization.

Online Learning Setup Consider an online convex optimization problem. Let X be a

compact decision set in a normed space with norm ‖ · ‖. In round n, the learner plays

xn ∈ X receives a convex loss ln : X → R satisfying ‖∇ln(xn)‖∗ ≤ G, and then make a

new decision xn+1 ∈ X . The regret is defined as

regretN(X) =
N∑

n=1

ln(xn)−min
x∈X

N∑

n=1

ln(x)

More generally, let {wn ∈ R+}Nn=1 be a sequence of weights. The weighted regret is

defined as

regretwN(X) =
N∑

n=1

wnln(xn)−min
x∈X

N∑

n=1

wnln(x)

In addition, we define a constant εwX (which can depend on {ln}Nn=1) such that

εwX ≥ min
x∈X

∑N
n=1wnln(x)

w1:N

.

In the following, we prove some basic properties of FTL with prediction. At the end, we

show the result of FTL as a special case. These results are based on the Strong FTL Lemma

(Lemma 10.F.2), which can also be proven by Stronger FTL Lemma (Lemma 10.F.3).

Lemma 10.F.2 (Strong FTL Lemma (McMahan, 2017)). For any sequence of decisions

{xn ∈ X} and loss functions {ζn}, regretN(X) ≤∑N
n=1 ζ1:n(xn) − ζ1:n(x?n), where x?n ∈

arg minx∈X ζ1:n(x), where X is the decision set.

194

To use Lemma 10.F.2, we first show an intermediate bound.

Lemma 7.G.4. In round n, let l1:n be µ1:n-strongly convex for some µ1:n > 0, and let vn+1

be a (non)convex function such that l1:n + vn+1 is convex. Suppose the learner plays FTL

with prediction, i.e. xn+1 ∈ arg minx∈X (l1:n + vn+1) (x). Then it holds

N∑

n=1

(l1:n(xn)− l1:n(x?n)) ≤
N∑

n=1

1

2µ1:n

‖∇ln(xn)−∇vn(xn)‖2
∗

where x?n = arg minX
∑N

n=1 ln(x).

Proof. For any x ∈ X , since l1:n is µ1:n strongly convex, we have

l1:n(xn)− l1:n(x) ≤ 〈∇l1:n(xn), xn − x〉 −
µ1:n

2
‖xn − x‖2. (7.22)

And by the hypothesis xn = arg minx∈X (l1:n−1 + vn) (x), it holds that

〈−∇l1:n−1(xn)−∇vn(xn), xn − x〉 ≥ 0. (7.23)

Adding (7.22) and (7.23) yields

l1:n(xn)− l1:n(x) ≤ 〈∇ln(xn)−∇vn(xn), xn − x〉 −
µ1:n

2
‖xn − x‖2

≤ max
d
〈∇ln(xn)−∇vn(xn), d〉 − µ1:n

2
‖d‖2

=
1

2µ1:n

‖∇ln(xn)−∇vn(xn)‖2
∗,

where the last equality is due to a property of dual norm (e.g. Exercise 3.27 of Boyd and

Vandenberghe, 2004). Substituting x?n for x and taking the summation over n prove the

lemma. �

Using Lemma 10.F.2 and Lemma 7.G.4, we can prove the regret bound of FTL with

prediction.

195

Lemma 7.G.5 (FTL with prediction). Let ln be a µn-strongly convex for some µn ≥ 0. In

round n, let vn+1 be a (non)convex function such that
∑n

m=1wmlm + wm+1vn+1 is convex.

Suppose the learner plays FTL with prediction, i.e. xn+1 ∈ arg minx∈X
∑n

m=1(wmlm +

wm+1vn+1)(x) and suppose that
∑n

m=1wmµm > 0. Then

regretwN(X) ≤
N∑

n=1

w2
n‖∇ln(xn)−∇vn(xn)‖2

∗
2
∑n

m=1wmµm

In particular, if µn = µ, wn = np, p ≥ 0, regretwN(X) ≤ p+1
2µ

∑N
n=1 n

p−1‖∇ln(xn) −

∇vn(xn)‖2
∗.

Proof. By Lemma 10.F.2 and Lemma 7.G.4, we see

regretwN(X) ≤
N∑

n=1

(l1:n(xn)− l1:n(x?n)) ≤
N∑

n=1

w2
n‖∇ln(xn)−∇vn(xn)‖2

∗
2
∑n

m=1wmµm
.

If µn = µ, wn = np, and p ≥ 0, then it follows from Lemma 7.G.1

regretwN(X) ≤ 1

2µ

N∑

n=1

n2p

np+1

p+1

‖∇ln(xn)−∇vn(xn)‖2
∗ =

p+ 1

2µ

N∑

n=1

np−1‖∇ln(xn)−∇vn(xn)‖2
∗.

�

The next lemma about the regret of FTL is a corollary of Lemma 7.G.5.

Lemma 7.G.6 (FTL). Let ln be µ-strongly convex for some µ > 0. Suppose the learner

play FTL, i.e. xn = arg minx∈X
∑n

m=1 wmlm(x). Then regretwN(X) ≤ G2

2µ

∑N
n=1

w2
n

w1:n
. In

196

particular, if wn = np, then

N∑

n=1

wnln(xn) ≤

G2

2µ
p+1
p

(N + 1)p + 1
p+1

(N + 1)p+1εwX , for p > 0

G2

2µ
ln(N + 1) +NεwX , for p = 0

G2

2µ
O(1) + 1

p+1
(N + 1)p+1εwX , for −1 < p < 0

G2

µ
+ (lnN + 1)εwX , for p = −1

Proof. By definition of regretwN(X), the absolute cost satisfies
∑N

n=1 wnln(xn) = regretwN(X)+

minx∈X
∑N

n=1wnln(x). We bound the two terms separately. For regretwN(X), set vn = 0 in

Lemma 7.G.5 and we have

regretwN(X) ≤ G2

2µ

N∑

n=1

w2
n

w1:n

(Lemma 7.G.5 and gradient bound)

=
G2

2µ

N∑

n=1

n2p

∑n
m=1m

p
(Special case wn = np),

in which
∑N

n=1
n2p∑n
m=1m

p is exactly what 7.G.2 bounds. On the other hand, the definition

of εwX implies that minx∈X
∑N

n=1wnln(x) ≤ w1:Nε
w
X =

∑N
n=1 n

pεwX , where
∑N

n=1 n
p is

bounded by Lemma 7.G.1. Combining these two bounds, we conclude the lemma. �

197

Part II

Policy Optimization II: Abstraction

198

ABSTRACT

In Part I of the thesis, we improved the state-of-the-art results of imitation learning (IL).

This advancement is made by the online-learning-style analyses and the observation that

these practical online learning problems possess certain regularity that has been ignored in

the standard abstract online learning analyses. Therefore, a natural follow-up question to

this research is whether such ideas can be generalized to problems outside IL (Cheng et al.,

2019a,c,d).

In Chapter 8, we establish a formal, abstract setup of this class of problems, which we

name Continuous Online Learning (COL). We show that COL covers and more appropri-

ately describes many interesting applications, from general equilibrium problems (EPs) to

optimization in episodic MDPs, including the online IL discussed in Chapter 6. To demon-

strate the potential of COL, we revisit the classic linear program setups of RL in Chapter 9,

and provide a reduction from RL to COL, by which any online algorithm with sublinear

regret can generate policies with provable performance guarantees.

Complementary to the refined COL setup is the meta algorithm PICCOLO presented in

Chapter 10. Based on the concept of predictive models introduced in Chapter 7, PICCOLO

provides a constructive way to design algorithms that leverage the predictability in losses

to accelerate online learning. By casting policy optimization as online learning, we can

use PICCOLO as a hybrid algorithm to combines model-based and model-free updates,

where the concept of predictive model serves an abstraction of model information (i.e. past

experiences). Importantly, we show that PICCOLO does not suffer from policy perfor-

mance bias due to modeling error, unlike the classic model-based approaches. Therefore,

PICCOLO provides a framework for designing new algorithms that can safely leverage

imperfect models.

199

CHAPTER 8

ONLINE LEARNING WITH CONTINUOUS VARIATIONS

8.1 Introduction

Online learning (Gordon, 1999; Zinkevich, 2003), which studies the interactions between

a learner (i.e. an algorithm) and an opponent through regret minimization, has proved

to be a powerful framework for analyzing and designing iterative algorithms. However,

while classic setups focus on bounding the worst case, many applications are not naturally

adversarial. In this work, we aim to bridge this reality gap by establishing a new online

learning setup that better captures certain regularity that appears in practical problems.

Formally, we recall an online learning problem repeats the following steps: in round

n, the learner plays a decision xn from a decision set X , the opponent chooses a loss

function ln : X → R based on the decisions of the learner, and then information about

ln (e.g. ∇ln(xn)) is revealed to the learner for making the next decision. This abstract

setup (Hazan, 2016; Shalev-Shwartz, 2012) studies the adversarial setting where ln can

be almost arbitrarily chosen except for minor restrictions like convexity. Often the perfor-

mance is measured relatively through static regret,

regretsN :=
∑N

n=1 ln(xn)−minx∈X
∑N

n=1 ln(x). (8.1)

Recently, interest has emerged in algorithms that make decisions that are nearly optimal

at each round. The regret is therefore measured on-the-fly and suitably named dynamic

regret,

regretdN :=
∑N

n=1 ln(xn)−∑N
n=1 ln(x∗n), (8.2)

200

where x∗n ∈ arg minx∈X ln(x). As dynamic regret by definition upper bounds static regret,

minimizing the dynamic regret is a more difficult problem.

While algorithms with sublinear static regret are well understood, the research on dy-

namic regret is relatively recent. As dynamic regret grows linearly in the adversarial setup,

most papers (Besbes, Gur, and Zeevi, 2015; Dixit et al., 2019; Jadbabaie et al., 2015;

Mokhtari et al., 2016; Yang et al., 2016; Zhang et al., 2017; Zinkevich, 2003) focus on

how dynamic regret depends on certain variations of the loss sequence across rounds (such

as the path variation VN =
∑N−1

n=1 ‖x∗n − x∗n+1‖). Even if the algorithm does not require

knowing the variation, the bound is still written in terms of it. While tight bounds have

been established (Yang et al., 2016), their results do not always translate into conditions for

achieving sublinear dynamic regret in practice, because the size (budget) of the variations

can be difficult to verify beforehand. This is especially the case when the opponent is adap-

tive, responding the learner’s decisions at each round. In these situations, it is unknown if

existing results become vacuous or yield sublinear dynamic regret.

Motivated by the use of online learning to analyze iterative algorithms in practice, we

consider a new setup we call Continuous Online Learning (COL), which directly models

regularity in losses as part of the problem definition, as opposed to the classic adversarial

setup that adds ad-hoc budgets. As we will see, this minor modification changes how regret

and feedback interact and makes the quest of seeking sublinear dynamic regret well defined

and interpretable even for adaptive opponents, without imposing variation budgets.

8.1.1 Definition of COL

We describe COL as follows. We suppose that the opponent possesses a bifunction f :

(x, x′) 7→ fx(x
′) ∈ R, for x, x′ ∈ X , that is unknown to the learner. This bifunction is used

by the opponent to determine the per-round losses: in round n, if the learner chooses xn,

201

then the opponent responds with

ln(x) = fxn(x). (8.3)

Finally, the learner suffers ln(xn) and receives feedback about ln. For fx(x′), we treat x as

the query argument that proposes a question (i.e. an optimization objective fx(·)), and treat

x′ as the decision argument whose performance is evaluated. This bifunction f generally

can be defined online as queried, with only one limitation that the same loss function fx(·)

must be selected by the opponent whenever the learner plays the same decision x. Thus,

the opponent can be adaptive, but in response to only the learner’s current decision.

In addition to the restriction in (8.3), we impose regularity into f to relate ln across

rounds, so that seeking sublinear dynamic regret becomes well defined.1

Definition 8.1.1. We say an online learning problem is continuous if ln is set as in (8.3) by

a bifunction f satisfying, ∀x′ ∈ X , ∇fx(x′) is a continuous map in x 2.
The continuity structure in Definition 8.1.1 and the constraint (8.3) in COL limit the

degree that losses can vary, making it possible for the learner to partially infer future losses

from the past experiences.

The continuity may appear to restrict COL to purely deterministic settings, but adver-

sity such as stochasticity can be incorporated via an important nuance in the relationship

between loss and feedback. In the classical online learning setting, the adversity is incorpo-

rated in the loss: the losses ln and decisions xn may themselves be generated adversarially

or stochastically and then they directly determine the feedback, e.g., given as full infor-

mation (receiving ln or ∇ln(xn)) or bandit (just ln(xn)). The (expected) regret is then

measured with respect to these intrinsically adversarial losses ln. By contrast, in COL, we

always measure regret with respect to the true underlying bifunction ln = fxn . However, we

give the opponent the freedom to add an additional stochastic or adversarial component into

1Otherwise the opponent can define fx(·) pointwise for each x to make ln(xn)− ln(x∗n) constant.
2We define ∇fx(x′) as the derivative with respect to x′.

202

the feedback; e.g., in first-order feedback, the learner could receive gn = ∇ln(xn) + ξn,

where ξn is a probabilistically bounded and potentially adversarial vector, which can be

used to model noise or bias in feedback. In other words, the COL setting models a true

underlying loss with regularity, but allows adversary to be modeled within the feedback.

This addition is especially important for dynamic regret, as it allows us to always consider

regret against the true fxn while still incorporating the possibility of stochasticity.

8.1.2 Examples

At this point, the setup of COL may sound restrictive, but this setting is in fact motivated

by a general class of problems and iterative algorithms used in practice, some of which

have been previously analyzed in the online learning setting. Generally, COL describes

the trial-and-error principle, which attempts to achieve a difficult objective fx(x) through

iteratively constructing a sequence of simplified and related subproblems fxn(x), similar to

majorize-minimize (MM) algorithms. Our first application of this kind is the use of itera-

tive algorithms in solving (stochastic) equilibrium problems (EPs) (Bianchi and Schaible,

1996). EP is a well-studied subject in mathematical programming, which includes opti-

mization, saddle-point problems, variational inequality (VI) (Facchinei and Pang, 2007),

fixed-point problem (FP), etc. Except for toy cases, these problems usually rely on us-

ing iterative algorithms to generate ε-approximate solutions; interestingly these algorithms

often resemble known algorithms in online learning, such as mirror descent or Follow-the-

Leader (FTL). In Sections 8.4 and 8.5, we will show that how the residual function of these

problems renders a natural choice of bifunction f in COL, and how the regret of COL

relates to its solution quality. In this example, it is particularly important to classify the

adversary (e.g. due to bias or stochasticity) as feedback rather than loss function, in order

to properly incorporate the continuity in the source problem.

Another class of interesting COL problems comes from optimization in episodic Markov

decision processes (MDPs). In online imitation learning (Ross, Gordon, and Bagnell, 2011)

203

that we discussed in Part I of the thesis, the learner optimizes a policy to mimic an expert

π?. In round n, the loss is ln(π) = Es∼dπn [c(s, π; π?)], where dπn is the state distribution

visited by running the learner’s policy πn in the MDP, and c(s, π; π?) is a cost that measures

the difference between a policy π and the expert π?. This is a bifunction form where con-

tinuity exists due to expectation and feedback is noisy about ln (allowed by our feedback

model). In fact, online IL is the main inspiration behind this research. An early analysis

of IL was framed using the adversarial, static regret setup (Ross, Gordon, and Bagnell,

2011). Recently, results were refined through the use of continuity in the bifunction and

dynamic regret (Cheng and Boots, 2018; Cheng et al., 2019b; Lee et al., 2018c). This

problem again highlights the importance of treating stochasticity as the feedback. We wish

to measure regret with respect to the expected cost ln(π) which admits a continuous struc-

ture, but feedback only arrives via stochastic samples from the MDP. Structural prediction

and system identification can be framed similarly (Ross and Bagnell, 2012; Venkatraman,

Hebert, and Bagnell, 2015).

Lastly, we note that the classic fitted Q-iteration (Gordon, 1995; Riedmiller, 2005) for

reinforcement learning also uses a similar setup. In the n round, the loss can be written

as ln(Q) = Es,a∼µπ(Qn)Es′∼P|s,a[(Q(s, a)− r(s, a)− γmaxa′ Qn(s′, a′))2], where µπ(Qn) is

the state-action distribution3 induced by running a policy π(Qn) based on the Q-function

Qn of the learner, and P is the transition dynamics, r is the reward, and γ is the discount

factor. Again this is a COL problem.

8.1.3 Main Results

The goal of this chapter is to establish COL and to study, particularly, conditions and ef-

ficient algorithms for achieving sublinear dynamic regret. We choose not to pursue algo-

rithms with fast static regret rates in COL, as there have been studies on how algorithms

can systematically leverage continuity in COL to accelerate learning (Cheng et al., 2019b,d)

3Or some fixed distribution with sufficient excitation.

204

though they are framed as online IL research. On the contrary, the knowledge about dy-

namic regret is less known, except for (Cheng and Boots, 2018; Lee et al., 2018c) (also

framed as online IL) which study the convergence of FTL and mirror descent, respectively.

Our first result shows that achieving sublinear dynamic regret in COL, interestingly,

is equivalent to solving certain EP, VI, and FP problems, which are known to be PPAD-

complete4 (Daskalakis, Goldberg, and Papadimitriou, 2009). In other words, generally,

achieving sublinear dynamic regret that is polynomial in the dimension of the decision set

can be extremely difficult.

Nevertheless, based on the solution concept of EP, VI, and FP, we show a reduction

from monotone EPs to COL, and present necessary conditions and sufficient conditions for

achieving sublinear dynamic regrets with polynomial dependency. Particularly, we show

a reduction from sublinear dynamic regret to static regret and convergence to the solution

of the EP/VI/FP. This reduction allows us to quickly derive non-asymptotic dynamic regret

bounds of popular online learning algorithms based on their known static regret rates. At

the end, we extend COL to consider partially adversarial loss and discuss open questions.

8.2 Related Work

Much work in the dynamic regret has focused on improving rates with respect to various

measures of the loss sequence’s variation. Mokhtari et al., 2016; Zinkevich, 2003 showed

that the dynamic regret of gradient descent in terms of the path variation. Other measures

of variation such as functional variation (Besbes, Gur, and Zeevi, 2015) and squared path

variation (Zhang et al., 2017) have also been studied. While these algorithms may not need

to know the variation size beforehand, their guarantees are still stated in terms of these

variations. Therefore, these results can be difficult to interpret, when the losses can be

chosen adaptively.

4In short, they are NP problems whose solutions are known to exist, but it is open as to if they belong to
P.

205

To illustrate, consider the online IL problem. It is impossible to know the variation

budget a priori because the loss observed at each round is a function of the policy selected

by the algorithm. This budget could easily be linear, if an algorithm selects very disparate

policies, or it could be zero if the algorithm always naively returns the same policy. Thus,

existing budget-based results cannot tell the convergence of an IL algorithm.

Our work is also closely related to that of (Hall and Willett, 2013; Rakhlin and Sridha-

ran, 2012), which consider predictable loss sequences, i.e. sequences that are presumed to

be non-adversarial and admit improved regret rates. The former considers static regret for

both full and partial information cases, and the latter considers a similar problem setting

but for the dynamic regret case. These analyses, however, still require a known variation

quantity in order to be interpretable.

By contrast, we leverage extra structures of COL to provide interpretable dynamic re-

gret rates, without a priori constraints on the variation. That is, our rates are internally gov-

erned by the algorithms, rather than externally dictated by a variation budget. This problem

setup in some sense is more difficult as achieving sublinear dynamic regret here requires

both the per-round losses and the loss variation, as a function of the learner’s decisions, are

simultaneously small. Nonetheless, we can show conditions for sublinear dynamic regret,

using the bifunction structure in COL.

8.3 Preliminaries

We review background, in particular VIs and EPs, for completeness (Bianchi and Schaible,

1996; Facchinei and Pang, 2007; Konnov and Laitinen, 2002).

Notation Throughout the paper, we reserve the notation f to denote the bifunction that

defines COL problems, and we assume X ⊂ Rd is compact and convex, where d ∈ N+ is

finite. We equip X with norm ‖ · ‖, which is not necessarily Euclidean, and write ‖ · ‖∗ to

denote its dual norm. We denote its diameter by DX := maxx,x′∈X ‖x− x′‖.

206

As in the usual online learning, we are particularly interested in the case where fx(·)

is convex and continuous. For simplicity, we will assume all functions are continuously

differentiable, except for fx(x′) as a function over the querying argument x, where x′ ∈ X .

We will use∇ to denote gradients. In particular, for the bifunction f , we use∇f to denote

∇f : x 7→ ∇fx(x) and we recall, in the context of f , ∇ is always with respect to the

decision argument. Likewise, given x ∈ X , we use ∇fx to denote ∇fx(·). Note that the

continuous differentiability of fx′(·) together with the continuity of ∇f·(x) implies ∇f is

continuous; the analyses below can be extended to the case where∇fx′(·) is a subdifferen-

tial.5 Finally, we assume, ∀x ∈ X , ‖∇fx(x)‖∗ ≤ G for some G <∞.

Convexity For µ ≥ 0, a function h : X → R is called µ-strongly convex, if it satisfies, for

all x, x′ ∈ X , h(x′) ≥ h(x)+〈∇h(x), x′ − x〉+ µ
2
‖x−x′‖2. If h satisfies above with µ = 0,

it is called convex. A function h is called pseudo-convex, if 〈∇h(x), x′ − x〉 ≥ 0 implies

h(x′) ≥ h(x). These definitions have a natural inclusion: strongly convex functions are

convex; convex functions are pseudoconvex. We say h is L-smooth if ∇h is L-Lipschitz

continuous, i.e., there is L ∈ [0,∞) such that ‖∇h(x) − ∇h(x′)‖∗ ≤ L‖x − x′‖ for

all x, x′ ∈ X . Finally, we will use Bregman divergence BR(x′||x) := R(x′) − R(x) −

〈∇R(x), x′ − x〉 to measure the difference between x, x′ ∈ X , where R : X → R is a

µ-strongly convex function with µ > 0; by definition BR(·||x) is also µ-strongly convex.

Fixed-Point Problems Let T : X → 2X be a point-to-set map, where 2X denotes the

power set of X . A fixed-point problem FP(X , T) aims to find a point x? ∈ X such that

x? ∈ T (x?). Suppose T is λ-Lipschitz. It is called non-expansive if λ = 1, and called

λ-contractive if λ < 1.

Variational Inequalities VIs study equilibriums defined by vector-valued maps. Let F :

X → Rd be a point-to-point map. The problems VI(X , F) and DVI(X , F) aim to find

5Our proof can be extended to upper hemicontinuity for set-valued maps, such as subdifferentials.

207

x? ∈ X and x? ∈ X , respectively, such that the following conditions are satisfied:

VI : 〈F (x?), x− x?〉 ≥ 0, ∀x ∈ X

DVI : 〈F (x), x− x?〉 ≥ 0, ∀x ∈ X

VIs and DVIs are also known as Stampacchia and Minty VIs, respectively (Facchinei and

Pang, 2007). The difficulty of solving VIs depends on the property of F . For µ ≥ 0, F

is called µ-strongly monotone if ∀x, x′ ∈ X . 〈F (x)− F (x′), x− x′〉 ≥ µ‖x − x′‖2. If

F satisfies the above with µ = 0, F is called monotone. F is called pseudo-monotone if

〈F (x′), x− x′〉 ≥ 0 implies 〈F (x), x− x′〉 ≥ 0 for x, x′ ∈ X . It is known that the gradient

of a (strongly/pseudo) convex function is a (strongly/pseudo) monotone.

VIs are generalizations of FPs. For a point-to-point map T : X → X , FP(X , T) is

equivalent to VI(X , I − T), where I is the identity map. If T is λ-contractive, then F is

(1− λ)-strongly monotone.

Equilibrium Problems EPs further generalize VIs. Let Φ : X ×X → R be a bifunction

such that Φ(x, x) ≥ 0. The problems EP(X ,Φ) and DEP(X ,Φ) aim to find x?, x? ∈ X ,

respectively, s.t.

EP :Φ(x?, x) ≥ 0, ∀x ∈ X

DEP :Φ(x, x?) ≤ 0, ∀x ∈ X .

By definition, we have VI(X , F) = EP(X ,Φ) if we define Φ(x, x′) = 〈F (x), x′ − x〉.

We can also define monotonicity properties for EPs. For µ ≥ 0, Φ is called µ-strongly

monotone if for ∀x, x′ ∈ X , Φ(x, x′) + Φ(x′, x) ≤ −µ‖x− x′‖2. It is called monotone, if

it satisfies the above with µ = 0. Similarly, Φ is called pseudo-monotone, if Φ(x, x′) ≥ 0

implies Φ(x′, x) ≤ 0 for x, x′ ∈ X . One can verify that these definitions are consistent

with the ones for VIs.

208

Primal and Dual Solutions We establish some basics of the solution concepts of EPs.

As VIs are a special case of EPs, these results can be applied to VIs too. First, we have a

basic relationship between the solution sets, X? of EP and X? of DEP.

Proposition 8.3.1. (Bianchi and Schaible, 1996) If Φ is pseudo-monotone, X? ⊆ X?. If

Φ(·, x) is continuous ∀x ∈ X , X? ⊆ X?.

The proposition states that a dual solution is always a primal solution when the prob-

lem is continuous, and a primal solution is a dual solution when the problem is pseudo-

monotone. Intuitively, we can think of the primal solutions X? as local solutions, and the

dual solutions X? as global solutions. In particular for VIs, if F is a gradient of some,

even nonconvex, function, any solution in X? is a global minimum; any local minimum of

a pseudo-convex function is a global minimum (Konnov and Laitinen, 2002).

We note, however, that Proposition 8.3.1 does not directly ensure that the solution sets

are non-empty. The existence of primal solutions X? has been extensively studied. Here

we include a basic result, which is sufficient for the scope of our online learning problems

with compact and convex X .

Proposition 8.3.2. (Bianchi and Schaible, 1996) If Φ(x, ·) is convex and Φ(·, x) is contin-

uous ∀x ∈ X , X? is non-empty.

Analogous results have been established for VIs and FPs as well. If F and T are

continuous then solutions exist for both VI(X , F) and FP(X , T), respectively (Facchinei

and Pang, 2007). On the contrary, the existence of dual solutions X? is mostly based on

assumptions. For example, by Proposition 8.3.1, X? is non-empty when the problem is

pseudo-monotone. Uniqueness can be established with stronger conditions.

Proposition 8.3.3. (Konnov and Laitinen, 2002) If the conditions of Proposition 8.3.2 are

met and Φ is strongly monotone, then the solution to EP(X ,Φ) is unique.

209

8.4 Equivalence and Hardness

We first ask what extra information the COL formulation entails. We present this result as

an equivalence between achieving sublinear dynamic in COL and solving several mathe-

matical programming problems.

Theorem 8.4.1. Let f be given in Definition 8.1.1. Suppose fx(·) is convex and continuous.

The following problems are equivalent:

1. Achieving sublinear dynamic regret w.r.t. f .

2. VI(X , F) where F (x) = ∇fx(x).

3. EP(X ,Φ) where Φ(x, x′) = fx(x
′)− fx(x).

4. FP(X , T) where T (x) = arg minx′∈X fx(x
′).

Therefore, if there is an algorithm that achieves sublinear dynamic regret that in poly(d),

then it solves all PPAD problems in polynomial time.

Theorem 8.4.1 says that, because of the existence of a hidden bifunction, achieving sub-

linear dynamic regret is essentially equivalent to finding an equilibrium x? ∈ X?, in which

X? denotes the set of solutions of the EP/VI/FP problems in Theorem 8.4.1. Therefore, a

necessary condition for sublinear dynamic regret is that X? is non-empty. Fortunately, this

is true for our problem definition by Proposition 8.3.2.

Moreover, it suggests that extra structure on COL is necessary for algorithms to achieve

sublinear dynamic regret that depends polynomially on d (the dimension of X). The re-

quirement of polynomial dependency is important to properly define the problem. Without

it, sublinear dynamic regret can be achieved already (at least asymptotically), e.g. by sim-

ply discretizing X (as X is compact and ∇f is continuous) albeit with an exponentially

large constant.

210

Due to space limitation, we defer the proof of Theorem 8.4.1 to Section 8.A, along with

other proofs for this section. But we highlight the key idea is to prove that the gap function

ρ(x) := fx(x)−minx′∈X fx(x
′) can be used as a residual function for the above EP/VI/FP

in Theorem 8.4.1. In particular, we note that, for the Φ in Theorem 8.4.1, ρ(x) is equivalent

to a residual function rep(x) := maxx′∈X −Φ(x, x′) used in the EP literature.

Below we discuss sufficient conditions on f based on the equivalence between problems

in Theorem 8.4.1, so that the EP/VI/FP in Theorem 8.4.1 becomes better structured and

hence allows efficient algorithms.

8.4.1 EP and VI Perspectives

We first discuss some structures on f such that the VI/EP in Theorem 8.4.1 can be effi-

ciently solved. From the literature, we learn that the existence of dual solutions is a com-

mon prerequisite to design efficient algorithms (Burachik and Millán, 2019; Dang and Lan,

2015; Konnov, 2007; Lin et al., 2018). For example, convergence guarantees on combined

relaxation methods (Konnov, 2007) for VIs rely on the assumption that X? is non-empty.

Here we discuss some sufficient conditions for non-empty X?, which by Proposition 8.3.1

and Definition 8.1.1 is a subset of X?.

By Proposition 8.3.1 and 8.3.2, a sufficient condition for non-empty X? is pseudo-

monotonicity of F or Φ (which we recall is a consequence of monotonicity). For our

problem, the dual solutions of the EP and VI are different, while their primal solutions X∗

are the same.

Proposition 8.4.1. LetX? andX?? be the solutions to DVI(X , F) and DEP(X ,Φ), respec-

tively, where F and Φ are defined in Theorem 8.4.1. Then X?? ⊆ X?. The converse is true

if fx(·) is linear ∀x ∈ X .

Proposition 8.4.1 shows that, for our problem, pseudo-monotonicity of Φ is stronger

than that of F . This is intuitive: as the pseudo-monotonicity of Φ implies that there is

x? such that fx(x?) ≤ fx(x), i.e. a decision argument that is consistently better than the

211

querying argument under the latter’s own question, whereas the pseudo-monotonicity of F

merely requires the intersection of the half spaces of X cut by ∇fx(x) to be non-empty.

Another sufficient assumption for non-empty X? of VIs is that X is sufficiently strongly

convex. This condition has recently been used to show fast convergence of mirror descent

and conditional gradient descent (Garber and Hazan, 2015; Veliov and Vuong, 2017). We

leave this discussion to Section 8.B.

The above assumptions, however, are sometimes hard to verify for COL. Here we define

a subclass of COL and provide constructive (but restrictive) conditions.

Definition 8.4.1. We say a COL problem with f is (α, β)-regular if for some α, β ∈ [0,∞),

∀x ∈ X ,

1. fx(·) is a α-strongly convex function.

2. ∇f·(x) is a β-Lipschitz continuous map.

We call β the regularity constant; for short, we will also say ∇f is β-regular and f

is (α, β)-regular. We note that β is different from the Lipschitz constant of ∇fx(·). The

constant β defines the degree of online components; in particular, when β = 0 the learning

problem becomes offline. Based on (α, β)-regularity, we have a sufficient condition to

monotonicity.

Proposition 8.4.2. ∇f is (α− β)-strongly monotone.

Proposition 8.4.2 shows if ∇fx(·) does not change too fast with x, then ∇f is strongly

monotone in the sense of VI, implying X? = X? equal to a singleton (but not necessarily

the existence of X??). Strong monotoncity also implies fast linear convergence is possible

for deterministic feedback (Facchinei and Pang, 2007). When α = β, it implies at least

monotonicity, by which we know X? is non-empty.

We emphasize that the condition α ≥ β is not necessary for monotonicity. The mono-

tonicity condition of ∇f more precisely results from the monotonicity of ∇f·(x′) and

212

∇fx(·), as 〈∇fx(x)−∇fx′(x′), x− x′〉 = 〈∇fx(x)−∇fx(x′), x− x′〉+〈∇fx(x′)−∇fx′(x′), x− y〉.

From this decomposition, we can observe that as long as the sum of ∇f·(x′) and ∇fx(·)

is monotone for any x, x′ ∈ X , then ∇f is monotone. In the definition of (α, β)-regular

problems, no condition is imposed on∇f·(x), so we need α ≥ β in Proposition 8.4.2.

8.4.2 Fixed-point Perspective

We can also study the feasibility of sublinear dynamic regret from the perspective of the

FP in Theorem 8.4.1. Here again we consider (α, β)-regular problems.

Proposition 8.4.3. Let α > 0. If α > β, then T is β
α

-contractive; if α = β, T is non-

expansive.

We see again that the ratio β
α

plays an important role in rating the difficulty of the

problem. When α > β, an efficient algorithm for obtaining the the fixed point solution is

readily available (i.e. by contraction) An alternative interpretation is that x∗n changes at a

slower rate than xn when α > β with respect to ‖ · ‖

8.5 Monotone EP as COL

After understanding the structures that determine the difficulty of COL, we describe a con-

verse result of Theorem 8.4.1, which converts monotone EPs into COL.

Theorem 8.5.1. Let EP(X ,Φ) be monotone with Φ(x, x) = 0.6Consider a COL with

fx(x
′) = Φ(x, x′). Let {xn}Nn=1 be any sequence of decisions and define x̂N := 1

N

∑N
n=1 xn

It holds that rdep(x̂N) ≤ 1
N

regretsN , where rdep(x′) := maxx∈X Φ(x, x′) is the dual resid-

ual. The same holds for the best decision in {xn}Nn=1.

Theorem 8.5.1 shows monotone EPs can be solved by achieving sublinear static regret

in COL, at least in terms of the dual residual. Below we relate bounds on the dual residual

back to the primal residual, which we recall is given as rep(x) := maxx′∈X −Φ(x, x′).

6Φ(x, x) = 0 is not a restriction; see Section 8.C.

213

Theorem 8.5.2. Suppose Φ(·, x) isL-Lipschitz, ∀x ∈ X . If Φ satisfies Φ(x, x′) = −Φ(x′, x),

i.e. skew-symmetric, then rep(x) = rdep(x). Otherwise,

1. For x ∈ X such that rdep(x) ≤ 2LDX , it holds rep(x) ≤ 2
√

2LDX
√
rdep(x).

2. If Φ(x, ·) is in addition µ-strongly convex with µ > 0, for x ∈ X such that rdep(x) ≤

L2/µ, it holds rep(x) ≤ 2.8(L2/µ)1/3rdep(x)2/3

We can view the above results as a generalization of the classic reduction from convex

optimization and Blackwell approachability to no-regret learning (Abernethy, Bartlett, and

Hazan, 2011). Generally, the rate of primal residual converges slower than the dual resid-

ual. However, when the problem is skew-symmetric (which is true for EPs coming from

optimization and saddle-point problems; see Section 8.C), we recover the classic results. In

this case, we can show rep(x̂N) = rdep(x̂N) ≤ 1
N

regretsN ≤ 1
N

regretdN = 1
N

∑N
n=1 rep(xn).

These results complement the discussion in Section 8.4.1, as monotonicity implies the

dual solution set X?? is non-empty. Namely, these monotone EPs constitute a class of

source problems of COL for which efficient algorithms are available. Proofs and further

discussions of this reduction are given in Section 8.C.

8.6 Reduction by Regularity

Inspired by Theorem 8.4.1, we present a reduction from minimizing dynamic regret to

minimizing static regret and convergence to X?. Intuitively, this is possible, because The-

orem 8.4.1 suggests achieving sublinear dynamic regret should not be harder than finding

x? ∈ X?. Define regretsN(x?) :=
∑N

n=1 ln(xn)− ln(x?) ≤ regretsN .

Theorem 8.6.1. Let x? ∈ X? and ∆n := ‖xn−x?‖. If f is (α, β)-regular for α, β ∈ [0,∞),

then for all N ,

regretdN ≤ min{G∑N
n=1 ∆n, regretsN(x?)}+

∑N
n=1 min{βDX∆n,

β2

2α
∆2
n}

214

If further X?? of the dual EP is non-empty, regretdN ≥ α
2

∑N
n=1 ‖x∗n − x?‖2, where x? ∈

X?? ⊆ X?.

Theorem 8.6.1 roughly shows that when x? exists (e.g. given by the sufficient condi-

tions in the previous section), it provides a stabilizing effect to the problem, so the dynamic

regret behaves almost like the static regret when the decisions are around x?.

This relationship can be used as a powerful tool for understanding the dynamic regret

of existing algorithms designed for EPs, VIs, and FPs. These include, e.g., mirror de-

scent (Beck and Teboulle, 2003), mirror-prox (Juditsky, Nemirovski, and Tauvel, 2011; Ne-

mirovski, 2004), conditional gradient descent (Jaggi, 2013), Mann iteration (Mann, 1953),

etc. Interestingly, many of those are also standard tools in online learning, with static regret

bounds that are well known (Hazan, 2016).

We can apply Theorem 8.6.1 in different ways, depending on the known convergence

of an algorithm. For algorithms whose convergence rate of ∆n to zero is known, The-

orem 8.6.1 essentially shows that their dynamic regret is at most O(
∑N

n=1 ∆n). For the

algorithms with only known static regret bounds, we can use a corollary.

Corollary 8.6.1. If f is (α, β)-regular and α > β, it holds regretdN ≤ regretsN(x?) +

β2 ˜regretsN (x?)

2α(α−β)
, where ˜regretsN (x?) denotes the static regret of the linear online learning problem

with ln(x) = 〈∇fn(xn), x〉.

The purpose of Corollary 8.6.1 is not to give a tight bound, but to show that for nicer

problems with α > β, achieving sublinear dynamic regret is not harder than achieving

sublinear static regret. For tighter bounds, we still refer to Theorem 8.6.1 to leverage the

equilibrium convergence. We note that the results in Section 8.5 and here concern different

classes of COL in general, because α > β does not necessarily imply the EP(X ,Φ) is

monotone, but only VI(X , F) unless fx(·) is linear.

Finally, we remark Theorem 8.6.1 is directly applicable to expected dynamic regret (the

right-hand side of the inequality will be replaced by its expectation) when the learner only

215

has access to stochastic feedback, because the COL setup in non-anticipating. Similarly,

high-probability bounds can be obtained based on martingale convergence theorems, as

in (Cesa-Bianchi, Conconi, and Gentile, 2004). In these cases, we note that the regret is

defined with respect to ln in COL, not the sampled losses.

8.6.1 Example Algorithms

We showcase applications of Theorem 8.6.1. These bounds are non-asymptotic and depend

polynomially on d. And the algorithms do not need to know α and β, except to set the

stepsize upper bound for first-order methods. Please refer to Section 8.D for the proofs.

Functional Feedback

We first consider the simple greedy update, which sets xn+1 = arg minx∈X ln(x). By Propo-

sition 8.4.3 and Theorem 8.6.1, we see that if α > β, it has regretdN = O(1). For α = β,

we can use algorithms for non-expansive fixed-point problems (Mann, 1953).

Proposition 8.6.1. For α = β, there is an algorithm that achieves sublinear dynamic regret

in poly(d).

Exact First-order Feedback

Next we use the reduction in Theorem 8.6.1 to derive dynamic regret bounds for mirror

descent, under deterministic first-order feedback. We recall that mirror descent with step

size ηn follows

xn+1 = arg min
x∈X

〈ηngn, x〉+BR(x‖xn). (8.4)

where gn is feedback direction, BR is a Bregman divergence with respect to some 1-

strongly convex function R. Here we assume additionally that fx(·) is γ-smooth with

γ > 0 for all x ∈ X .

216

Proposition 8.6.2. Let f be (α, β)-regular and fx(·) be γ-smooth, ∀x ∈ X . Let R be 1-

strongly convex and L-smooth. If α > β, gn = ∇ln(xn), and ηn <
2(α−β)
L(γ+β)2 , then, for some

0 < ν < 1, regretdN ≤ (G+ βDX)
√

2BR(x?‖x1)
∑N

n=1 ν
n−1 = O(1) for (8.4).

Stochastic & Adversarial Feedback

We now consider stochastic and adversarial cases in COL. As discussed, these are directly

handled in the feedback, while the (expected) regret is still measured against the true un-

derlying bifunction. Importantly, we make the subtle assumption that bifunction f is fixed

before learning. We consider mirror descent in (8.4) with additive stochastic and adversar-

ial feedback given as gn = ∇ln(xn) + εn + ξn, where εn ∈ Rd is zero-mean noise with

E [‖εn‖2
∗] < ∞ and ξn ∈ Rd is a bounded adversarial bias. The component εn can come

from observing a stochastic loss ln(x; ζn) with random variable ζn, when the true loss is

ln(x) = Eζn [ln(x; ζn)] (i.e. ∇ln(xn; ζn) = ∇ln(xn)+εn). On the other hand the adversarial

component ξn can describe extra bias in computation. We consider the expected dynamic

regret E[regretdN] = E[
∑N

n=1 ln(xn) − minx∈X ln(x)], where the expectation is over εn.

Define Ξ :=
∑N

n=1 ‖ξn‖∗. By reduction to static regret in Corollary 8.E.1, we have the

following proposition.

Proposition 8.6.3. If f is fixed before learning, α > β and ηn = 1√
n

, then mirror descent

with gn = ∇ln(xn) + εn + ξn has E[regretdN] = O(
√
N + Ξ).

8.6.2 Remark

Essentially, our finding indicates that the feasibility of sublinear dynamic regret is related

to a problem’s properties. For example, the difficulty of the problem depends largely on the

ratio β
α

when there is no other directional information about∇f·(x), such as monotonicity.

We have shown when β ≤ α efficient algorithms are possible. But, for β > α, we are not

aware of any efficient algorithm. If one exists, it would solve all (α, β)-regular problems,

which, in turn, would efficiently solve all EP/VI/FP problems as we can formulate them into

217

the problem of solving COL problems with sublinear dynamic regret by Theorem 8.4.1.

8.7 Extensions

The framework of COL reveals some core properties of dynamic regret. However, while

we allow adversary in feedback, it still assumes that the same loss function fx(·) must be

returned by the bifunction for the same query argument x ∈ X . Therefore, it does not

capture some time-varying situations, in which the opponent’s strategy can change across

rounds. Also, this constraint allows the learner to potentially enumerate the opponent. Here

we relax (8.3) and define a generalization of COL. The proofs of this section are included

in Section 8.E.

Definition 8.7.1. We say an online learning problem is (α, β)-predictable with α, β ∈

[0,∞) if ∀x ∈ X ,

1. ln(·) is a α-strongly convex function.

2. ‖∇ln(x) − ∇ln−1(x)‖∗ ≤ β‖xn − xn−1‖ + an, where an ∈ [0,∞) and
∑N

n=1 an =

AN = o(N).

These problems generalize COL along two directions: 1) it makes the problem non-

stationary 2) it allows adversarial components within a sublinear budget inside the loss

function. We note that the second condition above is different from having adversarial

feedback, e.g., in Section 8.6.1, because the regret now is measured with respect to the

adversarial loss as opposed to those generated by a fixed bifunction. This new condition

can make sublinear dynamic regret considerably harder.

Let us further discuss the relationship between (α, β)-predictable and (α, β)-regular

problems. First, a contraction property like Proposition 8.4.3 still holds.

Proposition 8.7.1. For (α, β)-predictable problems with α > 0, ‖x∗n − x∗n−1‖ ≤ β
α
‖xn −

xn−1‖+ an
α

.

218

Proposition 8.7.1 shows that when functional feedback is available and β
α
< 1, sublinear

dynamic regret can be achieved, e.g., by a greedy update. However, one fundamental

difference between predictable problems and continuous problems is the lack of equilibria

X∗, which is the foundation of the reduction in Theorem 8.6.1. This makes achieving

sublinear dynamic regret much harder when functional feedback is unavailable or when

α = β. Using Proposition 8.7.1, we establish some preliminary results below.

Theorem 8.7.1. Let β
α
< α

2L2γ
. For (α, β)-predictable problems, if ln(·) is γ-smooth and

R is 1-strongly convex and L-smooth, then mirror descent with deterministic feedback and

step size η = α
2Lγ2 achieves regretdN = O(1 + AN +

√
NAN).

We find that, in Theorem 8.7.1, mirror descent must maintain a sufficiently large step

size in predictable problems, unlike COL problems which allow for decaying step size.

When α = β, we can show that sublinear dynamic regret is possible under functional

feedback.

Theorem 8.7.2. For α = β, if A∞ < ∞ and ‖ · ‖ is the Euclidean norm, then there is

an algorithm with functional feedback achieving sublinear dynamic regret. For d = 1 and

an = 0 for all n, sublinear dynamic regret is possible regardless of α, β.

We do not know, however, whether sublinear dynamic regret is feasible when α = β

and A∞ = ∞. We conjecture this is infeasible when the feedback is only first-order, as

mirror descent is insufficient to solve monotone problems using the last iterate (Facchinei

and Pang, 2007) which contain COL with α = β (a simpler case than predictable online

learning with α = β).

8.8 Conclusion

We present COL, a new class of problems where the gradient varies continuously across

rounds with respect to the learner’s decisions. We show that this setting can be equated with

certain equilibrium problems (EPs). Leveraging this insight, we present a reduction from

219

monotone EPs to COL, and show necessary conditions and sufficient conditions for achiev-

ing sublinear dynamic regret. Furthermore, we show a reduction from dynamic regret to

static regret and the convergence to equilibrium points.

There are several directions for future research on this topic. Our current analyses

focus on classical algorithms in online learning. We suspect that the use of adaptive or

optimistic methods can accelerate convergence to equilibria, if some coarse model can be

estimated. In addition, although we present some preliminary results showing the possibil-

ity for interpretable dynamic regret rates in predictable online learning, further refinement

and understanding the corresponding lower bounds remain important future work. Lastly,

while the current formulations restrict the loss to be determined solely by the learner’s cur-

rent decision, extending the discussion to history-dependent bifunctions is an interesting

topic.

8.A Complete Proofs of Section 8.4

8.A.1 Proof of Theorem 8.4.1

Highlight

The key idea to proving Theorem 8.4.1 is that the gap function ρ(x) := fx(x)−minx′∈X fx(x
′)

can be used as a residual function for the above EP/VI/FP in Theorem 8.4.1. That is, ρ(x) is

non-negative, computable in polynomial time (it is a convex program), and ρ(x) = 0 if and

only if x ∈ X? (because fx(·) is convex ∀x ∈ X). Therefore, to show Theorem 8.4.1, we

only need to prove that solving one of these problems is equivalent to achieving sublinear

dynamic regret.

First, suppose an algorithm generates a sequence {xn ∈ X} such that limn→∞ xn = x?,

for some x? ∈ X?. To show this implies {xn ∈ X} has sublinear dynamic regret, we first

show limx→x?∈X? ρ(x) = 0. Then define ρn = ρ(xn). Because limn→∞ ρn = 0, we have

regretdN =
∑N

n=1 ρn = o(N).

220

Next, we prove the opposite direction. Suppose an algorithm generates a sequence

{xn ∈ X} with sublinear dynamic regret. This implies that ρ̂N := minn ρn ≤ 1
N

∑N
n=1 ρn

is in o(1) and non-increasing. Thus, limN→∞ ρ̂N = 0. As ρ is a proper residual, the

algorithm solves the EP/VI/FP problem by returning the decision associated with ρ̂N .

The proof of PPAD-completeness is based on converting the residual of a Brouwer’s

fixed-point problem to a bifunction, and use the solution along with ρ̂N above as the ap-

proximate solution.

Note that the gap function ρ, despite motivated by dynamic regret here, corresponds to a

natural gap function rep(x) := maxx′∈X −F (x, x′) used in the EP literature, showing again

a close connection between the dynamic regret and the EP in Theorem 8.4.1. Nonetheless,

ρ(x) is not conventional for VIs and FPs. Below we relate ρ(x) to some standard residuals

of VIs and FPs under a stronger assumption on f .

Proposition 8.A.1. For ε > 0, consider some xε ∈ X such that ρ(xε) ≤ ε. If fxε(·) is α-

strongly convex, then limε→0 〈∇fxε(xε), x− xε〉 ≥ 0, ∀x ∈ X , and limε→0 ‖xε−T (xε)‖ =

0.

Full proof

Now we give the details of the steps above.

We first show the solutions sets of the EP, the VI, and the FP are identical.

• 2. =⇒ 3.

Let x?VI ∈ X be a solution to VI(X , F) where F (x) = ∇fx(x). That is, for all

x ∈ X , 〈∇fx?VI
(x?VI), x− x?VI〉 ≥ 0. The sufficient first-order condition for optimality

implies that x?VI is optimal for fx?VI
. Therefore, fx?VI

(x?VI) ≤ fx?VI
(x) for all x ∈ X ,

meaning that x?VI is also a solution to EP(X ,Φ) where Φ(x, x′) = fx(x
′)− fx(x).

• 3. =⇒ 4.

Let x?EP ∈ X be a solution to EP(X ,Φ). By definition, it satisfies fx?EP
(x?EP) ≤ fx?EP

(x)

221

for all x ∈ X , which implies x?EP = arg minx∈X fx?EP
(x) = T (x?EP). Therefore, x?EP is

a also solution to FP(X , T), where T (x′) = arg minx∈X fx′(x).

• 4. =⇒ 2.

If x?FP is a solution to FP(X , T), then x?FP = arg minx∈X fx?FP
(x). By the necessary

first-order condition for optimality, we have 〈∇fx?FP
(x?FP)x− x?FP〉 ≥ 0 for all x ∈ X .

Therefore x?FP is also a solution to VI(X , F) where F (x) = ∇fx(x).

Let X? denote their common solution sets. To finish the proof of equivalence in Theo-

rem 8.4.1, we only need to show that converging to X? is equivalent to achieving sublinear

dynamic regret.

• Suppose there is an algorithm that generates a sequence {xn ∈ X} such that limn→∞ xn =

x?, for some x? ∈ X?. To show this implies {xn ∈ X} has sublinear dynamic regret,

we need a continuity lemma.

Lemma 8.A.1. limx→x?∈X? ρ(x) = 0.

Proof. Let x̄ ∈ T (x). Using convexity, we can derive that

ρ(x) = fx(x)− fx(x̄) ≤ 〈∇fx(x), x− x̄〉

≤ 〈∇fx?(x?), x− x̄〉+ ‖∇fx?(x?)−∇fx(x)‖∗‖x− x̄‖

≤ 〈∇fx?(x?), x? − x̄〉+ ‖∇fx?(x?)‖∗‖x− x?‖+ ‖∇fx?(x?)−∇fx(x)‖∗‖x− x̄‖

≤ ‖∇fx?(x?)‖∗‖x− x?‖+ ‖∇fx?(x?)−∇fx(x)‖∗‖x− x̄‖

where the second and the third inequalities are due to Cauchy-Schwarz inequality,

and the last inequality is due to that x? solves VI(X ,∇f). By continuity of ∇f , the

above upper bound vanishes as x→ x?. �

For short hand, let us define ρn = ρ(xn); we can then write regretdN =
∑N

n=1 ρn.

By Lemma 8.A.1, limn→∞ x = x? implies that limn→∞ ρn = 0. Finally, we show by

222

contradiction that limn→∞ ρn = 0 implies regretdN = o(N). Suppose the dynamic

regret is linear. Then c > 0 exists such that there is a subsequence {ρni} satisfying

ρni ≥ c for all ni. However, this contradicts with limn→∞ ρn = 0.

• We can also prove the opposite direction. Suppose an algorithm generates a sequence

{xn ∈ X} with sublinear dynamic regret. This implies that ρ̂N := minn ρn ≤
1
N

∑N
n=1 ρn is in o(N) and non-increasing. Thus, limN→∞ ρ̂N = 0 and the algorithm

solves the VI/EP/FP problem because ρ is a residual. Alternatively, we may view

ρ̂ as a Lyapunov-like function. The sequence of minimizers x̂N = arg minxn ρ(xn)

are confined to the level sets of ρ, which converge to the zero-level set. Since X is

compact, x̂N converges to this set.

Finally, we show the PPAD-completeness by proving that achieving sublinear dynamic

regret with polynomial dependency on d implies solving a Brouwer’s problem (finding

a fixed point of a continuous point-to-point map on a convex compact set). Because

Brouwer’s problem is known to be PPAD-complete Daskalakis, Goldberg, and Papadim-

itriou, 2009, we can use this algorithm to solve all PPAD problems.

Given a Brouwer’s problem on X with some continuous map T̂ . We can define the

bifunction f as fx′(x) = 1
2
‖x − T̂ (x′)‖2

2, where ‖ · ‖2 is Euclidean. Obviously, this f

satisfies Definition 8.1.1, and its gap function is zero at x? if and only x? is a solution to the

Brouwer’s problem. Suppose we have an algorithm that achieves sublinear dynamic regret

for continuous online learning. We can use the definition ρ̂N in the proof above to return

a solution whose gap function is less than 1
2
ε2, which implies an ε-approximate solution to

Brouwer’s problem (i.e. ‖x − T̂ (x)‖ ≤ ε). If the dynamic regret depends polynomially

on d, we have such an N in poly(d), which implies solving any Brouwer’s problem in

polynomial time.

223

Proof of Proposition 8.A.1

For the VI problem, let x∗ε = T (xε) and notice that

α

2
‖xε − x∗ε‖2 ≤ fxε(xε)− fxε(x∗ε) ≤ ε (8.5)

for some α > 0. Therefore, for any x ∈ X ,

〈∇fxε(xε), x− xε〉

≥ 〈∇fxε(x∗ε), x− xε〉 − ‖∇fxε(x∗ε)−∇fxε(xε)‖∗‖x− xε‖

≥ 〈∇fxε(x∗ε), x− x∗ε〉 − ‖∇fxε(x∗ε)‖∗‖xε − x∗ε‖ − ‖∇fxε(x∗ε)−∇fxε(xε)‖∗‖x− xε‖

≥ −‖∇fxε(x∗ε)‖∗‖xε − x∗ε‖ − ‖∇fxε(x∗ε)−∇fxε(xε)‖∗‖x− xε‖

Since ‖xε− x∗ε‖2 ≤ 2ε
α

, by continuity of∇fxε , it satisfies that limε→0 〈∇fxε(xε), x− xε〉 ≥

0, ∀x ∈ X .

For the fixed-point problem, similarly by (8.5), we see that limε→0 ‖xε − T (xε)‖ = 0

8.A.2 Proofs of Proposition 8.4.1

Proof of Proposition 8.4.1. Let x? ∈ X??. It holds that ∀x ∈ X , 0 ≥ Φ(x, x?) = fx(x?)−

fx(x) ≥ 〈∇fx(x), x? − x〉, which implies x? ∈ X?. The condition for the converse case is

obvious. �

8.A.3 Proof of Proposition 8.4.2

Because∇fx is α-strongly monotone, we can derive

〈∇fx(x)−∇fy(y), x− y〉 = 〈∇fx(x)−∇fx(y), x− y〉+ 〈∇fx(y)−∇fy(y), x− y〉

≥ α‖x− y‖2 − ‖∇fx(y)−∇fy(y)‖∗‖x− y‖

≥ (α− β)‖x− y‖2

224

∀x, y ∈ X , where the last step is due to β-regularity.

8.A.4 Proof of Proposition 8.4.3

The result follows immediately from the following lemma.

Lemma 8.A.2. Suppose f is (α, β)-regular with α > 0. Then F in Theorem 8.4.1 is

point-valued and β
α

-Lipschitz.

Proof. Let x∗ = F (x) and y∗ = F (y) for some x, y ∈ X . By strong convexity, x∗ and y∗

are unique, and∇fx(·) is α-strongly monotone; therefore it holds that

〈∇fx(y∗), y∗ − x∗〉 ≥ 〈∇fx(x∗), y∗ − x∗〉+ α‖x∗ − y∗‖2

≥ α‖x∗ − y∗‖2

Since y∗ satisfies 〈∇fy(y∗), x∗ − y∗〉 ≥ 0, the above inequality implies that

α‖x∗ − y∗‖2 ≤ 〈∇fx(y∗), y∗ − x∗〉

≤ 〈∇fx(y∗)−∇fy(y∗), y∗ − x∗〉

≤ ‖∇fx(y∗)−∇fy(y∗)‖∗‖y∗ − x∗‖

≤ β‖x− y‖‖y∗ − x∗‖

Rearranging the inequality gives the statement. �

8.B Dual Solution and Strongly Convex Sets

We show when the strong convexity property of X implies the existence of dual solution

for VIs. We first recall the definition of strongly convex sets.

Definition 8.B.1. Let αX ≥ 0. A set X is called αX -strongly convex if, for any x, x′ ∈ X

and λ ∈ [0, 1], it holds that, for all unit vector v, λx+(1−λ)x′+ αXλ(1−λ)
2
‖x−x′‖2v ∈ X .

225

When αX = 0, the definition reduces to usual convexity. Also, we see that this defini-

tion implies αX ≤ 4
DX

. In other words, larger sets are less strongly convex. This can also

be seen from the lemma below.

Lemma 8.B.1. (Journée et al., 2010, Theorem 12) Let f be non-negative, α-strongly con-

vex, and β-smooth on a Euclidean space. Then the set {x|f(x) ≤ r} is α√
2rβ

-strongly

convex.

Here we present the existence result.

Proposition 8.B.1. Let x? ∈ X?. If X is αX -strongly convex ∀x ∈ X , it holds that

〈F (x∗), x− x∗〉 ≥ αX
2
‖x− x∗‖2‖F (x∗)‖∗

If further F is L-Lipschitz, this implies

〈F (x), x− x∗〉 ≥ (
αX
2
‖F (x∗)‖∗ − L)‖x− x∗‖2

i.e. when αX ≥ 2L
‖F (x∗)‖∗ , x

? ∈ X?.

Proof of Proposition 8.B.1. Let g = F (x?). Let y = λx + (1 − λ)x? and d = −λ(1 −

λ)αX
2
‖x − y‖2v, for some λ ∈ [0, 1] and some unit vector v to be decided later. By αX -

strongly convexity of X , we have y + d ∈ X . We can derive

〈g, x− x?〉 = 〈g, x− y − d〉+ 〈g, y + d− x?〉

≥ 〈g, x− y〉 − 〈g, d〉

= (1− λ) 〈g, x− x?〉 − 〈g, d〉

which implies 〈g, x− x?〉 ≥ −〈g,d〉
λ

= (1 − λ)αX
2
‖x − x?‖2 〈g, v〉. Since we are free

to choose λ and v, we can set λ = 0 and v = arg maxv:‖v‖≤1 〈g, v〉, which yields the

inequality in the statement. �

226

8.C Complete Proofs of Section 8.5

In this section, we describe a general strategy to reduce monotone equilibrium problems

(EPs) to continuous online learning (COL) problems. This reduction can be viewed as

refinement and generalization of the classic reduction from convex optimization to adver-

sarial online learning and that from saddle-point problem to two-player adversarial online

learning. In comparison, our reduction

1. results in a single-player online learning problem, which allows for unified algorithm

design

2. considers potential continuous relationship of the losses between different rounds

through the setup of COL, which leads to a predictable online problem amenable

to acceleration techniques, such as (Cheng et al., 2019d; Juditsky, Nemirovski, and

Tauvel, 2011; Rakhlin and Sridharan, 2012).

3. and extends the concept to general convex problems, namely, monotone EPs, which

includes of course convex optimization and convex-concave saddle-point problems

but also fixed-point problems (FPs), variational inequalities (VIs), etc.

The results here are summarized as Theorem 8.5.1 and Theorem 8.5.2.

Here we further suppose Φ(x, x) = 0 in the definition of EP. This is not a strong

condition. First all the common source problems in introduced below in Section 8.C.1

satisfy this condition. Generally, suppose we have some EP problem with Φ′(x, x) > 0 for

some x. We can define Φ(x, x) = Φ′(x, x′) − Φ′(x, x′). Then the solution of EP(X ,Φ)

are subset of the solution EP(X ,Φ′). In other words, allowing Φ(x, x) > 0 only makes

problem easier. We note that the below reduction and discussion can easily be extended to

work directly with EPs with Φ(x, x) > 0 by defining instead fx(x′) = Φ(x, x′)− Φ(x, x),

but this will make the presentation less clean.

227

8.C.1 Background: Equilibrium Problems (EPs)

Let X be a compact and convex set in a finite dimensional space. Let F : x×x′ 7→ Φ(x, x′)

be a bifunction7 that is continuous in the first argument, convex in the second argument,

and satisfies Φ(x, x) = 0.8 The problem EP(X , F) aims to find x? ∈ X such that

Φ(x?, x) ≥ 0, ∀x ∈ X

Its dual problem DEP(X , F) finds x?? ∈ X such that

Φ(x, x??) ≤ 0, ∀x ∈ X

Based on the problem’s definition, a natural residual (or gap function) of EP(X , F) is

rep(x) := −min
x′∈X

Φ(x, x′)

which says the degree that the inequality in the EP definition is violated. A residual for

DEP(X , F) can be defined similarly as

rdep(x
′) := max

x∈X
Φ(x, x′)

Sometimes EPs are called maxInf (or minSup) problems (Jofré and Wets, 2014), because

x? ∈ arg min
x∈X

rep(x) = arg max
x∈X

min
x′∈X

Φ(x, x′)

In a special case, when Φ(·, x) is concave. It reduces to a saddle-point problem.

7We impose convexity and continuity to simplify the setup; similar results hold for subdifferentials and
Lipschitz continuity defined based on hemi-continuity.

8As discussed, we concern only EP with Φ(x, x) = 0 here

228

We say a bifunction F is monotone if it satisfies

Φ(x, x′) + Φ(x′, x) ≤ 0,

and we say F is skew-symmetric if

Φ(x, x′) = −Φ(x, x′),

which implies F is monotone. Finally, we say the problem EP(X , F) is monotone, if its

bifunction F is monotone.

Examples

We review some source problems of EPs. Please refer to e.g. (Jofré and Wets, 2014;

Konnov and Schaible, 2000) for a more complete survey.

Convex Optimization Consider minx∈X h(x) where h is convex. We can simply define

Φ(x, x′) = h(x′)− h(x)

which is a skew-symmetric (and therefore monotone) bifunction.

We can also define (following the VI given by its optimality condition)

Φ(x, x′) = 〈∇h(x), x′ − x〉 .

We can easily verify that this construction is also monotone

Φ(x, x′) + Φ(x′, x) = 〈∇h(x), x′ − x〉+ 〈∇h(x′), x− x′〉 = 〈∇h(x)−∇h(x′), x′ − x〉 ≤ 0.

229

Suppose h is µ-strongly convex. We can also consider

Φ(x, x′) = 〈∇h(x), x′ − x〉+
µ′

2
‖x′ − x‖2

where µ′ ≤ µ. Such F is still monotone:

Φ(x, x′) + Φ(x′, x) = 〈∇h(x)−∇h(x′), x′ − x〉+ µ′‖x′ − x‖2 ≤ 0.

Saddle-Point Problem Let U and V to convex and compact sets in a finite dimensional

space. Consider a convex-concave saddle point problem

min
u∈U

max
v∈V

φ(u, v) (8.6)

in which φ is continuous, φ(·, y) is convex, and φ(x, ·) is concave. It is well known that in

this case

min
u∈U

max
v∈V

φ(u, v) = max
v∈V

min
u∈U

φ(u, v) =: φ?.

We can define a EP by the bifunction

Φ(x, x′) := −φ(u, v′) + φ(u′, v). (8.7)

By definition we have the skew symmetry property, which implies monotonicity.

Variational Inequality A VI with a vector-valued map F finds x? ∈ X such that

〈F (x?), x− x?〉 ≥ 0, ∀x ∈ X .

230

To turn that into a EP, we can simply define

Φ(x, x′) = 〈F (x), x′ − x〉 .

Mixed Variational Inequality (MVI) MVI considers problems that finds x? ∈ X such

that

h(x)− h(x?) + 〈F (x?), x− x?〉 ≥ 0, ∀x ∈ X .

Following the previous idea, we can define its equivalent EP through the bifunction

Φ(x, x′) = h(x′)− h(x) + 〈F (x), x′ − x〉

8.C.2 More insights into residuals of primal and dual EPs

We derive further relationships between primal and dual EPs. These properties will be

useful for understanding the reduction introduced in the next section.

Monotonicity

By the definition of monotonicity, Φ(x, x′) + Φ(x′, x) ≤ 0, we can relate the primal and

the dual residuals: for x̂ ∈ X ,

rdep(x̂) = max
x∈X

Φ(x, x̂) ≤ max
x∈X
−Φ(x̂, x) = rep(x̂)

Let X? and X?? be the solution sets of the EP and DEP, respectively. In other words, for

monotone EPs, X? ⊆ X??.

231

Continuity

When Φ(·, x) is continuous, it can be shown that X? ⊆ X?? (Konnov and Schaible, 2000)

(this can be relaxed to hemi-continuity). Below we relate the primal and the dual residuals

in this case. It implies that the convergence rate of the primal residual is slower than the

dual residual.

Proposition 8.C.1. Suppose Φ(·, x) isL-Lipschitz continuous for any x ∈ X and maxx,x′∈X ‖x−

x′‖ ≤ D. If rdep(x) ≤ 2LD, the rep(x) ≤ 2
√

2LD
√
rdep(x).

Suppose in addition Φ(x, ·) is µ-strongly convex with µ > 0. If rdep(x) ≤ L2

µ
, we can

remove the dependency on D and show rep(x) ≤ 2.8(L
2

µ
)1/3rdep(x)2/3.

Proof. Let y ∈ X be arbitrary. Define z = τx + (1 − τ)y, where τ ∈ [0, 1]. Suppose x is

an ε-approximate dual solution, i.e.,

rdep(x) = max
x′∈X

Φ(x′, x) = ε

By convexity and Φ(z, z) = 0, we can write

ε ≥ Φ(z, x) = Φ(z, x)− Φ(z, z)

≥ Φ(z, x)− τΦ(z, x)− (1− τ)Φ(z, y) = (1− τ)(Φ(z, x)− Φ(z, y))

Using this, we can then show

−Φ(x, y) = −Φ(x, y) + Φ(z, y) + (Φ(z, x)− Φ(z, y))− Φ(z, x) + Φ(x, x)

≤ |Φ(z, y)− Φ(x, y)|+ |Φ(x, x)− Φ(z, x)|+ Φ(z, x)− Φ(z, y)

≤ 2(1− τ)L‖x− y‖+ Φ(z, x)− Φ(z, y) (∵ Lipschitz condition)

≤ 2(1− τ)L‖x− y‖+
ε

1− τ (∵ The inequality above)

≤ 2(1− τ)LD +
ε

1− τ

232

Assume ε ≤ 2LD and let (1− τ) =
√

ε
2LD

, which satisfies τ ∈ [0, 1]. Then

−Φ(x, y) ≤ 2
√

2LDε

When we have µ-strong convexity, we have a tighter bound

ε ≥ Φ(z, x) = Φ(z, x)− Φ(z, z) ≥ Φ(z, x)− τΦ(z, x)− (1− τ)Φ(z, y) +
µτ(1− τ)

2
‖x− y‖2

= (1− τ)(Φ(z, x)− Φ(z, y)) +
µτ(1− τ)

2
‖x− y‖2

Using this, we can instead show (following similar steps as above)

−Φ(x, y) ≤ 2(1− τ)L‖x− y‖+ Φ(z, x)− Φ(z, y)

≤ 2(1− τ)L‖x− y‖+
ε

1− τ −
µτ

2
‖x− y‖2

≤ ε

1− τ +
2L2(1− τ)2

µτ

where the last inequality is simply bx − a
2
x2 ≤ b2

2a
for a > 0. Assume ε ≤ L2

µ
=: K

2
and

let (1 − τ) = (ε
K

)1/3 ∈ [0, 1]. We have the following inequality, where the last step uses

ε ≤ K
2

.

−Φ(x, y) ≤ ε

1− τ +
2L2(1− τ)2

µτ
= ε2/3K1/3

(
1 +

1

1− (ε
K

)1/3

)
≤ 2.2ε2/3K1/3

�

Equivalence between primal and dual EPs.

An interesting special case of EP is those with skew-symmetric bifunctions, i.e.

Φ(x, x′) = −Φ(x′, x)

233

In this case, the EP and the DEP become identical

(DEP) Φ(x, x??) ≤ 0 ⇐⇒ −Φ(x??, x) ≤ 0 ⇐⇒ Φ(x??, x) ≥ 0 (EP)

and we have X? = X?? and naturally matching residuals

rdep(x̂) = rep(x̂).

Recall from the results of the previous two subsections, generally, when Φ(·, x) is Lip-

schitz and F is monotone (but not skew-symmetric), we have X? = X?? (as known before)

but only (Φ(x, ·) is convex)

rdep(x) ≤ rep(x) ≤
√

2LD
√
rdep(x) (8.8)

or (Φ(x, ·) is µ-strongly convex)

rdep(x) ≤ rep(x) ≤ 2.8(
L2

µ
)1/3rdep(x)2/3

Relationship with VIs

We can reduce a EP into a VI problem. We observe that if a point x? ∈ X satisfies

Φ(x?, x) ≥ 0, ∀x ∈ X

if only if

∇2Φ(x?, x?)>(x− x?) ≥ 0, ∀x ∈ X

234

(i.e. x? is a global minimum of the function Φ(x?, ·)), where∇2 denotes the partial deriva-

tive with respect to the second argument. Therefore, EP(X ,Φ) is equivalent to VI(X , F)

find x? ∈ X s.t. 〈F (x), x′ − x〉 ≥ 0, ∀x′ ∈ X

if we define F as

F : x ∈ X 7→ F (x) = ∇2Φ(x, x) (8.9)

In a sense, this VI problem is a linearization of the EP problem. In other words, VIs are

EPs whose bifunction satisfies that Φ(x, ·) is linear.

By the definition in (8.9), we can show that

rdvi(x̂) ≤ rdep(x̂) and rep(x̂) ≤ rvi(x̂)

And if Φ is monotone, then F = ∇2Φ(x, x) is monotone (though the opposite is not true),

because

〈F (x), x′ − x〉 = 〈∇2Φ(x, x), x′ − x〉 ≤ Φ(x, x′) (∵ Convexity)

≤ −Φ(x′, x) (∵Monotonicity)

≤ 〈∇2Φ(x′, x′), x′ − x〉 = 〈F (x′), x′ − x〉 (∵ Convexity)

Note the converse is not true, unless Φ(x, ·) is linear.

235

8.C.3 Reduction from Equilibrium Problems to Continuous Online Learning

Now we present the general reduction strategy. Given a EP (X ,Φ), we propose to define a

COL problem by identifying

fx(x
′) = Φ(x, x′)

We can see that this definition is consistent with Theorem 8.4.1: due to Φ(x, x) = 0, it

satisfies

fx(x
′)− fx(x) = Φ(x, x′)− Φ(x, x) = Φ(x, x′)

Therefore, we can say a COL is normalized if fx(x) = 0. In this case, f and Φ are

interchangeable.

Below we relate the dynamic regret regretdN :=
∑N

n=1 fxn(xn) − minx∈X fxn(x) and

the static regret regretsN :=
∑N

n=1 fxn(xn) − minx∈X
∑N

n=1 fxn(x) of this problem to the

convergence to the EP’s solution; note that the above definitions use the fact that in COL

ln(x) = fxn(x).

Dynamic Regret and Primal Residual

We first observe that each instant term in the dynamic regret of this COL problem is exactly

the residual function:

fxn(xn)−min
x∈X

fxn(x) = −min
x∈X

Φ(xn, x) = rep(xn)

Therefore, the average dynamic regret describes the rate the gap function converges to zero:

N∑

n=1

rep(xn) =
N∑

n=1

fxn(xn)−min
x∈X

fxn(x) = regretdN

236

Note that the above relationship holds also for weighted dynamic regret. In general, it

means that if the average dynamic regret converges, then the last iterate must converge to

the solution set of the EP (since the residual is non-negative.)

Static Regret and Dual Residual of Monotone EPs

Next we relate the weighted static regret to the dual residual of the EP. Let {wn} be such

that wn > 0. Let x̂N = 1
x1:N

∑N
n=1wnxn for some {xn ∈ X}Nn=1, where we define w1:N :=

∑N
n=1wn. We can derive

rdep(x̂N) = max
x∈X

Φ(x, x̂N)

≤ max
x∈X

1

w1:N

N∑

n=1

wnΦ(x, xn) (∵ Convexity)

≤ max
x∈X

1

w1:N

N∑

n=1

−wnΦ(xn, x) (∵Monotonocity)

= −min
x∈X

1

w1:N

N∑

n=1

wnΦ(xn, x)

=
1

w1:N

N∑

n=1

wnΦ(xn, xn)−min
x∈X

1

w1:N

N∑

n=1

wnΦ(xn, x) (∵ Φ(xn, xn) = 0)

=
1

w1:N

(
N∑

n=1

wnfn(xn)−min
x∈X

N∑

n=1

wnfn(x)

)

=:
regretsN(w)

w1:N

Note that the inequality rdep(x̂N) ≤ regretsN (w)

w1:N
holds for any sequence {xn} and {wn}. Inter-

estingly, by (8.8), we see that by the definition of regrets and the property of monotonicity

and local Lipschitz continuity, it holds that

rep(x̂N)2

2LD
≤ rdep(x̂N) ≤ regretsN(w)

w1:N

≤ regretdN(w)

w1:N

=:

∑N
n=1wnrep(xn)

w1:N

where L is the Lipschitz constant of Φ(·, x) and D is the size of X .

237

8.C.4 Summary

Let us summarize the insights gained from the above discussions.

1. We can reduce EP(X ,Φ) with monotone Φ to the COL problem with ln(x) = Φ(xn, x)

2. In this COL, the convergence in (weighted) average dynamic regret implies the con-

vergence of the last iterate to the primal solution set. The convergence in (weighted)

average static regret implies the convergence of the (weighted) average decision to

the dual solution set.

3. Because any dual solution is a primal solution when Φ(·, x) is continuous, this im-

plies the (weighted) average solution above also converges to the primal solution set.

Particularly, if the problem is Lipschitz, we can show rep ≤ O(
√
rdep) and therefore

we can also quantify the exact quality of x̂N in terms of the primal EP (though it

results in a slower rate).

4. When the problem is skew-symmetric (as in the case of common reductions from

optimization and saddle-point problems), we have exactly rep = rdep. This means

the average static regret rate directly implies the quality of x̂N in terms of the primal

residual, without rate degradation.

8.D Complete Proofs of Section 8.6

8.D.1 Proof of Theorem 8.6.1

The main idea is based on the decomposition that

regretdN =
∑N

n=1 fxn(xn)− fxn(x?) +
∑N

n=1 fxn(x?)− fxn(x∗n) (8.10)

238

For the first term,
∑N

n=1 fxn(xn) − fxn(x?) = regretsN(x?) ≤ regretsN and fxn(xn) −

fxn(x?) ≤ 〈∇fxn(xn), xn − x?〉 ≤ G∆n. For the second term, we derive

fxn(x?)− fxn(x∗n)

≤ 〈∇fxn(x?), x? − x∗n〉 −
α

2
‖x? − x∗n‖2

≤ 〈∇fxn(x?)−∇x?f(x?), x? − x∗n〉 −
α

2
‖x? − x∗n‖2

≤ ‖∇fxn(x?)−∇x?f(x?)‖∗‖x? − x∗n‖ −
α

2
‖x? − x∗n‖2

≤ β‖xn − x?‖‖x? − x∗n‖ −
α

2
‖x? − x∗n‖2

≤ min{βDX‖xn − x?‖,
β2

2α
‖xn − x?‖2}

in which the second inequality is due to that x? ∈ X? and the fourth inequality is due to

β-regularity. Combining the two terms gives the upper bound. For the lower bound, we

notice that when x? ∈ X?, we have fxn(xn) − fxn(x?) ≥ 0. Since by Proposition 8.3.1

x? ∈ X? is also true, we can use (8.10) and the fact that fxn(x?)− fxn(x∗n) ≥ α
2
‖x?− x∗n‖2

to derive the lower bound.

8.D.2 Proof of Corollary 8.6.1

By Proposition 8.4.2,∇f is (α− β)-strongly monotone, implying 〈∇fxn(xn), xn − x?〉 ≥

(α− β)∆2
n, where we recall that ∆n = ‖xn − x?‖ and x? ∈ X?. Because

N∑

n=1

〈∇fxn(xn), xn − x?〉 = ˜regretsN(x?) ≤ ˜regretsN ,

we have by Theorem 8.6.1 the inequality in the statement.

239

8.D.3 Proof of Proposition 8.6.1

In this case, by Proposition 8.4.3, T is non-expansive. We know that, e.g., Mann itera-

tion (Mann, 1953), i.e., for ηn ∈ (0, 1) we set

xn+1 = ηnxn + (1− ηn)x∗n, (8.11)

converges to some x? ∈ X?; in view of (8.11), the greedy is update is equivalent to Mann

iteration with ηn = 1. As Mann iteration converges in general Hilbert space, by Theo-

rem 8.4.1, it has sublinear dynamic regret with some constant that is polynomial in d.

8.D.4 Proof of Proposition 8.6.2

We first establish a simple lemma related to the smoothness of∇fx(x) and then a result on

the convergence of the Bregman divergence BR(xn‖x?). The purpose of the second lemma

is to establish essentially a contraction showing that the distance between the equilibrium

point x? and xn strictly decreases.

Lemma 8.D.1. If, ∀x ∈ X , ∇f·(x) is β-Lipschitz continuous and fx(·) is γ-smooth, then,

for any x, y ∈ X ,

‖∇fx(x)−∇fy(y)‖∗ ≤ (γ + β)‖x− y‖.

Proof. For any x, y ∈ X , it holds that

‖∇fx(x)−∇fy(y)‖∗ ≤ ‖∇fx(x)−∇fy(x) +∇fy(x)−∇fy(y)‖∗

≤ ‖∇fx(x)−∇fy(x)‖∗ + ‖∇fy(x)−∇fy(y)‖∗

≤ β‖x− y‖+ γ‖x− y‖.

The last inequality uses β-regularity and γ-smoothness of ∇f·(x) and fy(·), respectively.

240

�

Lemma 8.D.2. If f is (α, β)-regular, fx(·) is γ-smooth for all x ∈ X , and R is 1-strongly

convex and L-smooth, then for the online mirror descent algorithm it holds that

BR(x?‖xn) ≤
(
1− 2η(α− β)L−1 + η2(γ + β)2

)n−1
BR(x?‖x1).

Proof. By the mirror descent update rule in (8.4), 〈η∇fxn(xn)+∇R(xn+1)−∇R(xn), x?−

xn+1〉 ≥ 0. Since x? ∈ X?, 〈η∇fx?(x?), xn+1 − x?〉 ≥ 0. Combining these inequalities

yields η〈∇fxn(xn) − ∇fx?(x?), xn+1 − x?〉 ≤ 〈∇R(xn+1) − ∇R(xn), x? − xn+1〉. Then

by the three-point equality of the Bregman divergence, we have

BR(x?‖xn+1) ≤ BR(x?‖xn)−BR(xn+1‖xn)− η〈∇fxn(xn)−∇fx?(x?), xn+1 − x?〉.

Because of the (α− β)-strong monotonicity of∇fx(x), the above inequality implies

BR(x?‖xn+1) ≤ BR(x?‖xn)−BR(xn+1‖xn)− η〈∇fxn(xn)−∇fx?(x?), xn+1 − xn〉

− η〈∇fxn(xn)−∇fx?(x?), xn − x?〉

≤ BR(x?‖xn)−BR(xn+1‖xn)− η〈∇fxn(xn)−∇fx?(x?), xn+1 − xn〉

− η(α− β)‖x? − xn‖2

≤ BR(x?‖xn) +
η2(γ + β)2

2
‖x? − xn‖2 − η(α− β)‖x? − xn‖2

≤
(
1 + η2(γ + β)2 − 2η(α− β)L−1

)
BR(x?‖xn).

The third inequality results from the Cauchy-Scwharz inequality followed by maximizing

over ‖xn+1− xn‖ and then applying Lemma 8.D.1. The last inequality uses the fact that R

is 1-strongly convex and L-smooth. �

If α > β and η is chosen such that η < 2(α−β)
L(γ+β)2 , we can see that the online mirror

descent algorithm guarantees linear convergence ofBR(x?‖xn) to zero with rate (1−2η(α−

241

β)L−1 + η2(γ + β)2) ∈ (0, 1). By strong convexity, we have,

∆n = ‖x? − xn‖ ≤
√

2BR(x?‖xn)

≤
√

2
(
1 + η2(γ + β)2 − 2η(α− β)L−1

)n−1
2 BR(x?‖x0)1/2.

The proposition follows immediately from combining this result and Theorem 8.6.1.

8.D.5 Proof of Proposition 8.6.3

Recall that gn = ∇ln(xn) + εn + ξn. As discussed previously, we assume there exist

constants 0 ≤ σ, κ < ∞ such that E [‖εn‖2
∗] ≤ σ2 and ‖ξn‖2

∗ ≤ κ2 for all n. The mirror

descent update rule is given by

xn+1 = arg min
x∈X

〈ηngn, x〉+BR(x‖xn). (8.12)

We use Corollary 8.6.1 along with known results for the static regret to bound the

dynamic regret in the stochastic case. The main idea of the proof is to show the result for

the linearized losses. By convexity, this can be used to bound both terms in Corollary 8.6.1.

Let u be any fixed vector inX , chosen independent of the learner’s decisions x1, . . . , xn.

The first-order condition for optimality of (8.12) yields 〈ηngn, xn+1−u〉 ≤ 〈u−xn+1,∇R(xn+1)−

∇R(xn)〉. We use this condition to bound the linearized losses as in the proof of Proposi-

tion 8.6.2. We can bound the linearized losses by the magnitude of the stochastic gradients

and Bregman divergences between u and the learner’s decisions:

〈gn, xn − u〉 ≤
1

ηn
〈u− xn+1,∇R(xn+1)−∇R(xn)〉+ 〈gn, xn − xn+1〉

=
1

ηn
BR(u‖xn)− 1

ηn
BR(u‖xn+1)− 1

ηn
BR(xn+1‖xn) + 〈gn, xn − xn+1〉

≤ 1

ηn
BR(u‖xn)− 1

ηn
BR(u‖xn+1)− 1

2ηn
‖xn − xn+1‖2 + ‖gn‖∗‖xn − xn+1‖

≤ 1

ηn
BR(u‖xn)− 1

ηn
BR(u‖xn+1) +

ηn
2
‖gn‖2

∗.

242

The first inequality follows from adding 〈gn, xn−xn+1〉 to both sides of the inequality from

the first-order condition for optimality. The equality uses the three-point equality of the

Bregman divergence. The second inequality follows from the Cauchy-Schwarz inequality

and the fact that 1
2
‖xn − xn+1‖2 ≤ BR(xn+1‖xn) due to the 1-strong convexity of R. The

last inequality maximizes over ‖xn − xn+1‖.

DefineR = supw1,w2∈X BR(w1‖w2), which is bounded. Note that E [‖gn‖2
∗] ≤ 3(G2 +

σ2 + κ2). Therefore, summing from n = 1 to N , it holds for any u ∈ X selected before

learning,

E

[
N∑

n=1

〈gn, xn − u〉
]
≤ E

[
N∑

n=1

(
1

ηn
− 1

ηn−1

)
R+

3

2
(G2 + σ2 + κ2)ηn

]

After rearrangement, we have

E

[
N∑

n=1

〈∇ln(xn) + εn, xn − u〉
]
≤ E

[
N∑

n=1

(
1

ηn
− 1

ηn−1

)
R+

3

2
(G2 + σ2 + κ2)ηn +DX‖ξn‖∗

]
.

Choosing ηn = 1√
n

, ηn = η1, and u = x? (because x? is fixed for a fixed f selected

before learning) yields E
[∑N

n=1〈∇ln(xn) + εn, xn − x?〉
]

= O(
√
N + Ξ). Because of

the law of total expectation and that xn does not depend on εn, we have E[˜regretsN(x?)] =

E
[∑N

n=1〈∇ln(xn) + εn, xn − x?〉
]
. Further, by convexity, it follows E[regretsN(x?)] ≤

E[˜regretsN(x?)]. Then, we may apply Corollary 8.6.1 to obtain the result. Note that there is

no requirement that R is smooth.

8.E Complete Proofs of Section 8.7

8.E.1 Proof of Proposition 8.7.1

Because∇ln(·) is α-strongly monotone, it holds

〈
∇ln(x∗n−1), x∗n−1 − x∗n

〉
≥ α‖x∗n−1 − x∗n‖2

243

Since y∗ satisfies
〈
∇ln−1(x∗n−1), x∗n − x∗n−1

〉
≥ 0, the above inequality implies that

α‖x∗n − x∗n−1‖2 ≤
〈
∇ln(x∗n−1)−∇ln−1(x∗n−1), x∗n−1 − x∗n

〉

≤ (β‖xn − xn−1‖+ an)‖x∗n−1 − x∗n‖

Rearranging the inequality gives the statement.

8.E.2 Proof of Theorem 8.7.1

For convenience, define λ := β
α

. Recall that, by the mirror descent update rule, the first-

order conditions for optimality of both xx+1 and x∗n yield, for all x ∈ X ,

〈η∇ln(xn), x− xn+1〉 ≥ 〈∇R(xn)−∇R(xn+1), x− xn+1〉

〈∇ln(x∗n), x− x∗n〉 ≥ 0.

The proof requires many intermediate steps, which we arrange in a series of lemmas that

typically follow from each other in order. Ultimately, we aim to achieve a result that re-

sembles a contraction as done in Proposition 8.6.2 but with additional terms due to the

adversarial component of the predictable problem. We begin with general bounds on the

Bregman divergence beteween the learner’s decisions and the optimal decisions.

Lemma 8.E.1. At round n, for an (α, β)-predictable problem under the mirror descent

algorithm, if ln is γ-smooth and R is 1-strongly convex and L-smooth, then it holds that

BR(x∗n+1‖xn+1) ≤ BR(x∗n+1‖x∗n) +BR(x∗n‖xn+1)

+ λ‖xn+1 − xn‖‖∇R(x∗n)−∇R(xn+1)‖∗ +
an
α
‖∇R(x∗n)−∇R(xn+1)‖∗

and, in the next round,

BR(x∗n‖xn+1) ≤ BR(x∗n‖xn)−BR(xn+1‖xn)− αη‖xn − x∗n‖2 + ηγ‖xn − x∗n‖‖xn+1 − xn‖.

244

Proof. The first result uses the basic three-point equality of the Bregman divergence fol-

lowed by the Cauchy-Schwarz inequality and Proposition 8.7.1. Note that this first part of

the lemma does not require that xn is generated from a mirror descent algorithm:

BR(x∗n+1‖xn+1) = BR(x∗n+1‖x∗n) +BR(x∗n‖xn+1) + 〈x∗n+1 − x∗n,∇R(x∗n)−∇R(xn+1)〉

≤ BR(x∗n+1‖x∗n) +BR(x∗n‖xn+1) + ‖x∗n+1 − x∗n‖‖∇R(x∗n)−∇R(xn+1)‖∗

≤ BR(x∗n+1‖x∗n) +BR(x∗n‖xn+1)

+ λ‖xn+1 − xn‖‖∇R(x∗n)−∇R(xn+1)‖∗ +
an
α
‖∇R(x∗n)−∇R(xn+1)‖∗.

For the second part of the lemma, we require using the first-order conditions of opti-

mality of both xn+1 for the mirror descent update and x∗n for ln:

BR(x∗n‖xn+1) = BR(x∗n‖xn)−BR(xn+1‖xn) + 〈x∗n − xn+1,∇R(xn)−∇R(xn+1)〉

≤ BR(x∗n‖xn)−B(xn+1‖xn) + η〈∇ln(x∗n)−∇ln(xn), xn − x∗n〉

+ η〈∇ln(x∗n)−∇ln(xn), xn+1 − xn〉

≤ BR(x∗n‖xn)−BR(xn+1‖xn)− αη‖xn − x∗n‖2 + ηγ‖xn − x∗n‖‖xn+1 − xn‖.

The first line again applies the three-point equality of the Bregman divergence. The second

line combines both first-order optimality conditions to bound the inner product. The last

inequality uses the strong convexity of ln to bound η〈∇ln(x∗n) − ∇ln(xn), xn − x∗n〉 ≤

−αη‖xn − x∗n‖2 and the Cauchy-Schwarz inequality along with the smoothness of ln to

bound the other inner product. �

The second result also leads to a natural corollary that will be useful later in the full

proof.

Corollary 8.E.1. Under the same conditions as Lemma 8.E.1, it holds that

BR(x∗n‖xn+1) =
(
1− 2αηL−1 + η2γ2

)
BR(x∗n‖xn).

245

Proof. We start with the first inequality of Lemma 8.E.1 and then maximize over ‖xn+1 −

xn‖2. Finally, we applying the strong convexity and smoothness of R to achieve the result:

BR(x∗n‖xn+1)

≤ BR(x∗n‖xn)−BR(xn+1‖xn)− αη‖xn − x∗n‖2 + ηγ‖xn − x∗n‖‖xn+1 − xn‖

≤ (1− 2αηL−1)BR(x∗n‖xn)− 1

2
‖xn+1 − xn‖2 + ηγ‖xn − x∗n‖‖xn+1 − xn‖

≤ (1− 2αηL−1)BR(x∗n‖xn) + η2γ2BR(x∗n‖xn) =
(
1− 2αηL−1 + η2γ2

)
BR(x∗n‖xn).�

We can combine both results of Lemma 8.E.1 in order to show

BR(x∗n+1‖xn+1)

≤ BR(x∗n+1‖x∗n) + λ‖xn+1 − xn‖‖∇R(x∗n)−∇R(xn+1)‖∗ +
an
α
‖∇R(x∗n)−∇R(xn+1)‖∗

+BR(x∗n‖xn)−B(xn+1‖xn)− αη‖xn − x∗n‖2 + ηγ‖xn − x∗n‖‖xn+1 − xn‖.

Some of the terms in the above inequality can be grouped and bounded above. By L-

smoothness of R, we have BR(x∗n+1‖x∗n) ≤ L
2
‖x∗n+1−x∗n‖2 ≤ L

2

(
λ‖xn − xn+1‖+ an

α

)2
=

L
2

(
λ2‖xn − xn+1‖2 + a2

n

α2 + 2anλ
α
‖xn − xn+1‖

)
. Because, R is 1-strongly convex, L ≥ 1;

therefore, the previous inequality can be bounded from above using L2 instead of L. While

this artificially worsens the bound, it will be useful for simplifying the conditions sufficient

for sublinear dynamic regret. 1-strong convexity of R also gives us −BR(xn+1, xn) ≤

−1
2
‖xn+1 − xn‖2. Applying these upper bounds and then aggregating terms yields

BR(x∗n+1‖xn+1)

≤ −(1− L2λ2)

2
‖xn − xn+1‖2 + (λ‖∇R(x∗n)−∇R(xn+1)‖∗ + ηγ‖xn − x∗n‖) ‖xn − xn+1‖

+BR(x∗n‖xn)− αη‖xn − x∗n‖2 +
an
α
‖∇R(x∗n)−∇R(xn+1)‖∗ +

a2
nL

2α2
+
anLλ

α
‖xn − xn+1‖

≤ −(1− L2λ2)

2
‖xn − xn+1‖2 + (λ‖∇R(x∗n)−∇R(xn+1)‖∗ + ηγ‖xn − x∗n‖) ‖xn − xn+1‖

246

+BR(x∗n‖xn)− αη‖xn − x∗n‖2 +
anL

α
DX +

a2
nL

2α2
+
anLλ

α
DX

≤ λ2‖∇R(x∗n)−∇R(xn+1)‖2
∗ + η2γ2‖xn − x∗n‖2

1− L2λ2
+BR(x∗n‖xn)− αη‖xn − x∗n‖2 + ζn

≤ λ2L2‖x∗n − xn+1‖2 + η2γ2‖xn − x∗n‖2

1− L2λ2
+BR(x∗n‖xn)− αη‖xn − x∗n‖2 + ζn

≤ 2λ2L2BR(x∗n‖xn+1) + 2η2γ2BR(x∗n‖xn)

1− L2λ2
+BR(x∗n‖xn)− αη‖xn − x∗n‖2 + ζn,

where ζn = anLDX
α

(1 + λ) + a2
nL

2α2 . The third inequality follows from maximizing over

‖xn−xn+1‖ and then applying (a+b)2 ≤ 2a2 +2b2 for any a, b ∈ R. For this operation, we

require that L2λ2 < 1. The fourth inequality uses L-smoothness of R. The last inequality

uses the fact that R is 1-strongly convex to bound the squared normed differences by the

Bregman divergence.

We then use Corollary 8.E.1 to bound this result on BR(x∗n+1‖xn+1) in terms of only

BR(x∗n‖xn) and the appropriate constants:

BR(x∗n+1‖xn+1)

≤ 2L2λ2BR(x∗n‖xn+1) + 2η2γ2BR(x∗n‖xn)

1− L2λ2
+BR(x∗n‖xn)− αη‖xn − x∗n‖2 + ζn

≤ 2L2λ2

1− L2λ2

(
1− 2αηL−1 + η2γ2

)
BR(x∗n‖xn) +

2η2γ2

1− L2λ2
BR(x∗n‖xn)

+BR(x∗n‖xn)− 2αηL−1BR(x∗n‖xn) + ζn

=

(
1− 2αηL−1 +

2η2γ2

1− L2λ2
+

2L2λ2

1− L2λ2
− 4Lλ2αη

1− L2λ2
+

2L2λ2η2γ2

1− L2λ2

)
BR(x∗n‖xn) + ζn

=

(
1 + L2λ2

1− L2λ2

)(
1− 2αηL−1 + 2η2γ2

)
BR(x∗n‖xn) + ζn.

Thus, we have arrived at an inequality that resembles a contraction. However, the stepsize

η > 0 may be chosen such that it minimizes the factor in front of the Bregman divergence.

This can be achieved, but it requires that additional constraints are put on the value of λ.

247

Lemma 8.E.2. If λ < α
2L2γ

and η = α
2Lγ2 , then

(
1 + L2λ2

1− L2λ2

)(
1− 2αηL−1 + 2η2γ2

)
< 1

Proof. By optimizing over choices of η, it can be seen that

1− 2αηL−1 + 2η2γ2 ≥ 1− α2

2L2γ2
,

where η is chosen to be α
2Lγ2 . Therefore, in order to realize a contraction, we must have

1 >

(
1 + L2λ2

1− L2λ2

)(
1− α2

2L2γ2

)
.

Alternatively,

0 > 2L2λ2 − α2

2L2γ2
− λ2α2

2γ2
.

The quantity on the right hand size of the above inequality is in fact smaller than 2L2λ2 −
α2

2L2γ2 , meaning that it is sufficient to have the condition for a contraction be: α
2L2γ

> λ.. �

Note that α
2L2γ

< 1 since L ≥ 1 and γ ≥ α by the definitions of smoothness of R and

ln, respectively. Thus, this condition required to guarantee the contraction is stricter than

requiring that λ < 1. If this condition is satisfied and if we set η = α
2Lγ2 , then we can

further examine the contraction in terms of constants that depend only on the properties of

ln and R:

BR(x∗n+1‖xn+1) ≤
(

1 + L2λ2

1− L2λ2

)(
1− 2αηL−1 + 2η2γ2

)
BR(x∗n‖xn) + ζn

<

(
1 + α2

4L2γ2

1− α2

4L2γ2

)(
1− α2

2L2γ2

)
BR(x∗n‖xn) + ζn

=

(
1−

α4

8L4γ4

1− α2

4L2γ2

)
BR(x∗n‖xn) + ζn.

248

It is easily verified that the factor in front of the Bregman divergence on the right side is

less than 1 and greater than 5
6
.

By applying the above inequality recursively, we can derive the inequality below

1

2
‖xn − x∗n‖2 ≤ BR(x∗n‖xn) ≤ ρn−1BR(x∗1‖x1) +

n−1∑

k=1

ρn−k−1ζk,

where ρ =
(

1+L2λ2

1−L2λ2

)
(1− 2αηL−1 + 2η2γ2) < 1. Therefore the dynamic regret can be

bounded as

regretdN =
N∑

n=1

fn(xn)− fn(x∗n) ≤ G
N∑

n=1

‖xn − x∗n‖

≤
√

2GBR(x∗1‖x1)1/2

N∑

n=1

ρ
n−1

2 +
√

2G
N∑

n=2

(
n−1∑

k=1

ρn−k−1ζk

)1/2

≤
√

2GBR(x∗1‖x1)1/2

N∑

n=1

ρ
n−1

2 +
√

2G
N∑

n=2

n−1∑

k=1

ρ
n−k−1

2 ζ
1/2
k ,

where both inequalities use the fact that for a, b > 0, a+ b ≤ a+ b+ 2
√
ab = (

√
a+
√
b)2.

The left-hand term is clearly bounded above by a constant since
√
ρ < 1. Analysis of the

right-hand term is not as obvious, so we establish the following lemma independently.

Lemma 8.E.3. If ρ < 1 and ζn = anLDX
α

(1 + λ) + a2
nL

2α2 , then it holds that

√
2

N∑

n=2

n−1∑

k=1

ρ
n−k−1

2 ζ
1/2
k = O(AN +

√
NAN).

Proof.

N∑

n=2

n−1∑

k=1

ρ
n−k−1

2 ζ
1/2
k =

N−1∑

n=1

ζ1/2
n

(
1 + ρ

1
2 + . . .+ ρ

N−1−n
2

)
≤ 1

1−√ρ
N−1∑

n=1

√
ζn.

The last inequality upper bounds the finite geometric series with the value of the infinite

249

geometric series since again
√
ρ < 1 for each k. Recall that ζn was defined as

ζn =
anLDX
α

(1 + λ) +
a2
nL

2α2
.

Therefore, the over the square roots can be bounded:

N−1∑

n=1

√
ζn ≤

√
LDX
α

(1 + λ)
N−1∑

n=1

√
an + α−1

√
L

2

N−1∑

n=1

an.

While the right-hand summation is simply the definition of AN−1, the left-hand summation

yields
∑N−1

n=1

√
an ≤

√
(N − 1)AN−1. �

Then the total dynamic regret has order regretdN = O(1 + AN +
√
NAN).

8.E.3 Proof of Theorem 8.7.2

Euclidean Space with β
α

= 1

The proof first requires a result from analysis on the convergence of sequences that are

nearly monotonic.

Lemma 8.E.4. Let (an)n∈N ⊂ R and (bn)n∈N ⊂ R be two sequences satisfying bn ≥ 0 and
∑n

k=1 ak <∞ ∀n ∈ N. If bn+1 ≤ bn + an, then the sequence bn converges.

Proof. Define u1 := b1 and un := bn −
∑n−1

k=1 ak. Note that u1 = b1 ≥ b2 − a1 = u2.

Recursively, bn−an−1 ≤ bn−1 =⇒ bn−
∑n−1

k=1 ak ≤ bn−1−
∑n−2

k=1 . Therefore, un ≤ un+1.

Note that (un)n∈N) is bounded below because bn ≥ 0 and
∑n

k=1 ak <∞. This implies that

(un)n∈N converges. Because (
∑n

k=1 ak)n∈N, also converges, (bn)n∈N must converge. �

The majority of the proof follows a similar line of reasoning as a standard result in the

field of discrete-time pursuit-evasion games Alexander, Bishop, and Ghrist, 2006. Let ‖ · ‖

denote the Euclidean norm. We aim to show that if the distance between the learner’s deci-

sion xn and the optimal decision x∗n does not converge to zero, then they travel unbounded

in a straight line, which is a contradiction.

250

Consider the following update rule which essentially amounts to a constrained greedy

update:

xn+1 =
xn + x∗n

2

xn+1 is well defined at each round because X is convex. Define cn := ‖xn− x∗n‖. Then we

have

0 ≤ cn+1 = ‖xn+1 − x∗n+1‖

≤ ‖xn+1 − x∗n‖+ ‖x∗n+1 − x∗n‖

=
1

2
‖xn − x∗n‖+ ‖x∗n+1 − x∗n‖

≤ 1

2
‖xn − x∗n‖+ ‖xn+1 − xn‖+

an
α

(∵ Proposition 8.7.1)

= ‖xn − x∗n‖+
an
α

= cn +
an
α

Because it is assumed that
∑∞

n=1 an < ∞, the sequences (cn)n∈N and (an)n∈N satisfy

the sufficient conditions of Lemma 8.E.4. Thus the sequence (cn)n∈N converges, so there

exists a limit point C := limn→∞ cn ≥ 0. Towards a contradiction, consider the case where

C > 0. We will prove that this leads the points to follow a straight line in the following

lemma.

Lemma 8.E.5. Let θn denote the angle between the vectors from x∗n to x∗n+1 and from x∗n

to xn+1. If limn→∞ cn > 0, then limn→∞ cos θn = −1.

Proof. At round n + 1 we can write the distance between the learner’s decision and the

optimal decision in terms of the previous round:

C2 = lim
n→∞

‖xn+1 − x∗n+1‖2

= lim
n→∞

(
‖xn+1 − x∗n‖2 + ‖x∗n+1 − x∗n‖2 − 2‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn

)

≤ lim
n→∞

(
1

4
‖xn − x∗n‖2 + ‖xn − xn+1‖2 +

a2
n

α2
+

2an
α
‖xn − xn+1‖ − 2‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn

)

251

= lim
n→∞

(
1

2
‖xn − x∗n‖2 +

a2
n

α2
+

2an
α
‖xn − xn+1‖ − 2‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn

)

= lim
n→∞

1

2
‖xn − x∗n‖2 − 2 lim

n→∞
‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn

=
1

2
C2 − 2 lim

n→∞
‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn

The first inequality follows because ‖xn+1 − x∗n‖ = 1
2
‖xn − x∗n‖ and ‖x∗n+1 − x∗n‖ ≤

‖xn+1 − xn‖ + an
α

due to Proposition 8.7.1. The next equality again uses ‖xn+1 − x∗n‖ =

1
2
‖xn− x∗n‖. The second to last line follows from passing the limit through the sum, where

we have limn→∞ an = 0 because A∞ <∞. That is, the inequality above implies

2 lim
n→∞

‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn = −C
2

2
< 0

which in turn implies limn→∞ cos θn < 0. This leads to an upper bound

− 2 lim
n→∞

‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖ cos θn

=
(
−2 lim

n→∞
cos θn

)
lim
n→∞

‖xn+1 − x∗n‖‖x∗n+1 − x∗n‖

≤
(
−2 lim

n→∞
cos θn

)
lim
n→∞

1

2
‖xn − x∗n‖

(
‖xn+1 − xn‖+

an
α

)

=
−C2

2
lim
n→∞

cos θn

Combining these two inequalities, we can then conclude C2 ≤ C2

2
− C2

2
cos θ ≤ C2. A

necessary condition in order for the bounds to be satisfied is cos θ = −1. �

When C > 0, Lemma 8.E.5 therefore implies the points xn, xn+1, x
∗
n, x

∗
n+1 are colinear

in the limit. Thus, ‖xn−xn+m‖ grows unbounded inm, which contradicts the compactness

of X . The alternative case must then be true: C = limn→∞ ‖xn − x∗n‖ = 0. The dynamic

regret can then be bounded as:

regretdN =
N∑

n=1

ln(xn)− ln(x∗n) ≤ G

N∑

n=1

‖xn − x∗n‖

252

Since ‖xN−x∗N‖ → 0, we know limN→∞
1
N

∑N
n=1 ‖xn−x∗n‖ = 0. Therefore, the dynamic

regret is sublinear.

Note that this result does not reveal a rate of convergence, only that ‖xn−x∗n‖ converges

to zero, which is enough for sublinear dynamic regret.

One-dimensional Space with arbitrary β
α

In the case where d = 1, we aim to prove sublinear dynamic regret regardless of α and β by

showing that xn essentially traps x∗n by taking conservative steps as before. Rather than the

constraint being |xn − xn+1| ≤ 1
2
|xn − x∗n|, we choose xn+1 in the direction of x∗n subject

to |xn − xn+1| ≤ 1
1+λ
|xn − x∗n|. Specifically, we will use the following update rule:

xn+1 =
λxn + x∗n

1 + λ
(8.13)

Recall that sublinear dynamic regret is implied by cn := |xn − x∗n| converging to zero as

n → ∞. Therefore, below we will prove the above update rule results in limn→∞ cn = 0.

Like our discussions above, this implies achieving sublinear dynamic regret but not directly

its rate.

Suppose at any time |xn − x∗n| = 0. Then we are done since the learner can repeated

play the same decision without x∗n changing. Below we consider the case |xn − x∗n| 6= 0.

We prove this by contradiction. First we observe that the update in (8.13) makes sure that,

at any round, x∗n+1 cannot switch to the opposite side of x∗n with respect to xn+1 and xn;

namely it is guaranteed that (x∗n+1−xn+1)(x∗n−xn+1) ≥ 0 and (x∗n+1−xn)(x∗n−xn) ≥ 0.

Towards a contradiction, suppose that there is some C > 0 such that |xn − x∗n| ≥ C

for infinitely many n. Then xn at every round moves a distance of at least C
1+λ

in the same

direction infinitely since x∗n+1 always lies the same side of xn+1 as x∗n. This contradicts the

compactness of X . Therefore |xn − x∗n| must converge to zero.

253

CHAPTER 9

A REDUCTION FROM REINFORCEMENT LEARNING TO ONLINE

LEARNING

9.1 Introduction

Reinforcement learning (RL) is a fundamental problem for sequential decision making in

unknown environments. One of its core difficulties, however, is the need for algorithms

to infer long-term consequences based on limited, noisy, short-term feedback. As a result,

designing RL algorithms that are both scalable and provably sample efficient has been

challenging.

In this chapter, we revisit the classic linear-program (LP) formulation of RL (Denardo

and Fox, 1968; Manne, 1959) in an attempt to tackle this long-standing question. We

focus on the associated saddle-point problem of the LP (given by Lagrange duality), which

has recently gained traction due to its potential for computationally efficient algorithms

with theoretical guarantees (Chen, Li, and Wang, 2018; Chen and Wang, 2016; Dai et

al., 2018; Lakshminarayanan, Bhatnagar, and Szepesvári, 2018; Lee and He, 2018; Lin,

Nadarajah, and Soheili, 2017; Wang, 2017a,b; Wang and Chen, 2016). But in contrast to

these previous works based on stochastic approximation, here we consider a reformulation

through the lens of online learning, i.e. regret minimization. Since the pioneering work

of Gordon (1999) and Zinkevich (2003), online learning has evolved into a ubiquitous tool

for systematic design and analysis of iterative algorithms. Therefore, if we can identify a

reduction from RL to online learning, we can potentially leverage it to build efficient RL

algorithms.

We will show this idea is indeed feasible. We present a reduction by which any no-

regret online algorithm, after observing N samples, can find a policy π̂N in a policy class Π

254

satisfying V π̂N (p) ≥ V π∗(p)−o(1)− εΠ, where V π(p) is the accumulated reward of policy

π with respect to some initial state distribution p, π∗ is the optimal policy, and εΠ ≥ 0 is a

measure of the expressivity of Π (see Section 9.4.2 for definition).

Our reduction is built on a refinement of online learning, called Continuous Online

Learning (COL), which was proposed in Chapter 8 to model problems where loss gradients

across rounds change continuously with the learner’s decisions (Cheng et al., 2019c). As

shown in Chapter 8, COL has a strong connection to equilibrium problems (EPs) (Bianchi

and Schaible, 1996; Blum, 1994), and any monotone EP (including our saddle-point prob-

lem of interest) can be framed as no-regret learning in a properly constructed COL prob-

lem (Cheng et al., 2019c). Using this idea, our reduction follows naturally by first convert-

ing an RL problem to an EP and then the EP to a COL problem.

Framing RL as COL reveals new insights into the relationship between approximate

solutions to the saddle-point problem and approximately optimal policies. Importantly,

this new perspective shows that the RL problem can be separated into two parts: regret

minimization and function approximation. The first part admits standard treatments from

the online learning literature, and the second part can be quantified independently of the

learning process. For example, one can accelerate learning by adopting optimistic online

algorithms (Cheng et al., 2019d; Rakhlin and Sridharan, 2012) (cf. Chapter 10) that account

for the predictability in COL, without worrying about function approximators. Because

of these problem-agnostic features, the proposed reduction can be used to systematically

design efficient RL algorithms with performance guarantees.

As a demonstration, we design an RL algorithm based on arguably the simplest on-

line learning algorithm: mirror descent. Assuming a generative model1, we prove that,

for any tabular Markov decision process (MDP), with probability at least 1 − δ, this algo-

rithm learns an ε-optimal policy for the γ-discounted accumulated reward, using at most

Õ
(
|S||A| log(1

δ
)

(1−γ)4ε2

)
samples, where |S|,|A| are the sizes of state and action spaces, and γ is

1In practice, it can be approximated by running a behavior policy with sufficient exploration (Kearns and
Singh, 1999).

255

the discount rate. Furthermore, thanks to the separation property above, our algorithm ad-

mits a natural extension with linearly parameterized function approximators, whose sample

and per-round computation complexities become linear in the number of parameters, in-

dependent of |S|,|A|, though at the cost of policy performance bias due to approximation

error.

This sample complexity improves the current best provable rate of the saddle-point RL

setup (Chen and Wang, 2016; Lee and He, 2018; Wang, 2017b; Wang and Chen, 2016) by

a large factor of |S|2
(1−γ)2 , without making any assumption on the MDP.2 This improvement is

attributed to our new online-learning-style analysis that uses a cleverly selected comparator

in the regret definition. While it is possible to devise a minor modification of the previous

stochastic mirror descent algorithm, e.g. (Wang, 2017b), achieving the same rate with our

new analysis, we remark that our algorithm is considerably simpler and removes an un-

realistic projection required in previous work (Chen and Wang, 2016; Lee and He, 2018;

Wang, 2017b; Wang and Chen, 2016).

Finally, we do note that the same sample complexity can also be achieved, e.g., by

model-based RL and (phased) Q-learning (Kakade, 2003; Kearns and Singh, 1999). How-

ever, these methods either have super-linear runtime, with no obvious route for improve-

ment, or could become unstable when using function approximators without further as-

sumption. This chapter is partly based on our paper (Cheng et al., 2019a).

Remark 9.1.1. In this chapter, we take a normalized definition of value function V π (see

the section below), which is different from the other chapters of this thesis. In addition, we

use F to denote the bifunction in EPs as opposed to Φ in Chapter 8 (we reserve Φ to denote

the basis functions here). This convention is adopted to making the writing more compact.
2(Wang, 2017b) has the same sample complexity but requires the MDP to be ergodic under any policy.

256

9.2 Setup & Preliminaries

Let S and A be state and action spaces, which can be discrete or continuous. We consider

γ-discounted infinite-horizon problems for γ ∈ [0, 1). Our goal is to find a policy π(a|s)

that maximizes the discounted average return V π(p) := Es∼p[V π(s)], where p is the initial

state distribution,

V π(s) := (1− γ)Eξ∼ρπ(s) [
∑∞

t=0 γ
tr(st, at)] (9.1)

is the value function of π at state s, r : S × A → [0, 1] is the reward function, and ρπ(s)

is the distribution of trajectory ξ = s0, a0, s1, . . . generated by running π from s0 = s in

an MDP. We assume that the initial distribution p, the transition P(s′|s, a), and the reward

function r in the MDP are unknown but can be queried through a generative model, i.e. we

can sample s0 from p, s′ from P , and r(s, a) for any s ∈ S and a ∈ A. We remark that

the definition of V π in (9.1) contains a (1− γ) factor. We adopt this setup to make writing

more compact. We denote the optimal policy as π∗ and its value function as V ∗ for short.

9.2.1 Duality in RL

Our reduction is based on the linear-program (LP) formulation of RL. We provide a short

recap here (please see Section 9.A and (Puterman, 2014) for details).

To show how maxπ V
π(p) can be framed as a LP, let us define the average state distri-

bution under π, dπ(s) := (1 − γ)
∑∞

t=0 γ
tdπt (s), where dπt is the state distribution at time

t visited by running π from p (e.g. dπ0 = p). By construction, dπ satisfies the stationarity

property,

dπ(s′) = (1− γ)p(s′) + γEs∼dπEa∼π|s[P(s′|s, a)]. (9.2)

With dπ, we can write V π(p) = Es∼dπEa∼π|s [r(s, a)] and our objective maxπ V
π(p) equiv-

257

alently as:

maxµ∈R|S||A|:µ≥0 r>µ

s.t. (1− γ)p + γP>µ = E>µ

(9.3)

where r ∈ R|S||A|, p ∈ R|S|, and P ∈ R|S||A|×|S| are vector forms of r, p, and P , re-

spectively, and E = I ⊗ 1 ∈ R|S||A|×|S| (we use | · | to denote the cardinality of a set, ⊗

the Kronecker product, I ∈ R|S|×|S| is the identity, and 1 ∈ R|A| the vector of ones). In

(9.3), S and A are implicitly assumed to have finite cardinalities, but the same formula-

tion extends to countable or even continuous spaces (under proper regularity assumptions;

see (Hernández-Lerma and Lasserre, 2012)). We adopt this abuse of notation (emphasized

by bold-faced symbols) for compactness.

The variable µ of the LP in (9.3) resembles a joint distribution dπ(s)π(a|s). To see

this, notice that the constraint in (9.3) is reminiscent of (9.2), and implies ‖µ‖1 = 1,

i.e. µ is a probability distribution. Then one can show µ(s, a) = dπ(s)π(a|s) when the

constraint is satisfied, which implies that (9.3) is the same as maxπ V
π(p) and its solution

µ∗ corresponds to µ∗(s, a) = dπ
∗
(s)π∗(a|s) of the optimal policy π∗.

As (9.3) is a LP, it suggests looking at its dual, which turns out to be the classic LP

formulation of RL3,

minv∈R|S| p>v

s.t. (1− γ)r + γPv ≤ Ev.

(9.4)

It can be verified that for all p > 0, the solution to (9.4) satisfies the Bellman equation (Bell-

man, 1954) and therefore is the optimal value function v∗ (the vector form of V ∗). We note

3Our setup in (9.4) differs from the classic one in the (1 − γ) factor in the constraint due to the average
setup.

258

that, for any π, V π by definition satisfies a stationarity property

V π(s) = Ea∼π|s
[
(1− γ)r(s, a) + γEs′∼P|s,a [V π(s′)]

]
(9.5)

which can be viewed as a dual equivalent of (9.2) for dπ. Because r is in [0, 1], (9.5) implies

V π lies in [0, 1] too.

9.2.2 Toward RL: the Saddle-Point Setup

The LP formulations above require knowing the probabilities p and P and are computa-

tionally inefficient. When only generative models are available (as in our setup), one can

alternatively exploit the duality relationship between the two LPs in (9.3) and (9.4), and

frame RL as a saddle-point problem (Wang and Chen, 2016). Let us define

av := r + 1
1−γ (γP− E)v (9.6)

as the advantage function with respect to v (where v is not necessarily a value function).

Then the Lagrangian connecting the two LPs can be written as

L(v,µ) := p>v + µ>av, (9.7)

which leads to the saddle-point formulation,

min
v∈V

max
µ∈M
L(v,µ), (9.8)

where the constraints are

V = {v ∈ R|S| : v ≥ 0, ‖v‖∞ ≤ 1} (9.9)

M = {µ ∈ R|S||A| : µ ≥ 0, ‖µ‖1 = 1}. (9.10)

259

The solution to (9.8) is exactly (v∗,µ∗), but notice that extra constraints on the norm of µ

and v are introduced in V ,M, compared with (9.3) and (9.4). This is a common practice,

which uses known bound on the solutions of (9.3) and (9.4) (discussed above) to make

the search spaces V andM in (9.8) compact and as small as possible so that optimization

converges faster.

Having compact variable sets allows using first-order stochastic methods, such as stochas-

tic mirror descent and mirror-prox (Juditsky, Nemirovski, and Tauvel, 2011; Nemirovski

et al., 2009), to efficiently solve the problem. These methods only require using the gen-

erative model to compute unbiased estimates of the gradients ∇vL = bµ and ∇µL = av,

where we define

bµ := p + 1
1−γ (γP− E)>µ (9.11)

as the balance function with respect to µ. bµ measures whether µ violates the stationarity

constraint in (9.3) and can be viewed as the dual of av. When the state or action space is

too large, one can resort to function approximators to represent v and µ, which are often

realized by linear basis functions for the sake of analysis (Chen, Li, and Wang, 2018).

9.2.3 COL and EPs

Finally, we review the COL setup in (Cheng et al., 2019c), which we will use to design the

reduction from the saddle-point problem in (9.8) to online learning in the next section.

Recall that an online learning problem describes the iterative interactions between a

learner and an opponent. In round n, the learner chooses a decision xn from a decision

set X , the opponent chooses a per-round loss function ln : X → R based on the learner’s

decisions, and then information about ln (e.g. its gradient ∇ln(xn)) is revealed to the

learner. The performance of the learner is usually measured in terms of regret with respect

260

to some x′ ∈ X ,

regretN(x′) :=
∑N

n=1 ln(xn)−∑N
n=1 ln(x′).

When ln is convex andX is compact and convex, many no-regret (i.e. regretN(x′) = o(N))

algorithms are available, such as mirror descent and follow-the-regularized-leader (Cesa-

Bianchi and Lugosi, 2006; Hazan, 2016; Shalev-Shwartz, 2012).

COL is a subclass of online learning problems where the loss sequence changes con-

tinuously with respect to the played decisions of the learner (Cheng et al., 2019c). In COL,

the opponent is equipped with a bifunction f : (x, x′) 7→ fx(x
′), where any fixed x′ ∈ X ,

∇fx(x′) is continuous in x ∈ X . The opponent selects per-round losses based on f , but the

learner does not know f : in round n, if the learner chooses xn, the opponent sets

ln(x) = fxn(x), (9.12)

and returns, e.g., a stochastic estimate of ∇ln(xn) (the regret is still measured in terms of

the noise-free ln).

In (Cheng et al., 2019c), a natural connection is shown between COL and equilibrium

problems (EPs). As EPs include the saddle-point problem of interest, we can use this idea

to turn (9.8) into a COL problem. Recall an EP is defined as follows: Let X be compact

and F : (x, x′) 7→ F (x, x′) be a bifunction s.t. ∀x, x′ ∈ X , F (·, x′) is continuous, F (x, ·)

is convex, and F (x, x) ≥ 0.4 The problem EP(X , F) aims to find x? ∈ X s.t.

F (x?, x) ≥ 0, ∀x ∈ X . (9.13)

By its definition, a natural residual function to quantify the quality of an approximation so-

lution x to EP is rep(x) := −minx′∈X F (x, x′) which describes the degree to which (9.13)

4We restrict ourselves to this convex and continuous case as it is sufficient for our problem setup.

261

is violated at x. We say a bifunction F is monotone if, ∀x, x′ ∈ X , F (x, x′)+F (x′, x) ≤ 0,

and skew-symmetric if the equality holds.

EPs with monotone bifunctions represent general convex problems, including convex

optimization problems, saddle-point problems, variational inequalities, etc. For instance, a

convex-concave problem miny∈Y maxz∈Z φ(y, z) can be cast as EP(X , F) withX = Y×Z

and the skew-symmetric bifunction (Jofré and Wets, 2014)

F (x, x′) := −φ(y, z′) + φ(y′, z), (9.14)

where x = (y, z) and x′ = (y′, z′). In this case, rep(x) = maxz′∈Z φ(y, z′)−miny′∈Y φ(y′, z)

is the duality gap.

Cheng et al. (2019c) show that a learner achieves sublinear dynamic regret in COL

if and only if the same algorithm can solve EP(X , F) with F (x, x′) = fx(x
′) − fx(x).

Concretely, they show that, given a monotone EP(X , F) with F (x, x) = 0 (which is sat-

isfied by (9.14)), one can construct a COL problem by setting fx′(x) := F (x′, x), i.e.

ln(x) = F (xn, x). They further show the following:

Proposition 9.2.1. IfF is skew-symmetric and ln(x) = F (xn, x), then rep(x̂N) ≤ 1
N

regretN ,

where regretN = maxx∈X regretN(x), and x̂N = 1
N

∑N
n=1 xn; the same guarantee holds

also for the best decision in {xn}Nn=1.

9.3 An Online Learning View

We present an alternate online-learning perspective on the saddle-point formulation in (9.8).

This analysis paves a way for of our reduction in the next section. By reduction, we mean

realizing the two steps below:

1. Define a sequence of online losses such that any algorithm with sublinear regret can

produce an approximate solution to the saddle-point problem.

262

2. Convert the approximate solution in the first step to an approximately optimal policy

in RL.

Methods to achieve these two steps individually are not new. The reduction from

convex-concave problems to no-regret online learning is well known (Abernethy, Bartlett,

and Hazan, 2011). Likewise, the relationship between the approximate solution of (9.8)

and policy performance is also available; this is how the saddle-point formulation (Wang,

2017b) works in the first place. So couldn’t we just use these existing approaches? We

argue that purely combining these two techniques fails to fully capture important structure

that resides in RL. While this will be made precise in the later analyses, we highlight the

main insights here.

Instead of treating (9.8) as an adversarial two-player online learning problem (Aber-

nethy, Bartlett, and Hazan, 2011), we adopt the recent reduction to COL (Cheng et al.,

2019c) reviewed in Section 9.2.3. The main difference is that the COL approach is based

on a single-player setup and retains the Lipschitz continuity in the source saddle-point

problem. This single-player perspective is in some sense cleaner and, as we will show in

Section 9.4.2, provides a simple setup to analyze effects of function approximators. Addi-

tionally, due to continuity, the losses in COL are predictable and therefore make designing

fast algorithms possible.

With the help of the COL reformulation, we study the relationship between the approx-

imation solution to (9.8) and the performance of the associated policy in RL. We are able to

establish a tight bound between the residual and the performance gap, resulting in a large

improvement of |S|2
(1−γ)2 in sample complexity compared with the best bounds in the litera-

ture of the saddle-point setup, without adding extra constraints on X and assumptions on

the MDP. Overall, this means that stronger sample complexity guarantees can be attained

by simpler algorithms, as we demonstrate in Section 9.5.

The missing proofs of this section are in Section 9.B.

263

9.3.1 The COL Formulation of RL

First, let us exercise the above COL idea with the saddle-point formulation of RL in (9.8).

To construct the EP, we can let X = {x = (v,µ) : v ∈ V ,µ ∈ M}, which is compact.

According to (9.14), the bifunction F of the associated EP(X , F) is naturally given as

F (x, x′) := L(v′,µ)− L(v,µ′)

= p>v′ + µ>av′ − p>v − µ′>av (9.15)

which is skew-symmetric, and x∗ := (v∗,µ∗) is a solution to EP(X , F). This identification

gives us a COL problem with the loss in the nth round defined as

ln(x) := p>v + µ>nav − p>vn − µ>avn (9.16)

where xn = (vn,µn). We see ln is a linear loss. Moreover, because of the continuity in L,

it is predictable, i.e. ln can be (partially) inferred from past feedback.

9.3.2 Policy Performance

By Proposition 9.2.1, any no-regret algorithm, when applied to (9.16), provides guarantees

in terms of the residual function rep(x) of the EP. But this is not the end of the story. We

need to relate the learner decision x ∈ X to a policy π in RL and then convert bounds on

rep(x) back to the policy performance V π(p). We follow the common rule in the literature

and associate each x = (v,µ) ∈ X with a policy πµ defined as

πµ(a|s) ∝ µ(s, a). (9.17)

Below we relate the residual rep(x) to the performance gap V ∗(p) − V πµ(p). For conve-

nience, we define a relative performance measure for the skew-symmetric bifunction F in

264

(9.15):

rep(x;x′) := F (x, x)− F (x, x′) = −F (x, x′) (9.18)

for x, x′ ∈ X . By (9.18), we see that ln(xn)− ln(x′) = rep(xn;x′), so rep(x;x′) compares

the performance of x with respect to the comparator x′.

We will discuss upper bounds on the performance gap V ∗(p) − V πµ(p) in terms of

rep(x;x′), for some properly chosen x′ ∈ X . As rep(x;x′) ≤ maxx′∈X −F (x, x′) = rep(x),

these results can translate the convergence of residual rep(x) (determined by the regret in

COL) to the convergence of the policy performance gap. More precisely, we are looking for

inequalities in the form V ∗(p)− V πµ(p) ≤ κ(rep(x;x′)) that hold for all x ∈ X with some

strictly increasing function κ and some x′ ∈ X , so we can get non-asymptotic performance

guarantees at the end once we combine the two steps described at the beginning of this

section. That is, by applying results of (Cheng et al., 2019c) to the COL defined in (9.16),

we will get V ∗(p) − V π̂N (p) ≤ κ(regretN (x′)
N

), where π̂N is the policy associated with the

average/best decision.

The Classic Result

Existing approaches (e.g. (Chen and Wang, 2016; Lee and He, 2018; Wang, 2017b)) to the

saddle-point point formulation in (9.8) rely on the relative residual rep(x;x∗) with respect

to the optimal solution to the problem x∗, which we restate in our notation.

Proposition 9.3.1. For any x = (v,µ) ∈ X , if E>µ ≥ (1 − γ)p, rep(x;x∗) ≥ (1 −

γ) mins p(s)‖v∗ − vπµ‖∞.

Therefore, although the original saddle-point problem in (9.8) is framed using V and

M, in practice, an extra constraint, such as E>µ ≥ (1 − γ)p, is added intoM, i.e. these

265

algorithms consider instead

M′ = {µ ∈ R|S||A| : µ ∈M,E>µ ≥ (1− γ)p}, (9.19)

so that the marginal of the estimate µ can have the sufficient coverage required in Propo-

sition 9.3.1. This condition is needed to establish non-asymptotic guarantees on the per-

formance of the policy generated by µ (Lee and He, 2018; Wang, 2017b; Wang and Chen,

2016), but it can sometimes be impractical to realize, e.g., when p is unknown. Without it,

extra assumptions (like ergodicity (Wang, 2017b)) on the MDP are needed.

However, Proposition 9.3.1 is undesirable for a number of reasons. First, the bound is

quite conservative, as it concerns the uniform error ‖v∗ − vπµ‖∞ whereas the objective in

RL is about the gap V ∗(p) − V πµ(p) = p>(v∗ − vπµ) with respect to the initial distribu-

tion p (i.e. a weighted error). Second, the constant term (1 − γ) mins p(s) can be quite

small (e.g. when p is uniform, it is 1−γ
|S|) which can significantly amplify the error in the

residual. Because a no-regret algorithm typically decreases the residual in O(N−1/2) after

seeing N samples, the factor of 1−γ
|S| earlier would turn into a multiplier of |S|2

(1−γ)2 in sample

complexity. This makes existing saddle-point approaches sample inefficient compared to

other RL methods like Q-learning (Kakade, 2003). Lastly, enforcing E>µ ≥ (1− γ)p re-

quires knowing p (which is unavailable in our setup) and adds extra projection steps during

optimization. When p is unknown, while it is possible to modify this constraint to use a

uniform distribution, this might worsen the constant factor and could introduce bias.

One may conjecture that the bound in Proposition 9.3.1 could perhaps be tightened by

better analyses. However, we prove this is impossible in general.

Proposition 9.3.2. There is a class of MDPs such that, for some x ∈ X , Proposition 9.3.1

is an equality.

We note that Proposition 9.3.2 does not hold for all MDPs. Indeed, if one makes

stronger assumptions on the MDP, such as that the Markov chain induced by every pol-

266

icy is ergodic (Wang, 2017b), then it is possible to show, for all x ∈ X , rep(x;x∗) =

c‖v∗ − vπµ‖∞ for some constant c independent of γ and |S|, when one constrains E>µ ≥

(1− γ + γ
√
c)p. Nonetheless, this construct still requires adding an undesirable constraint

to X .

Curse of Covariate Shift

Why does this happen? We can view this issue as a form of covariate shift, i.e. a mismatch

between distributions. To better understand it, we notice a simple equality, which has often

been used implicitly, e.g. in the technical proofs of (Wang, 2017b).

Lemma 9.3.1. For any x = (v,µ), if x′ ∈ X satisfies (9.2) and (9.5) (i.e. v′ and µ′ are

the value function and state-action distribution of policy πµ′), rep(x;x′) = −µ>av′ .

The above implies rep(x;x∗) = −µ>av∗ , which is non-negative. This term is similar

to an equality called the performance difference lemma (Kakade and Langford, 2002; Ng,

Harada, and Russell, 1999).

Lemma 9.3.2. Let vπ and µπ denote the value and state-action distribution of some policy

π. Then for any function v′, it holds that p>(vπ−v′) = (µπ)>av′ . In particular, it implies

V π(p)− V π′(p) = (µπ)>avπ′ .

From Lemmas 9.3.1 and 9.3.2, we see that the difference between the residual rep(x;x∗) =

−µ>av∗ and the performance gap V πµ(p) − V π∗(p) = (µπµ)>av∗ is due to the mis-

match between µ and µπµ , or more specifically, the mismatch between the two marginals

d = E>µ and dπµ = E>µπµ . Indeed, when d = dπµ , the residual is equal to the

performance gap. However, in general, we do not have control over that difference for

the sequence of variables {xn = (vn,µn) ∈ X} an algorithm generates. The suffi-

cient condition in Proposition 9.3.1 attempts to mitigate the difference, using the fact

dπµ = (1 − γ)p + γP>πµdπµ from (9.2), where Pπµ is the transition matrix under πµ.

But the missing half γP>πµdπµ (due to the long-term effects in the MDP) introduces the

267

unavoidable, weak constant (1 − γ) mins p(s), if we want to have an uniform bound on

‖v∗ − vπµ‖∞. The counterexample in Proposition 9.3.2 was designed to maximize the

effect of covariate shift, so that µ fails to captures state-action pairs with high advantage.

To break the curse, we must properly weight the gap between v∗ and vπµ instead of relying

on the uniform bound on ‖v∗ − vπµ‖∞ as before.

9.4 The Reduction

The analyses above reveal both good and bad properties of the saddle-point setup in (9.8).

On the one hand, we showed that approximate solutions to the saddle-point problem in (9.8)

can be obtained by running any no-regret algorithm in the single-player COL problem de-

fined in (9.16); many efficient algorithms are available from the online learning literature.

On the other hand, we also discovered a root difficulty in converting an approximate so-

lution of (9.8) to an approximately optimal policy in RL (Proposition 9.3.1), even after

imposing strong conditions like (9.19). At this point, one may wonder if the formulation

based on (9.8) is fundamentally sample inefficient compared with other approaches to RL,

but this is actually not true.

Our main contribution shows that learning a policy through running a no-regret algo-

rithm in the COL problem in (9.16) is, in fact, as sample efficient in policy performance as

other RL techniques, even without the common constraint in (9.19) or extra assumptions

on the MDP like ergodicity imposed in the literature.

Theorem 9.4.1. Let XN = {xn ∈ X}Nn=1 be any sequence. Let π̂N be the policy given

by x̂N via (9.17), which is either the average or the best decision in XN . Define y∗N :=

(vπ̂N ,µ∗). Then V π̂N (p) ≥ V ∗(p)− regretN (y∗N)

N
.

Theorem 9.4.1 shows that if XN has sublinear regret, then both the average policy

and the best policy in XN converge to the optimal policy in performance with a rate

O(regretN(y∗N)/N). Compared with existing results obtained through Proposition 9.3.1,

268

the above result removes the factor (1− γ) mins p(s) and does not impose any assumption

on XN or the MDP. Indeed Theorem 9.4.1 holds for any sequence. For example, when XN

is generated by stochastic feedback of ln, Theorem 9.4.1 continues to hold, as the regret

is defined in terms of ln, not of the sampled loss. Stochasticity will only affect the rate of

regret.

In other words, we have shown that when µ and v can be directly parameterized, an

approximately optimal policy for the RL problem can be obtained by running any no-regret

online learning algorithm, and that the policy quality is simply dictated by the regret rate.

To illustrate, in Section 9.5 we will prove that simply running mirror descent in this COL

produces an RL algorithm that is as sample efficient as other common RL techniques.

One can further foresee that algorithms leveraging the continuity in COL—e.g. mirror-

prox (Juditsky, Nemirovski, and Tauvel, 2011) or PicCoLO (Cheng et al., 2019d)—and

variance reduction can lead to more sample efficient RL algorithms.

Below we will also demonstrate how to use the fact that COL is single-player (see

Section 9.2.3) to cleanly incorporate the effects of using function approximators to model

µ and v. We will present a corollary of Theorem 9.4.1, which separates the problem of

learning µ and v, and that of approximatingM and V with function approximators. The

first part is controlled by the rate of regret in online learning, and the second part depends

on only the chosen class of function approximators, independently of the learning process.

As these properties are agnostic to problem setups and algorithms, our reduction leads to

a framework for systematic synthesis of new RL algorithms with performance guarantees.

The missing proofs of this section are in Section 9.C.

9.4.1 Proof of Theorem 9.4.1

The main insight of our reduction is to adopt, in defining rep(x;x′), a comparator x′ ∈ X

based on the output of the algorithm (represented by x), instead of the fixed compara-

tor x∗ (the optimal pair of value function and state-action distribution) that has been used

269

conventionally, e.g. in Proposition 9.3.1. While this idea seems unnatural from the stan-

dard saddle-point or EP perspective, it is possible, because the regret in online learn-

ing is measured against the worst-case choice in X , which is allowed to be selected in

hindsight. Specifically, we propose to select the following comparator to directly bound

V ∗(p)− V π̂N (p) instead of the conservative measure ‖V ∗ − V π̂N‖∞ used before.

Proposition 9.4.1. For x = (v,µ) ∈ X , define y∗x := (vπµ ,µ∗) ∈ X . It holds rep(x; y∗x) =

V ∗(p)− V πµ(p).

To finish the proof, let x̂N be either 1
N

∑N
n=1 xn or arg minx∈XN rep(x; y∗x), and let π̂N

denote the policy given by (9.17). First, V ∗(p) − V π̂N (p) = rep(x̂N ; y∗N) by Proposi-

tion 9.4.1. Next we follow the proof of Proposition 9.2.1 (Cheng et al., 2019c): because F

is skew-symmetric and F (y∗N , ·) is convex, we have by (9.18)

V ∗(p)− V π̂N (p) = rep(x̂N ; y∗N) = −F (x̂N , y
∗
N)

= F (y∗N , x̂N) ≤ 1
N

∑N
n=1 F (y∗N , xn)

= 1
N

∑N
n=1−F (xn, y

∗
N) = 1

N
regretN(y∗N)

9.4.2 Function Approximators

When the state and action spaces are large or continuous, directly optimizing v and µ

can be impractical. Instead we can consider optimizing over a subset of feasible choices

parameterized by function approximators

XΘ = {xθ = (φθ,ψθ) : ψθ ∈M, θ ∈ Θ}, (9.20)

where φθ and ψθ are functions parameterized by θ ∈ Θ, and Θ is a parameter set. Because

COL is a single-player setup, we can extend the previous idea and Theorem 9.4.1 to provide

performance bounds in this case by a simple rearrangement (see Section 9.C), which is a

common trick used in the online imitation learning literature (Cheng and Boots, 2018;

270

Ross, Gordon, and Bagnell, 2011). Notice that, in (9.20), we require only ψθ ∈ M, but

not φθ ∈ V , because for the performance bound in our reduction to hold, we only need the

constraintM (see Lemma 9.C.2 in proof of Proposition 9.4.1).

Corollary 9.4.1. Let XN = {xn ∈ Xθ}Nn=1 be any sequence. Let π̂N be the policy given

either by the average or the best decision in XN . It holds that

V π̂N (p) ≥ V ∗(p)− regretN (Θ)
N

− εΘ,N

where εΘ,N = minxθ∈Xθ rep(x̂N ; y∗N)− rep(x̂N ;xθ) measures the expressiveness of Xθ, and

regretN(Θ) :=
∑N

n=1 ln(xn)−minx∈XΘ

∑N
n=1 ln(x).

We can quantify εΘ,N with the basic Hölder’s inequality.

Proposition 9.4.2. Regardless of the parameterization, under the setup in Corollary 9.4.1,

let x̂N = (v̂N , µ̂N). Then εΘ,N is no larger than

min
(vθ,µθ)∈XΘ

‖µθ − µ∗‖1
1− γ + min

w:w≥1
‖bµ̂N ‖1,w‖vθ − vπ̂N ‖∞,1/w

≤ min
(vθ,µθ)∈XΘ

1

1− γ
(
‖µθ − µ∗‖1 + 2‖vθ − vπ̂N ‖∞

)
.

where the norms are defined as ‖x‖1,w =
∑

iwi|xi| and ‖x‖∞,1/w = maxiw
−1
i |xi|.

Proposition 9.4.2 says εΘ,N depends on how well XΘ captures the value function of

the output policy vπ̂N and the optimal state-action distribution µ∗. We remark that this

result is independent of how vπ̂N is generated. Furthermore, Proposition 9.4.2 makes no

assumption on the structure of function approximators. It even allows sharing parameters

θ between v = φθ and µ = ψθ, e.g., they can be a bi-headed neural network, which is

common for learning shared feature representations. More precisely, the structure of the

function approximator would only affect whether ln((φθ,ψθ)) remains a convex function

in θ, which determines the difficulty of designing algorithms with sublinear regret.

271

Algorithm 3 Mirror descent for RL
Input: ε optimality of the γ-average return

δ maximal failure probability
generative model of an MDP

Output: π̂N = πµ̂N

1: x1 = (v1,µ1) where µ1 is uniform and v1 ∈ V
2: Set N = Ω̃(

|S||A| log(1
δ

)

(1−γ)2ε2
) and η = (1− γ)(|S||A|N)−1/2

3: Set the Bregman divergence as (9.22)
4: for n = 1 . . . N − 1 do
5: Sample gn according to (9.24)
6: Update to xn+1 according to (10.7)
7: end for
8: Set (v̂N , µ̂N) = x̂N = 1

N

∑N
n=1 xn

In other words, the proposed COL formulation provides a reduction which dictates

the policy performance with two separate factors: 1) the rate of regret regretN(Θ) which

is controlled by the choice of online learning algorithm; 2) the approximation error εΘ,N

which is determined by the choice of function approximators. These two factors can almost

be treated independently, except that the choice of function approximators would determine

the properties of ln((φθ,ψθ)) as a function of θ, and the choice of Θ needs to ensure (9.20)

is admissible.

9.5 Sample Complexity of Mirror Descent

We demonstrate the power of our reduction by applying perhaps the simplest online

learning algorithm, mirror descent, to the proposed COL problem in (9.16) with stochastic

feedback (Algorithm 3). For transparency, we discuss the tabular setup. We will show a

natural extension to basis functions at the end.

Recall that mirror descent is a first-order algorithm, whose update rule can be written

as

xn+1 = arg minx∈X 〈gn, x〉+ 1
η
BR(x||xn) (9.21)

where η > 0 is the step size, gn is the feedback direction, and BR(x||x′) = R(x)−R(x′)−

272

〈∇R(x′), x− x′〉 is the Bregman divergence generated by a strictly convex function R.

Based on the geometry of X = V ×M, we consider a natural Bregman divergence of the

form

BR(x′||x) = 1
2|S|‖v′ − v‖2

2 +KL(µ′||µ) (9.22)

This choice mitigates the effects of dimension (e.g. if we set x1 = (v1,µ1) with µ1 being

the uniform distribution, it holds BR(x′||x1) = Õ(1) for any x′ ∈ X).

To define the feedback direction gn, we slightly modify the per-round loss ln in (9.16)

and consider a new loss

hn(x) := b>µnv + µ>(1
1−γ1− avn) (9.23)

that shifts ln by a constant, where 1 is the vector of ones. (The decisions generated by

the mirror descent rule makes sure ‖µn‖1 = 1.) One can verify that ln(x) − ln(x′) =

hn(x) − hn(x′), for all x, x′. Therefore, using hn does not change regret. The reason for

using hn instead of ln is to make∇µhn((v,µ)) (and its unbiased approximation) a positive

vector, so that the regret bound can have a better dimension dependency. This is a common

trick used in online learning (e.g. EXP3) for optimizing variables living in a simplex (the

µ here).

We set the first-order feedback gn as an unbiased sampled estimate of ∇hn(xn). In

round n, this is realized by two independent calls of the generative model:

gn =

p̃n + 1
1−γ (γP̃n − En)>µ̃n

|S||A|(1
1−γ 1̂n − r̂n − 1

1−γ (γP̂n − Ên)vn)

 (9.24)

Let gn = [gn,v; gn,µ]. For gn,v, we sample p, sample µn to get a state-action pair, and

query the transition P at the state-action pair sampled from µn. (p̃n, P̃n, and µ̃n denote

273

the single-sample estimate of these probabilities.) For gn,µ, we first sample uniformly a

state-action pair (which explains the factor |S||A|), and then query the reward r and the

transition P. (1̂n, r̂n, P̂n, and Ên denote the single-sample estimates.) To emphasize,

we use ·̃ and ·̂ to distinguish the empirical quantities obtained by these two independent

queries. By construction, we have gn,µ ≥ 0. It is clear that this direction gn is unbiased,

i.e. E[gn] = ∇hn(xn). Moreover, it is extremely sparse and can be computed using O(1)

sample, computational, and memory complexities.

Below we show this algorithm, despite being extremely simple, has strong theoretical

guarantees. In other words, we obtain simpler versions of the algorithms proposed in (Chen,

Li, and Wang, 2018; Wang, 2017b; Wang and Chen, 2016) but with improved performance.

Theorem 9.5.1. With probability 1−δ, Algorithm 3 learns an ε-optimal policy with Õ
(
|S||A| log(1

δ
)

(1−γ)2ε2

)

samples.

Note that the above statement makes no assumption on the MDP (except the tabular

setup for simplifying analysis). Also, because the definition of value function in (9.1)

is scaled by a factor (1 − γ), the above result translates into a sample complexity in

Õ
(
|S||A| log(1

δ
)

(1−γ)4ε2

)
for the conventional discounted accumulated rewards.

9.5.1 Proof Sketch of Theorem 9.5.1

The proof is based on the basic property of mirror descent and martingale concentration.

We provide a sketch here; please refer to Section 9.D for details. Let y∗N = (vπ̂N ,µ∗). We

bound the regret in Theorem 9.4.1 by the following rearrangement, where the equality is

because hn is a constant shift from ln.

regretN (y∗N) =

N∑

n=1

hn(xn)−
N∑

n=1

hn(y∗N)

≤
(

N∑

n=1

(∇hn(xn)− gn)>xn

)
+

(
max
x∈X

N∑

n=1

g>n (xn − x)

)
+

(
N∑

n=1

(gn −∇hn(xn))>y∗N

)

274

We recognize the first term is a martingale, because xn does not depend on gn. Therefore,

we can appeal to a Bernstein-type martingale concentration and prove it is in Õ(

√
N |S||A| log(1

δ
)

1−γ).

For the second term, by treating g>n x as the per-round loss, we can use standard regret anal-

ysis of mirror descent and show a bound in Õ(

√
N |S||A|
1−γ). For the third term, because vπ̂N

in y∗N = (vπ̂N ,µ∗) depends on {gn}Nn=1, it is not a martingale. Nonetheless, we are able

to handle it through a union bound and show it is again no more than Õ(

√
N |S||A| log(1

δ
)

1−γ).

Despite the union bound, it does not increase the rate because we only need to handle vπ̂N ,

not µ∗ which induces a martingale. To finish the proof, we substitute this high-probability

regret bound into Theorem 9.4.1 to obtain the desired claim.

9.5.2 Extension to Function Approximators

The above algorithm assumes the tabular setup for demonstration purposes. In Section 9.E,

we describe a direct extension of Algorithm 3 that uses linearly parameterized function

approximators of the form xθ = (Φθv,Ψθµ), where columns of bases Φ,Ψ belong to V

andM, respectively, and (θv,θµ) ∈ Θ.

Overall the algorithm stays the same, except the gradient is computed by chain-rule,

which can be done in O(dim(Θ)) time and space. While this seems worse, the compu-

tational complexity per update actually improves to O(dim(Θ)) from the slow O(|S||A|)

(required before for the projection in (9.22)), as now we only optimize in Θ. Moreover,

we prove that its sample complexity is also better, though at the cost of bias εΘ,N in Corol-

lary 9.4.1. Therefore, the algorithm becomes applicable to large-scale or continuous prob-

lems.

Theorem 9.5.2. Under a proper choice of Θ and BR, with probability 1 − δ, Algorithm 3

learns an (ε+ εΘ,N)-optimal policy with Õ
(
dim(Θ) log(1

δ
)

(1−γ)2ε2

)
samples.

The proof is in Section 9.E, which follows mainly Section 9.5.1. First, we choose some

Θ to satisfy (9.20) so we can use Corollary 9.4.1 to reduce the problem into regret mini-

mization. To make the sample complexity independent of |S|,|A|, the key is to uniformly

275

sample over the columns of Ψ, instead of over all states and actions like (9.24), in com-

puting unbiased estimates of ∇θµhn((θv,θµ)). The intuition is that we should only focus

on the places our basis functions care about (size of dim(Θ)), instead of wasting efforts to

visit all possible combinations (size of |S||A|).

9.6 Conclusion

We propose a reduction from RL to no-regret online learning that provides a systematic

way to design new RL algorithms with performance guarantees. Compared with existing

approaches, our framework makes no assumption on the MDP and naturally works with

function approximators. To illustrate, we design a simple RL algorithm based on mirror

descent; it achieves similar sample complexity as other RL techniques, but uses minimal

assumptions on the MDP and is scalable to large or continuous problems. This encouraging

result evidences the strength of the online learning perspective. As a future work, we

believe even faster learning in RL is possible by leveraging control variate for variance

reduction and by applying more advanced online techniques (Cheng et al., 2019d; Rakhlin

and Sridharan, 2012) that exploit the continuity in COL to predict the future gradients.

9.A Review of RL Setups

We provide an extended review of different formulations of RL for interested readers. First,

let us recall the problem setup. Let S andA be state and action spaces, and let π(a|s) denote

a policy. For γ ∈ [0, 1), we are interested in solving a γ-discounted infinite-horizon RL

problem:

maxπ V
π(p), s.t. V π(p) := (1− γ)Es0∼pEξ∼ρπ(s0) [

∑∞
t=0 γ

tr(st, at)] (9.25)

where V π(p) is the discounted average return, r : S × A → [0, 1] is the reward function,

ρπ(s0) denotes the distribution of trajectory ξ = s0, a0, s1, . . . generated by running π from

276

state s0 in a Markov decision process (MDP), and p is a fixed but unknown initial state

distribution.

9.A.1 Coordinate-wise Formulations

RL in terms of stationary state distribution Let dπt (s) denote the state distribution at

time t given by running π starting from p. We define its γ-weighted mixture as

dπ(s) := (1− γ)
∑∞

t=0 γ
tdπt (s) (9.26)

We can view dπ in (9.26) as a form of stationary state distribution of π, because it is a valid

probability distribution of state and satisfies the stationarity property below,

dπ(s′) = (1− γ)p(s′) + γEs∼dπEa∼π|s[P(s′|s, a)] (9.2)

where P(s′|s, a) is the transition probability of the MDP. The definition in (9.26) general-

izes the concept of stationary distribution of MDP; as γ → 1, dπ is known as the limiting

average state distribution, which is the same as the stationary distribution of the MDP under

π, if one exists. Moreover, with the property in (9.2), dπ summarizes the Markov structure

of RL, and allows us to write (9.25) simply as

max
π

V π(p), s.t. V π(p) = Es∼dπEa∼π|s [r(s, a)] (9.27)

after commuting the order of expectation and summation. That is, an RL problem aims to

maximize the expected reward under the stationary state-action distribution generated by

the policy π.

277

RL in terms of value function We can also write (9.25) in terms of value function.

Recall

V π(s) := (1− γ)Eξ∼ρπ(s0)|s0=s [
∑∞

t=0 γ
tr(st, at)] (9.1)

is the value function of π. By definition, V π (like dπ) satisfies a stationarity property

V π(s) = Ea∼π|s
[
(1− γ)r(s, a) + γEs′∼P|s,a [V π(s′)]

]
(9.5)

which can be viewed as a dual equivalent of (9.2). Because r is in [0, 1], (9.5) implies V π

lies in [0, 1].

The value function V ∗ (a shorthand of Vπ∗) of the optimal policy π∗ of the RL problem

satisfies the so-called Bellman equation (Bellman, 1954): V ∗(s) = maxa∈A(1−γ)r(s, a)+

γEs′∼P|s,a [V ∗(s′)], where the optimal policy π∗ can be recovered as the arg max. Equiv-

alently, by the definition of max, the Bellman equation amounts to finding the smallest V

such that V (s) ≥ (1 − γ)r(s, a) + γEs′∼P|s,a [V (s′)], ∀s ∈ S, a ∈ A. In other words, the

RL problem in (9.25) can be written as

min
V

Es∼p[V (s)] s.t. V (s) ≥ (1− γ)r(s, a) + γEs′∼P|s,a [V (s′)] , ∀s ∈ S, a ∈ A

(9.28)

9.A.2 Linear Programming Formulations

We now connect the above two alternate expressions through the classical LP setup of

RL Denardo and Fox, 1968; Manne, 1959.

278

LP in terms of value function The classic LP formulation5 is simply a restatement

of (9.28):

min
v

p>v s.t. (1− γ)r + γPv ≤ Ev (9.4)

where p ∈ R|S|, v ∈ R|S|, and r ∈ R|S||A| are the vector forms of p, V , r, respectively,

P ∈ R|S||A|×|S| is the transition probability6, and E = I ⊗ 1 ∈ R|S||A|×|S| (we use | · | to

denote the cardinality of a set, ⊗ the Kronecker product, I ∈ R|S|×|S| is the identity, and

1 ∈ R|A| a vector of ones). It is easy to verify that for all p > 0, the solution to (9.4) is the

same and equal to v∗ (the vector form of V ∗).

LP in terms of stationary state-action distribution Define the Lagrangian function

L(v, f) := p>v + f>((1− γ)r + γPv − Ev) (9.29)

where f ≥ 0 ∈ R|S||A| is the Lagrangian multiplier. By Lagrangian duality, the dual

problem of (9.4) is given as maxf≥0 minv L(v, f). Or after substituting the optimality

condition of v and define µ := (1 − γ)f , we can write the dual problem as another LP

problem

max
µ≥0

r>µ s.t. (1− γ)p + γP>µ = E>µ (9.3)

Note that this problem like (9.4) is normalized: we have ‖µ‖1 = 1 because ‖p‖1 = 1, and

‖µ‖1 = 1>E>µ = (1− γ)1>p + γ1>P>µ = (1− γ)‖p‖1 + γ‖µ‖1

5Our setup in (9.4) differs from the classic one in the (1 − γ) factor in the constraint to normalize the
problem.

6We arrange the coordinates in a way such that along the |S||A| indices are contiguous in actions.

279

where we use the facts that µ ≥ 0 and P is a stochastic transition matrix. This means that

µ is a valid state-action distribution, from which we see that the equality constraint in (9.3)

is simply a vector form (9.2). Therefore, (9.3) is the same as (9.27) if we define the policy

π as the conditional distribution based on µ.

9.B Missing Proofs of Section 9.3

9.B.1 Proof of Lemma 9.3.1

Lemma 9.3.1. For any x = (v,µ), if x′ ∈ X satisfies (9.2) and (9.5) (i.e. v′ and µ′ are

the value function and state-action distribution of policy πµ′), rep(x;x′) = −µ>av′ .

Proof. First note thatF (x, x) = 0. Then as x′ satisfies stationarity, we can use Lemma 9.3.2

below and write

rep(x;x′) = F (x, x)− F (x, x′)

= −F (x, x′)

= −(p>v′ − p>v)− µ>av′ + µ
′>av (∵ Definition of F in (9.15))

= −µ′av − µ>av′ + µ
′>av (∵ Lemma 9.3.2)

= −µ>av′

�

9.B.2 Proof of Lemma 9.3.2

Lemma 9.3.2. Let vπ and µπ denote the value and state-action distribution of some policy

π. Then for any function v′, it holds that p>(vπ−v′) = (µπ)>av′ . In particular, it implies

V π(p)− V π′(p) = (µπ)>avπ′ .

Proof. This is the well-known performance difference lemma. The proof is based on the

280

stationary properties in (9.2) and (9.5), which can be stated in vector form as

(µπ)>Evπ = (µπ)>((1− γ)r + γPvπ) and (1− γ)p + γP>µπ = E>µπ

The proof is a simple application of these two properties.

p>(vπ − v′) =
1

1− γ (E>µπ − γP>µπ)>(vπ − v′)

=
1

1− γ (µπ)>((E− γP)vπ − (E− γP)v′)

=
1

1− γ (µπ)>((1− γ)r− (E− γP)v′) = (µπ)>av′

where we use the stationarity property of µπ in the first equality and that vπ in the third

equality. �

9.B.3 Proof of Proposition 9.3.1

Proposition 9.3.1. For any x = (v,µ) ∈ X , if E>µ ≥ (1 − γ)p, rep(x;x∗) ≥ (1 −

γ) mins p(s)‖v∗ − vπµ‖∞.

Proof. This proof mainly follows the steps in Wang, 2017b but written in our notation. First

Lemma 9.3.1 shows rep(x;x∗) = −µ>av∗ . We then lower bound−µ>av∗ by reversing the

proof of the performance difference lemma (Lemma 9.3.2).

µ>av∗ =
1

1− γµ
>((1− γ)r− (E− γP)v∗) (∵ Definition of av∗)

=
1

1− γµ
>((E− γP)vπµ − (E− γP)v∗) (∵ Stationarity of vπµ)

=
1

1− γµ
>(E− γP)(vπµ − v∗)

=
1

1− γd>(I− γPπµ)(vπµ − v∗)

where we define d := E>µ and Pπµ as the state-transition of running policy πµ.

281

We wish to further upper bound this quantity. To proceed, we appeal to the Bellman

equation of the optimal value function v∗ and the stationarity of vπµ:

v∗ ≥ (1− γ)rπµ + γPπµv∗ and vπµ = (1− γ)rπµ + γPπµvπµ ,

which together imply that (I− γPπµ)(vπµ − v∗) ≤ 0. We will also use the stationarity of

dπµ (the average state distribution of πµ): dπµ = (1− γ)p + γP>πµ
dπµ .

Since d ≥ (1− γ)p in the assumption, we can then write

µ>av∗ =
1

1− γd>(I− γPπµ)(vπµ − v∗)

≤ p>(I− γPπµ)(vπµ − v∗)

≤ −min
s
p(s)‖(I− γPπµ)(vπµ − v∗)‖∞

≤ −min
s
p(s)(1− γ)‖vπµ − v∗‖∞.

Finally, flipping the sign of the inequality concludes the proof. �

9.B.4 Proof of Proposition 9.3.2

Proposition 9.3.2. There is a class of MDPs such that, for some x ∈ X , Proposition 9.3.1

is an equality.

Proof. We show this equality holds for a class of MDPs. For simplicity, let us first consider

an MDP with three states 1, 2, 3 and for each state there are three actions (left, right, stay).

They correspond to an intuitive, deterministic transition dynamics

P(max{s− 1, 1}|s, left) = 1, P(min{s+ 1, 3}|s, right) = 1, P(s|s, stay) = 1.

We set the reward as r(s, right) = 1 for s = 1, 2, 3 and zero otherwise. It is easy to see

that the optimal policy is π∗(right|s) = 1, which has value function v∗ = [1, 1, 1]>.

282

Now consider x = (v,µ) ∈ X . To define µ, let µ(s, a) = d(s)πµ(a|s). We set

πµ(right|1) = 1, πµ(stay|2) = 1, πµ(right|3) = 1

That is, πµ is equal to π∗ except when s = 2. One can verify the value function of this

policy is vπµ = [(1− γ), 0, 1]>.

As far as d is concerned (d = E>µ), suppose the initial distribution is uniform, i.e.

p = [1/3, 1/3, 1/3]>, we choose d as d = (1 − γ)p + γ[1, 0, 0]>, which satisfies the

assumption in Proposition 9.3.1. Therefore, we have µ ∈ M′ and we will let v be some

arbitrary point in V .

Now we show for this choice x = (v,µ) ∈ V ×M′, the equality in Proposition 9.3.1

holds. By Lemma 9.3.1, we know rep(x;x′) = −µ>av∗ . Recall the advantage is defined

as: av∗ = r + 1
1−γ (γP−E)v∗. Let AV ∗(s, a) denote the functional form of av∗ and define

the expected advantage:

AV ∗(s, πµ) := Ea∼πµ [AV ∗(s, a)].

We can verify it has the following values:

AV ∗(1, πµ) = 0, AV ∗(2, πµ) = −1, AV ∗(3, πµ) = 0.

Thus, the above construction yields

rep(x;x∗) = −µ>av∗ =
(1− γ)

3
= (1− γ) min

s
p(s)‖v∗ − vπµ‖∞

One can easily generalize this 3-state MDP to an |S|-state MDP where states are partitioned

into three groups. �

283

9.C Missing Proofs of Section 9.4

9.C.1 Proof of Proposition 9.4.1

Proposition 9.4.1. For x = (v,µ) ∈ X , define y∗x := (vπµ ,µ∗) ∈ X . It holds rep(x; y∗x) =

V ∗(p)− V πµ(p).

Proof. First we generalize Lemma 9.3.1.

Lemma 9.C.1. Let x = (v,µ) be arbitrary. Consider x̃′ = (v′ + u′,µ′), where v′ and

µ′ are the value function and state-action distribution of policy πµ′ , and u′ is arbitrary. It

holds that rep(x; x̃′) = −µ>av′ − b>µu′.

To proceed, we write y∗x = (v∗ + (vπµ − v∗),µ∗) and use Lemma 9.C.1, which gives

rep(x; y∗x) = −µ>av∗ − b>µ(vπµ − v∗). To relate this equality to the policy performance

gap, we also need the following equality.

Lemma 9.C.2. For µ ∈M, it holds that −µ>av∗ = V ∗(p)− V πµ(p) + b>µ(vπµ − v∗).

Together they imply the desired equality rep(x; y∗x) = V ∗(p)− V πµ(p). �

Proof of Lemma 9.C.1

Lemma 9.C.1. Let x = (v,µ) be arbitrary. Consider x̃′ = (v′ + u′,µ′), where v′ and

µ′ are the value function and state-action distribution of policy πµ′ , and u′ is arbitrary. It

holds that rep(x; x̃′) = −µ>av′ − b>µu′.

Proof. Let x′ = (v′,µ′). As shorthand, define f ′ := v′ + u′, and L := 1
1−γ (γP − E) (i.e.

we can write af = r + Lf). Because rep(x;x′) = −F (x, x′) = −(p>v′ +µ>av′ − p>v−

µ′>av), we can write

rep(x; x̃′) = −p>f ′ − µ>af ′ + p>v + µ′>av

=
(
−p>v′ − µ>av′ + p>v + µ′>av

)
− p>u′ − µ>Lu′

284

= rep(x;x′)− p>u′ − µ>Lu′

= rep(x;x′)− b>µu′

Finally, by Lemma 9.3.1, we have also rep(x;x′) = −µ>av′ and therefore the final equality.

�

Proof of Lemma 9.C.2

Lemma 9.C.2. For µ ∈M, it holds that −µ>av∗ = V ∗(p)− V πµ(p) + b>µ(vπµ − v∗).

Proof. Following the setup in Lemma 9.C.1, we prove the statement by the rearrangement

below:

−µ>av′ = −(µπµ)>av′ + (µπµ)>av′ − µ>av′

= V π′(p)− V πµ(p) + (µπµ − µ)>av′

=
(
V π′(p)− V πµ(p)

)
+ (µπµ − µ)>r + (µπµ − µ)>Lv′

where the first equality is due to the performance difference lemma, i.e. Lemma 9.3.2, and

the last equality uses the definition av′ = r + Lv′. For the second term, because µ ∈ M,

we can rewrite it as

(µπµ − µ)>r = (E>µπµ − E>µ)rπµ

= ((1− γ)p + γP>µπµ − E>µ)rπµ

= (1− γ)b>µrπµ + γ(µπµ − µ)>Prπµ

= (1− γ)b>µ

(
rπµ + γPπµrπµ + γ2P2

πµrπµ + . . .
)

= b>µvπµ

where rπµ and Pπµ denote the expected reward and transition under πµ, and the second

285

equality uses the stationarity of µπµ given by (9.2). For the third term, it can be written

(µπµ − µ)>Lv′ = (−p− L>µ)>v′ = −b>µv′

where the first equality uses stationarity, i.e. bµπµ = p + L>µπµ = 0. Finally combining

the three steps, we have

−µ>av′ = V π′(p)− V πµ(p) + bµ(vπµ − v′)

�

9.C.2 Proof of Corollary 9.4.1

Corollary 9.4.1. Let XN = {xn ∈ Xθ}Nn=1 be any sequence. Let π̂N be the policy given

either by the average or the best decision in XN . It holds that

V π̂N (p) ≥ V ∗(p)− regretN (Θ)
N

− εΘ,N

where εΘ,N = minxθ∈Xθ rep(x̂N ; y∗N)− rep(x̂N ;xθ) measures the expressiveness of Xθ, and

regretN(Θ) :=
∑N

n=1 ln(xn)−minx∈XΘ

∑N
n=1 ln(x).

Proof. This can be proved by a simple rearrangement

V ∗(p)− V π̂N (p) = rep(x̂N ; y∗N)

= εΘ,N + max
xθ∈Xθ

rep(x̂N ;xθ) ≤ εΘ,N +
regretN(Θ)

N

where the first equality is Proposition 9.4.1 and the last inequality is due to skew-symmetry

of F , similar to the proof of Theorem 9.4.1. �

286

9.C.3 Proof of Proposition 9.4.2

Proposition 9.4.2. Regardless of the parameterization, under the setup in Corollary 9.4.1,

let x̂N = (v̂N , µ̂N). Then εΘ,N is no larger than

min
(vθ,µθ)∈XΘ

‖µθ − µ∗‖1
1− γ + min

w:w≥1
‖bµ̂N ‖1,w‖vθ − vπ̂N ‖∞,1/w

≤ min
(vθ,µθ)∈XΘ

1

1− γ
(
‖µθ − µ∗‖1 + 2‖vθ − vπ̂N ‖∞

)
.

where the norms are defined as ‖x‖1,w =
∑

iwi|xi| and ‖x‖∞,1/w = maxiw
−1
i |xi|.

Proof. For shorthand, let us set x = (v,µ) = x̂N and write also πµ = π̂N as the associated

policy. Let y∗x = (vπµ ,µ∗) and similarly let xθ = (vθ,µθ) ∈ XΘ. With rep(x;x′) =

−F (x, x′) and (9.15), we can write

rep(x; y∗x)− rep(x;xθ)

=
(
−p>vπµ − µ>avπµ + p>v + µ∗>av

)
−
(
−p>vθ − µ>avθ + p>v + µ>θ av

)

= p>(vθ − vπµ) + (µ∗ − µθ)>av + µ>(avθ − avπµ)

= b>µ(vθ − vπµ) + (µ∗ − µθ)>av

Next we quantize the size of av and bµ.

Lemma 9.C.3. For (v,µ) ∈ X , ‖av‖∞ ≤ 1
1−γ and ‖bµ‖1 ≤ 2

1−γ .

Proof of Lemma 9.C.3. Let ∆ denote the set of distributions

‖av‖∞ =
1

1− γ ‖(1− γ)r + γPv − Ev‖∞ ≤
1

1− γ max
a,b∈[0,1]

|a− b| ≤ 1

1− γ

‖bµ‖1 =
1

1− γ ‖(1− γ)p + γP>µ− E>µ‖1 ≤
1

1− γ max
q,q′∈∆

‖q− q′‖1 ≤
2

1− γ

�

287

Therefore, we have preliminary upper bounds:

(µ∗ − µθ)>av ≤ ‖av‖∞‖µ∗ − µθ‖1 ≤
1

1− γ ‖µ
∗ − µθ‖1

b>µ(vθ − vπµ) ≤ ‖bµ‖1‖vθ − vπµ‖∞ ≤
2

1− γ ‖vθ − vπµ‖∞

However, the second inequality above can be very conservative, especially when bµ ≈

0 which can be likely when it is close to the end of policy optimization. To this end,

we introduce a free vector w ≥ 1. Define norms ‖v‖∞,1/w = maxi
|vi|
wi

and ‖δ‖1,w =
∑

iwi|δi|. Then we can instead have an upper bound

b>µ(vθ − vπµ) ≤ min
w:w≥1

‖bµ‖1,w‖vθ − vπµ‖∞,1/w

Notice that when w = 1 the above inequality reduces to b>µ(vθ − vπµ) ≤ ‖bµ‖1‖vθ −

vπµ‖∞, which as we showed has an upper bound 2
1−γ‖vθ − vπµ‖∞.

Combining the above upper bounds, we have an upper bound on εΘ,N :

εΘ,N = rep(x; y∗x)− rep(x;xθ) ≤
1

1− γ ‖µθ − µ
∗‖1 + min

w:w≥1
‖bµ‖1,w‖vθ − vπµ‖∞,1/w

≤ 1

1− γ (‖µθ − µ∗‖1 + 2‖vθ − vπµ‖∞) .

Since it holds for any θ ∈ Θ, we can minimize the right-hand side over all possible choices.

�

9.D Proof of Sample Complexity of Mirror Descent

Theorem 9.5.1. With probability 1−δ, Algorithm 3 learns an ε-optimal policy with Õ
(
|S||A| log(1

δ
)

(1−γ)2ε2

)

samples.

The proof is a combination of the basic property of mirror descent (Lemma 10.F.1)

and the martingale concentration. Define K = |S||A| and κ = 1
1−γ as shorthand. We

288

first slightly modify the per-round loss used to compute the gradient. Recall ln(x) :=

p>v + µ>nav − p>vn − µ>avn and let us consider instead a loss function

hn(x) := b>µnv + µ>(κ1− avn)

which shifts ln by a constant in each round. One can verify that ln(x)− ln(x′) = hn(x)−

hn(x′), for all x, x′. As the definition of regret is relative, we may work with hn in online

learning and use it to define the feedback.

The reason for using hn instead of ln is to make∇µhn((v,µ)) (and its unbiased approx-

imation) a positive vector (because κ ≥ ‖av‖∞ for any v ∈ V), so that the regret bound

can have a better dependency on the dimension for learning µ that lives in the simplexM.

This is a common trick used in the online learning, e.g. in EXP3.

To run mirror descent, we set the first-order feedback gn received by the learner as an

unbiased estimate of ∇hn(xn). For round n, we construct gn based on two calls of the

generative model:

gn =

gn,v

gn,µ

 =

p̃n + 1
1−γ (γP̃n − En)>µ̃n

K(κ1̂n − r̂n − 1
1−γ (γP̂n − Ên)vn)

For gn,v, we sample p, then sample µn to get a state-action pair, and finally query the

transition dynamics P at the state-action pair sampled from µn. (p̃n, P̃n, and µ̃n denote

the single-sample empirical approximation of these probabilities.) For gn,µ, we first sample

uniformly a state-action pair (which explains the factor K), and then query the reward r

and the transition dynamics P. (1̂n, r̂n, P̂n, and Ên denote the single-sample empirical

estimates.) To emphasize, we use˜andˆto distinguish the empirical quantities obtained by

these two independent queries. By construction, we have gn,µ ≥ 0. It is clear that this

direction gn is unbiased, i.e. E[gn] = ∇hn(xn). Moreover, it is extremely sparse and can

be computed using O(1) sample, computational, and memory complexities.

289

Let y∗N = (vπ̂N ,µ∗). We bound the regret by the following rearrangement.

regretN(y∗N) (9.30)

=
N∑

n=1

ln(xn)−
N∑

n=1

ln(y∗N)

=
N∑

n=1

hn(xn)−
N∑

n=1

hn(y∗N)

=
N∑

n=1

∇hn(xn)>(xn − y∗N)

=

(
N∑

n=1

(∇hn(xn)− gn)>xn

)
+

(
N∑

n=1

g>n (xn − y∗N)

)
+

(
N∑

n=1

(gn −∇hn(xn))>y∗N

)

≤
(

N∑

n=1

(∇hn(xn)− gn)>xn

)
+

(
max
x∈X

N∑

n=1

g>n (xn − x)

)
+

(
N∑

n=1

(gn −∇hn(xn))>y∗N

)

(9.31)

We recognize the first term is a martingale MN =
∑N

n=1(∇ln(xn) − gn)>xn, because

xn does not depend on gn. Therefore, we can appeal to standard martingale concentration

property. For the second term, it can be upper bounded by standard regret analysis of mirror

descent, by treating g>n x as the per-round loss. For the third term, because y∗N = (vπ̂N ,µ∗)

depends on {gn}Nn=1, it is not a martingale. Nonetheless, we will be able to handle it through

a union bound. Below we give details for bounding these three terms.

9.D.1 The First Term: Martingale Concentration

For the first term,
∑N

n=1(∇hn(xn) − gn)>xn, we use a martingale concentration property.

Specifically, we adopt a Bernstein-type inequality (McDiarmid, 1998, Theorem 3.15)

Lemma 9.D.1. (McDiarmid, 1998, Theorem 3.15) Let M0, . . . ,MN be a martingale and

let F0 ⊆ F1 ⊆ · · · ⊆ Fn be the filtration such that Mn = E|Fn [Mn+1]. Suppose there are

b, σ <∞ such that for all n, given Fn−1, Mn −Mn−1 ≤ b, and V|Fn−1 [Mn −Mn−1] ≤ σ2

290

almost surely. Then for any ε ≥ 0,

P (MN −M0 ≥ ε) ≤ exp

(
−ε2

2Nσ2(1 + bε
3Nσ2)

)

Lemma 9.D.1 implies, with probability at least 1− δ,

MN −M0 ≤
√

2Nσ2(1 + o(1)) log

(
1

δ

)

where o(1) means convergence to 0 as N →∞.

To apply Lemma 9.D.1, we need to provide bounds on the properties of the martingale

difference

Mn −Mn−1 = (∇hn(xn)− gn)>xn

= (κ1− avn − gn,µ)>µn + (bµn − gn,v)
>vn

For the first term (κ1− avn − gn,µ)>µn, we use the lemma below

Lemma 9.D.2. Let µ ∈ M be arbitrary that is chosen independent of the randomness of

gn,µ when Fn−1 is given. Then it holds |(κ1− avn − gn,µ)>µ| ≤ 2(1+K)
1−γ and V|Fn−1 [(κ1−

avn − gn,µ)>µ] ≤ 4K
(1−γ)2 .

Proof. By triangular inequality,

|(κ1− avn − gn,µ)>µ| ≤ |(κ1− avn)>µ|+ |g>n,µµ|

For the deterministic part, using Lemma 9.C.3 and Hölder’s inequality,

|(κ1− avn)>µ| ≤ κ+ ‖avn‖∞‖µ‖1 ≤
2

1− γ

For the stochastic part, let in be index of the sampled state-action pair and jn be the index

291

of the transited state sampled at the pair given by in. With abuse of notation, we will use in

to index both S ×A and S. With this notation, we may derive

|g>n,µµ| = |Kµ>(κ1̂n − r̂n −
1

1− γ (γP̂n − Ên)vn)|

= Kµin|κ− rin −
γvn,jn − vn,in

1− γ |

≤ 2Kµin
1− γ ≤

2K

1− γ

where we use the facts rin , vn,jn , vn,in ∈ [0, 1] and µin ≤ 1.

For V|Fn−1 [(κ1− avn − gn,µ)>µn], we can write it as

V|Fn−1 [(κ1− avn − gn,µ)>µ] = V|Fn−1 [g>n,µµ]

≤ E|Fn−1 [|g>n,µµn|2]

=
∑

in

1

K
Ejn|in

[
K2µ2

in

(
κ− rin −

γvn,jn − vn,in
1− γ

)2
]

≤ 4K

(1− γ)2

∑

in

µ2
in

≤ 4K

(1− γ)2

(∑

in

µin

)2

≤ 4K

(1− γ)2

where in the second inequality we use the fact that |κ− rin − γvn,jn−vn,in
1−γ | ≤ 2

1−γ . �

For the second term (bµn − gn,v)
>vn, we use this lemma.

Lemma 9.D.3. Let v ∈ V be arbitrary that is chosen independent of the randomness of gn,v

when Fn−1 is given.. Then it holds |(bµn − gn,v)
>v| ≤ 4

1−γ and V|Fn−1 [(bµn − gn,v)
>v] ≤

4
(1−γ)2 .

Proof. We appeal to Lemma 9.C.3, which shows ‖bµn‖1, ‖gn,v‖1 ≤ 2
1−γ , and derive

|(bµn − gn,v)
>v| ≤ (‖bµn‖1 + ‖gn,v‖1)‖v‖∞ ≤

4

1− γ

292

Similarly, for the variance, we can write

V|Fn−1 [(bµn − gn,v)
>v] = V|Fn−1 [g>n,vv] ≤ E|Fn−1 [(g>n,vv)2] ≤ 4

(1− γ)2
�

Thus, with helps from the two lemmas above, we are able to show

Mn −Mn−1 ≤ |(κ1− avn − gn,µ)>µn|+ |(bµn − gn,v)
>vn| ≤

4 + 2(1 +K)

1− γ

as well as (because gn,µ and gn,b are computed using independent samples)

V|Fn−1 [Mn −Mn−1] = E|Fn−1 [|(κ1− avn − gn,µ)>µn|2] + E|Fn−1 [|(bµn − gn,v)
>vn|2]

≤ 4(1 +K)

(1− γ)2

Now, since M0 = 0, by martingale concentration in Lemma 9.D.1, we have

P

(
N∑

n=1

(∇hn(xn)− gn)>xn > ε

)
≤ exp

(
−ε2

2Nσ2(1 + bε
3Nσ2)

)

with b = 6+K
1−γ and σ2 = 4(1+K)

(1−γ)2 . This implies that, with probability at least 1− δ, it holds

N∑

n=1

(∇hn(xn)− gn)>xn ≤
√
N

8(1 +K)

(1− γ)2
(1 + o(1)) log

(
1

δ

)
= Õ

√
NK log(1

δ
)

1− γ

9.D.2 Static Regret of Mirror Descent

Next we move onto deriving the regret bound of mirror descent with respect to the online

loss sequence:

max
x∈X

N∑

n=1

g>n (xn − x)

293

This part is quite standard; nonetheless, we provide complete derivations below.

We first recall a basic property of mirror descent

Lemma 9.D.4. Let X be a convex set. Suppose R is 1-strongly convex with respect to some

norm ‖ · ‖. Let g be an arbitrary vector and define, for x ∈ X ,

y = arg min
x′∈X

〈g, x′〉+BR(x′||x)

Then for all z ∈ X ,

〈g, y − z〉 ≤ BR(z||x)−BR(z||y)−BR(y||x) (9.32)

Proof. Recall the definition BR(x′||x) = R(x′)−R(x)−〈∇R(x), x′ − x〉. The optimality

of the proximal map can be written as

〈g +∇R(y)−∇R(x), y − z〉 ≤ 0, ∀z ∈ X

By rearranging the terms, we can rewrite the above inequality in terms Bregman diver-

gences as follows and derive the first inequality (10.37):

〈g, y − z〉 ≤ 〈∇R(x)−∇R(y), y − z〉

= BR(z||x)−BR(z||y) + 〈∇R(x)−∇R(y), y〉 − 〈∇R(x), x〉

+ 〈∇R(y), y〉+R(x)−R(y)

= BR(z||x)−BR(z||y) + 〈∇R(x), y − x〉+R(x)−R(y)

= BR(z||x)−BR(z||y)−BR(y||x)

The second inequality is the consequence of (10.37). First, we rewrite (10.37) as

〈g, x− z〉 = BR(z||x)−BR(z||y)−BR(y||x) + 〈g, x− y〉 �

294

Let x′ ∈ X be arbitrary. Applying this lemma to the nth iteration of mirror descent in

(10.7), we get

〈gn, xn+1 − x′〉 ≤
1

η
(BR(x′||xn)−BR(x′||xn+1)−BR(xn+1||xn))

By a telescoping sum, we then have

N∑

n=1

〈gn, xn − x′〉 ≤
1

η
BR(x′||x1) +

N∑

n=1

〈gn, xn+1 − xn〉 −
1

η
BR(xn+1||xn)

We bound the right-hand side as follows. Recall, based on the geometry ofX = V×M,

we considered a natural Bregman divergence in the form

BR(x′||x) =
1

2|S|‖v
′ − v‖2

2 +KL(µ′||µ)

Let x1 = (v1,µ1) where µ1 is uniform. By this choice, we have

1

η
BR(x′||x1) ≤ 1

η
max
x∈X

BR(x||x1) ≤ 1

η

(
1

2
+ log(K)

)

For each item in the above sum, we decompose it as

〈gn, xn+1 − xn〉 −
1

η
BR(xn+1||xn) =

(
g>n,v(vn+1 − vn)− 1

2η|S|‖vn − vn+1‖2
2

)

+

(
g>n,µ(µn+1 − µn) +

1

η
KL(µn+1||µn)

)

and we upper bound them using the two lemmas below (recall gn,µ ≥ 0 due to the added

κ1 term).

Lemma 9.D.5. For any vector x, y, g and scalar η > 0, it holds 〈g, x− y〉+ 1
2η
‖x− y‖2

2 ≤
η‖g‖22

2
.

Proof. By Cauchy-Swartz inequality, 〈g, x− y〉+ 1
2η
‖x− y‖2

2 ≤ ‖g‖2‖x− y‖2 + 1
2η
‖x−

295

y‖2
2 ≤ η‖g‖22

2
�

Lemma 9.D.6. Suppose BR(x||y) = KL(x||y) and x, y are probability distributions, and

g ≥ 0 elementwisely. For η > 0, − 1
η
BR(y||x) + 〈g, x− y〉 ≤ η

2

∑
i xi(gi)

2 = η
2
‖g‖2

x.

Proof. Let ∆ denotes the unit simplex.

−BR(y||x) + 〈ηg, x− y〉

≤ 〈ηg, x〉+ max
y′∈∆
〈−ηg, y〉 −BR(y′||x)

= 〈ηg, x〉+ log

(∑

i

xi exp(−ηgi)
)

(∵ convex conjugate of KL divergence)

≤ 〈ηg, x〉+ log

(∑

i

xi

(
1− ηgi +

1

2
(ηgi)

2

))
(∵ ex ≤ 1 + x+

1

2
x2 for x ≤ 0)

= 〈ηg, x〉+ log

(
1 +

∑

i

xi

(
−ηgi +

1

2
(ηgi)

2

))

≤ 〈ηg, x〉+
∑

i

xi

(
−ηgi +

1

2
(ηgi)

2

)
(∵ log(x) ≤ x− 1)

=
1

2

∑

i

xi(ηgi)
2 =

η2

2
‖g‖2

x

Finally, dividing both sides by η, we get the desired result. �

Thus, we have the upper bound 〈gn, xn+1 − xn〉 − 1
η
BR(xn+1||xn) =

η|S|‖gn,v‖22
2

+

η‖gn,µ‖2µn
2

. Together with the upper bound on 1
η
BR(x′||x1), it implies that

N∑

n=1

〈gn, xn − x′〉 ≤
1

η
BR(x′||x1) +

N∑

n=1

〈gn, xn+1 − xn〉 −
1

η
BR(xn+1||xn)

≤ 1

η

(
1

2
+ log(K)

)
+
η

2

N∑

n=1

|S|‖gn,v‖2
2 + ‖gn,µ‖2

µn (9.33)

We can expect, with high probability,
∑N

n=1 |S|‖gn,v‖2
2 +‖gn,µ‖2

µn concentrates toward

296

its expectation, i.e.

N∑

n=1

|S|‖gn,v‖2
2 + ‖gn,µ‖2

µn ≤
N∑

n=1

E[|S|‖gn,v‖2
2 + ‖gn,µ‖2

µn] + o(N)

Below we quantify this relationship using martingale concentration. First we bound the

expectation.

Lemma 9.D.7. E[‖gn,v‖2
2] ≤ 4

(1−γ)2 and E[‖gn,µ‖2
µn] ≤ 4K

(1−γ)2 .

Proof. For the first statement, using the fact that ‖ · ‖2 ≤ ‖ · ‖1 and Lemma 9.C.3, we can

write

E[‖gn,v‖2
2] ≤ E[‖gn,v‖2

1] = E[‖p̃n +
1

1− γ (γP̃n − En)>µ̃n‖2
1] ≤ 4

(1− γ)2

For the second statement, let in be index of the sampled state-action pair and jn be the

index of the transited state sampled at the pair given by in. With abuse of notation, we will

use in to index both S ×A and S .

E[‖gn,µ‖2
µn] = E

[∑

in

1

K
Ejn|in

[
K2µin

(
κ− rin −

γvn,jn − vn,in
1− γ

)2
]]

≤ 4K

(1− γ)2
E

[∑

in

µin

]
≤ 4K

(1− γ)2
�

To bound the tail, we resort to the Höffding-Azuma inequality of martingale (McDi-

armid, 1998, Theorem 3.14)

Lemma 9.D.8 (Azuma-Hoeffding). Let M0, . . . ,MN be a martingale and let F0 ⊆ F1 ⊆

· · · ⊆ Fn be the filtration such that Mn = E|Fn [Mn+1]. Suppose there are b <∞ such that

for all n, given Fn−1, |Mn −Mn−1| ≤ b. Then for any ε ≥ 0,

P (MN −M0 ≥ ε) ≤ exp

(−2ε2

Nb2

)

297

To apply Lemma 9.D.8, we consider the martingale

MN =
N∑

n=1

|S|‖gn,v‖2
2 + ‖gn,µ‖2

µn −
(

N∑

n=1

E[|S|‖gn,v‖2
2 + ‖gn,µ‖2

µn]

)

To bound the change of the size of martingale difference |Mn −Mn−1|, we again use

similar steps in Lemma 9.D.7.

Lemma 9.D.9. ‖gn,v‖2
2 ≤ 4

(1−γ)2 and ‖gn,µ‖2
µn ≤ 4K2

(1−γ)2 .

Note ‖gn,µ‖2
µ is K-factor larger than E[‖gn,µ‖2

µ]) and K ≥ 1. Therefore, we have

|Mn −Mn−1| ≤ |S|‖gn,v‖2
2 + ‖gn,µ‖2

µn + |S|E[‖gn,v‖2
2] + E[‖gn,µ‖2

µn] ≤ 8(|S|+K2)

(1− γ)2

Combining these results, we have, with probability as least 1− δ,

N∑

n=1

|S|‖gn,v‖2
2 + ‖gn,µ‖2

µn ≤
N∑

n=1

E[|S|‖gn,v‖2
2 + ‖gn,µ‖2

µn] +
4
√

2(|S|+K2)

(1− γ)2

√
N log

(
1

δ

)

≤ 4(K + |S|)
(1− γ)2

N +
4
√

2(|S|+K2)

(1− γ)2

√
N log

(
1

δ

)

Now we suppose we set η = 1−γ√
KN

. From (9.40), we then have

N∑

n=1

〈gn, xn − x′〉

≤ 1

η

(
1

2
+ log(K)

)
+
η

2

N∑

n=1

|S|‖gn,v‖2
2 + ‖gn,µ‖2

µn

≤
√
KN

1− γ

(
1

2
+ log(K)

)
+

1− γ√
KN

(
2(K + |S|)

(1− γ)2
N +

2
√

2(|S|+K2)

(1− γ)2

√
N log

(
1

δ

))

≤ Õ

√
KN

1− γ +

√
K3 log 1

δ

1− γ

298

9.D.3 Union Bound

Lastly, we provide an upper bound on the last component

N∑

n=1

(gn −∇hn(xn))>y∗N

Because y∗N depends on gn, this term does not follow martingale concentration like the first

component
∑N

n=1(∇hn(xn)− gn)>xn which we analyzed in Section 9.D.1 To resolve this

issue, we utilize the concept of covering number and derive an union bound.

Recall for a compact set Z in a norm space, the covering numberN (Z, ε) with ε > 0 is

the minimal number of ε-balls that coversZ . That is, there is a set {zi ∈ Z}N (Z,ε)
i=1 such that

maxz∈Z minz′∈B(Z,ε) ‖z − z′‖ ≤ ε. Usually the covering numberN (Z, ε) is polynomial in

ε and perhaps exponential in the ambient dimension of Z .

The idea of covering number can be used to provide an union bound of concentration

over compact set, which we summarize as a lemma below.

Lemma 9.D.10. Let f, g be two random L-Lipschitz functions. Suppose for some a > 0

and some fixed z ∈ Z selected independent of f, g, it holds

P (|f(z)− f(z)| > ε) ≤ exp
(
−aε2

)

Then it holds that

P

(
sup
z∈Z
|f(z)− g(z)| > ε

)
≤ N

(
Z, ε

4L

)
exp

(−aε2
4

)

Proof. Let C denote a set of covers of size N (Z, ε
4L

) Then, for any z ∈ Z which could

depend on f, g,

|f(z)− g(z)| ≤ min
z′∈C
|f(z)− f(z′)|+ |f(z′)− g(z′)|+ |g(z′)− g(z)|

299

≤ min
z′∈C

2L‖z − z′‖+ |f(z′)− g(z′)]|

≤ ε

2
+ max

z′∈C
|f(z′)− g(z′)|

Thus, supz∈Z |f(z)− g(z)| > ε =⇒ maxz′∈C |f(z′)− g(z′)| > ε
2
. Therefore, we have

the union bound.

P

(
sup
z∈Z
|f(z)− E[f(z)]| > ε

)
≤ N

(
Z, ε

4L

)
exp

(−aε2
4

)

�

We now use Lemma 9.D.10 to bound the component
∑N

n=1(gn − ∇hn(xn))>y∗N . We

recall by definition, for x = (v,µ),

(∇hn(xn)− gn)>x = (κ1− avn − gn,µ)>µ+ (bµn − gn,v)
>v

Because y∗N = (vπ̂N ,µ∗), we can write the sum of interest as

N∑

n=1

(gn −∇hn(xn))>y∗N =
N∑

n=1

(gn,µ − κ1 + avn)>µ∗ +
N∑

n=1

(gn,v − bµn)>vπ̂N

For the first term, because µ∗ is set beforehand by the MDP definition and does not de-

pend on the randomness during learning, it is a martingale and we can apply the steps in

Section 9.D.1 to show,

N∑

n=1

(gn,µ − κ1 + avn)>µ∗ = Õ

√
NK log(1

δ
)

1− γ

For the second term, because vπ̂N depends on the randomness in the learning process, we

need to use an union bound. Following the steps in Section 9.D.1, we see that for some

300

fixed v ∈ V , it holds

N∑

n=1

(gn,v − bµn)>v = Õ

√
N log(1

δ
)

1− γ

(Note it does not have the
√
K factor because of Lemma 9.D.3). To apply Lemma 9.D.10,

we need to know the order of covering number of V . Since V is an |S|-dimensional unit

cube in the positive orthant, it is straightforward to show (by simply discretizing evenly in

each dimension) N (V , ε) ≤ (1/ε)|S|. This would imply that

sup
v∈V

N∑

n=1

(gn,v − bµn)>v = ε = Õ

√
N log(N (V,ε)

δ
)

1− γ

 = Õ

√
N |S| log(1

δ
)

1− γ

Combining these two steps, we have shown overall, with probability at least 1− δ,

N∑

n=1

(gn −∇hn(xn))>y∗N = Õ

√
NK log(1

δ
)

1− γ

 .

9.D.4 Summary

In the previous subsections, we have provided high probability upper bounds for each term

in the decomposition

regretN(y∗N) ≤
(

N∑

n=1

(∇hn(xn)− gn)>xn

)
+

(
max
x∈X

N∑

n=1

g>n (xn − x)

)
+

(
N∑

n=1

(gn −∇hn(xn))>y∗N

)

implying with probability at least 1− δ,

regretN(y∗N) ≤ Õ

√
NK log(1

δ
)

1− γ

+ Õ

√
KN

1− γ +

√
K3 log 1

δ

1− γ

 = Õ

√
N |S||A| log(1

δ
)

1− γ

301

By Theorem 9.4.1, this would imply with probability at least 1− δ,

V π̂N (p) ≥ V ∗(p)− regretN(y∗N)

N
≥ V ∗(p)− Õ

√
|S||A| log(1

δ
)

(1− γ)
√
N

In other words, the sample complexity of mirror descent to obtain an ε approximately

optimal policy (i.e. V ∗(p)− V π̂N (p) ≤ ε) is at most Õ
(
|S||A| log(1

δ
)

(1−γ)2ε2

)
.

9.E Sample Complexity of Mirror Descent with Basis Functions

Here we provide further discussions on the sample complexity of running Algorithm 3 with

linearly parameterized function approximators and the proof of Theorem 9.5.2.

Theorem 9.5.2. Under a proper choice of Θ and BR, with probability 1 − δ, Algorithm 3

learns an (ε+ εΘ,N)-optimal policy with Õ
(
dim(Θ) log(1

δ
)

(1−γ)2ε2

)
samples.

9.E.1 Setup

We suppose that the decision variable is parameterized in the form xθ = (Φθv,Ψθµ),

where Φ,Ψ are nonlinear basis functions and (θv,θµ) ∈ Θ are the parameters to learn. For

modeling the value function, we suppose each column in Φ is a vector (i.e. function) such

that its ‖ · ‖∞ is less than one. For modeling the state-action distribution, we suppose each

column in Ψ is a valid state-action distribution from which we can draw samples. In other

words, every column of Φ belongs to V , and every column of Ψ belongs toM.

Considering the geometry of Φ and Ψ, we consider a compact and convex parameter

set

Θ = {θ = (θv,θµ) : ‖θv‖2 ≤
Cv√

dim(θv)
,θµ ≥ 0, ‖θµ‖1 = 1}

where Cv < ∞. The constant Cv acts as a regularization in learning: if it is too small, the

bias (captured as εΘ,N in Corollary 9.4.1 restated below) becomes larger; if it is too large,

302

the learning becomes slower.

This choice of Θ makes sure, for θ = (θv,θµ) ∈ Θ, Ψθµ ∈ M and ‖Φθv‖∞ ≤

‖θv‖1 ≤ Cv. Therefore, by the above construction, we can verify that the requirement in

Corollary 9.4.1 is satisfied, i.e. for θ = (θv,θµ) ∈ Θ, we have (Φθv,Ψθµ) ∈ XΘ.

Corollary 9.4.1. Let XN = {xn ∈ Xθ}Nn=1 be any sequence. Let π̂N be the policy given

either by the average or the best decision in XN . It holds that

V π̂N (p) ≥ V ∗(p)− regretN (Θ)
N

− εΘ,N

where εΘ,N = minxθ∈Xθ rep(x̂N ; y∗N)− rep(x̂N ;xθ) measures the expressiveness of Xθ, and

regretN(Θ) :=
∑N

n=1 ln(xn)−minx∈XΘ

∑N
n=1 ln(x).

9.E.2 Online Loss and Sampled Gradient

Let θ = (θv,θµ) ∈ Θ. In view of the parameterization above, we can identify the online

loss in (9.23) in the parameter space as

hn(θ) := b>µnΦθv + θ>µ Ψ>(1
1−γ1− avn) (9.34)

where we have the natural identification xn = (vn,µn) = (Φθv,n,Ψθµ,n) and θn =

(θv,n,θµ,n) ∈ Θ are the decision made by the online learner in the nth round. For writing

convenience, we will continue to overload hn as a function of parameter θ in the following

analyses.

Mirror descent requires gradient estimates of ∇hn(θn). Here we construct an unbiased

stochastic estimate of∇hn(θn) as

gn =

gn,v

gn,µ

 =

Φ>(p̃n + 1
1−γ (γP̃n − En)>µ̃n)

dim(θµ)Ψ̂>n (1
1−γ 1̂n − r̂n − 1

1−γ (γP̂n − Ên)vn)

 (9.35)

303

using two calls of the generative model (again we overload the symbol gn for the analyses

in this section):

• The upper part gn,v is constructed similarly as before in (9.24): First we sample the

initial state from the initial distribution, the state-action pair using the learned state-

action distribution, and then then transited state at the sampled state-action pair. Then

we evaluate Φ’s values at those samples to construct gn,v. Thus, gn,v would generally

be a dense vector of size dim(θv) (unless the columns of Φ are sparse to begin with).

• The lower part gn,µ is constructed slightly differently. Recall for the tabular version

in (9.24), we uniformly sample over the state and action spaces. Here instead we

first sample uniformly a column (i.e. a basis function) in Ψ and then sample a state-

action pair according to the sampled column, which is a distribution by our choice.

Therefore, the multiplier due to uniform sampling in the second row of (9.35) is now

dim(θµ) rather than |S||A| in (9.24). The matrix Ψ̂n is a extremely sparse, where

only the single sampled entry (the column and the state-action pair) is one and the

others are zero. In fact, one can think of the tabular version is simply using basis

functions Ψ = I, i.e. each column is a delta distribution, and the expression in (9.35)

matches the one in (9.24) under this identification.

It is straightforward to verify that E[gn] = ∇hn(θn) for gn in (9.35).

9.E.3 Proof of Theorem 9.5.2

We follow the same steps of the analysis of the tabular version. We will highlight the

differences/improvement due to using function approximations.

First, we use Corollary 9.4.1 in place of Theorem 9.4.1. To properly consider the ran-

domness, we revisit its derivation to slightly tighten the statement Corollary 9.4.1, which

304

was simplified for the sake of cleaner exposition. Define

y∗N,θ = (v∗N,θ,µ
∗
θ) := arg max

xθ∈Xθ
rep(x̂N ;xθ)

For writing convenience, let us also denote θ∗N = (θ∗v,N ,θ
∗
µ) ∈ Θ as the corresponding

parameter of y∗N,θ. We remark that µ∗θ (i.e.θ∗µ), which tries to approximate µ∗, is fixed

before the learning process, whereas v∗N,θ (i.e. θ∗v,N) could depend on the stochasticity in

the learning. Using this new notation and the steps in the proof of Corollary 9.4.1, we can

write

V ∗(p)− V π̂N (p) = rep(x̂N ; y∗N)

= εΘ,N + rep(x̂N ; y∗N,θ) ≤ εΘ,N +
regretN(y∗N,θ)

N

where the first equality is Proposition 9.4.1, the last inequality follows the proof of Theo-

rem 9.4.1, and we recall the definition εΘ,N = rep(x̂N ; y∗N)− rep(x̂N ; y∗N,θ).

The rest of the proof is very similar to that of Theorem 9.4.1, because linear parameter-

ization does not change the convexity of the loss sequence. Let y∗N = (vπ̂N ,µ∗). We bound

the regret by the following rearrangement.

regretN(y∗N,θ) (9.36)

=
N∑

n=1

ln(xn)−
N∑

n=1

ln(y∗N,θ)

=
N∑

n=1

hn(θn)−
N∑

n=1

hn(θ∗N)

=
N∑

n=1

∇hn(θn)>(θn − θ∗N)

=

(
N∑

n=1

(∇hn(θn)− gn)>θn

)
+

(
N∑

n=1

g>n (θn − θ∗N)

)
+

(
N∑

n=1

(gn −∇hn(θn))>θ∗N

)

305

≤
(

N∑

n=1

(∇hn(θn)− gn)>θn

)
+

(
max
θ∈Θ

N∑

n=1

g>n (θn − θ)
)

+

(
N∑

n=1

(gn −∇hn(θn))>θ∗N

)

(9.37)

where the second equality is due to the identifcation in (9.34).

We will solve this online learning problem with mirror descent

θn+1 = arg min
θ∈Θ

〈gn, θ〉+
1

η
BR(θ||θn) (9.38)

with step size η > 0 and a Bregman divergence that is a straightforward extension of (9.22)

BR(θ′||θ) = 1
2
dim(θv)
C2
v
‖θ′v − θv‖2

2 +KL(θ′µ||θµ) (9.39)

where the constant dim(θv)
C2
v

is chosen to make the size of Bregman divergence dimension-

free (at least up to log factors). Below we analyze the size of the three terms in (9.36) like

what we did for Theorem 9.5.1.

9.E.4 The First Term: Martingale Concentration

The first term is a martingale. We will use this part to highlight the different properties

due to using basis functions. The proof follows the steps in Section 9.D.1, but now the

martingale difference of interest is instead

Mn −Mn−1 = (∇hn(θn)− gn)>θn

= (Ψ>(κ1− avn)− gn,µ)>θµ,n + (Φ>bµn − gn,v)
>θv,n

They now have nicer properties due to the way gn,µ is sampled.

For the first term (Ψ>(κ1 − avn) − gn,µ)>θµ,n, we use the lemma below, where we

recall the filtration Fn is naturally defined as {θ1, . . . , θn}.

306

Lemma 9.E.1. Let θ = (θv,θµ) ∈ Θ be arbitrary that is chosen independent of the ran-

domness of gn,µ when Fn−1 is given. Then it holds |(κ1 − avn − gn,µ)>θ| ≤ 2(1+dim(θµ))

1−γ

and V|Fn−1 [(κ1− avn − gn,µ)>θn] ≤ 4dim(θµ)

(1−γ)2 .

Proof. By triangular inequality,

|(Ψ>(κ1− avn)− gn,µ)>θµ| ≤ |(κ1− avn)>Ψθµ|+ |g>n,µθµ|

For the deterministic part, using Lemma 9.C.3 and Hölder’s inequality,

|(κ1− avn)>Ψθµ| ≤ κ+ ‖avn‖∞‖Ψθµ‖1 ≤
2

1− γ

For the stochastic part, let kn denote the sampled column index, in be index of the sampled

state-action pair using the column of kn, and jn be the index of the transited state sampled

at the pair given by in. With abuse of notation, we will use in to index both S × A and S.

Let µ = Ψθµ. With this notation, we may derive

|g>n,µθµ| = |dim(θµ)θ>µΨ̂>n (κ1̂n − r̂n −
1

1− γ (γP̂n − Ên)vn)|

= dim(θµ)θµ,kn|κ− rin −
γvn,jn − vn,in

1− γ |

≤ 2dim(θµ)θµ,kn
1− γ ≤ 2dim(θµ)

1− γ

where we use the facts rin , vn,jn , vn,in ∈ [0, 1] and θµ,kn ≤ 1.

Let ψ(k)
µ denote the kth column of Ψ. For V|Fn−1 [(κ1− avn − gn,µ)>θn], we can write

it as

V|Fn−1 [(Ψ>(κ1− avn)− gn,µ)>θµ]

= V|Fn−1 [g>n,µθn]

≤ E|Fn−1 [|g>n,µθn|2]

307

=
∑

kn

1

dim(θµ)

∑

in

ψ
(kn)
µ,in

Ejn|in

[
dim(θµ)2θ2

µ,kn

(
κ− rin −

γvn,jn − vn,in
1− γ

)2
]

≤ 4dim(θµ)

(1− γ)2

∑

kn

θ2
µ,kn

∑

in

ψ
(kn)
µ,in

≤ 4dim(θµ)

(1− γ)2

(∑

kn

θµ,kn

)2

≤ 4dim(θµ)

(1− γ)2

where in the second inequality we use the fact that |κ− rin − γvn,jn−vn,in
1−γ | ≤ 2

1−γ . �

For the second term (Φ>bµn − gn,v)
>θv,n, we use this lemma.

Lemma 9.E.2. Let θ ∈ V be arbitrary that is chosen independent of the randomness of

gn,v when Fn−1 is given. Then it holds |(Φ>bµn − gn,v)
>θ| ≤ 4Cv

1−γ and V|Fn−1 [(Φ>bµn −

gn,v)
>θ] ≤ 4C2

v

(1−γ)2 .

Proof. We appeal to Lemma 9.C.3, which shows ‖bµn‖1 ≤ 2
1−γ and

‖p̃n +
1

1− γ (γP̃n − En)>µ̃n‖1 ≤
2

1− γ

Therefore, overall we can derive

|(Φ>bµn − gn,v)
>θ| ≤

(
‖bµn‖1 + ‖p̃n +

1

1− γ (γP̃n − En)>µ̃n‖1

)
‖Φθv‖∞ ≤

4Cv
1− γ

where we use again each column in Φ has ‖·‖∞ less than one, and ‖·‖∞ ≤ ‖·‖2. Similarly,

for the variance, we can write

V|Fn−1 [(Φ>bµn − gn,v)
>θ] = V|Fn−1 [g>n,vθ] ≤ E|Fn−1 [(g>n,vθ)2] ≤ 4C2

v

(1− γ)2
�

From the above two lemmas, we see the main difference from the what we had in Sec-

tion 9.D.1 for the tabular case is that, the martingale difference now scales inO
(
Cv+dim(θµ)

1−γ

)

instead of O
(
|S||A|
1−γ

)
, and its variance scales in O

(
C2
v+dim(θµ)

(1−γ)2

)
instead of O

(
|S||A|
(1−γ)2

)
. We

note the constant Cv is universal, independent of the problem size.

308

Following the similar steps in Section 9.D.1, these new results imply that

P

(
N∑

n=1

(∇hn(θn)− gn)>θn > ε

)
≤ exp

(
−ε2

2Nσ2(1 + bε
3Nσ2)

)

with b = O
(
Cv+dim(θµ)

1−γ

)
and O

(
C2
v+dim(θµ)

(1−γ)2

)
. This implies that, with probability at least

1− δ, it hold

N∑

n=1

(∇hn(θn)− gn)>θn = Õ

√
N(C2

v + dim(θµ)) log(1
δ
)

1− γ

9.E.5 Static Regret of Mirror Descent

Again the steps here are very similar to those in Section 9.D.2. We concern bounding the

static regret.

max
θ∈Θ

N∑

n=1

g>n (θn − θ)

From Section 9.D.2, we recall this can be achieved by the mirror descent’s optimality con-

dition. The below inequality is true, for any θ′ ∈ Θ:

N∑

n=1

〈gn, θn − θ′〉 ≤
1

η
BR(θ′||θ1) +

N∑

n=1

〈gn, θn+1 − θn〉 −
1

η
BR(θn+1||θn)

Based on our choice of Bregman divergence given in (9.39), i.e.

BR(θ′||θ) = 1
2
dim(θv)
C2
v
‖θ′v − θv‖2

2 +KL(θ′µ||θµ), (9.39)

we have 1
η
BR(θ′||θ1) ≤ Õ(1)

η
. For each 〈gn, θn+1 − θn〉− 1

η
BR(θn+1||θn), we will use again

the two basic lemmas we proved in Section 9.D.2.

Lemma 9.D.5. For any vector x, y, g and scalar η > 0, it holds 〈g, x− y〉+ 1
2η
‖x− y‖2

2 ≤

309

η‖g‖22
2

.

Lemma 9.D.6. Suppose BR(x||y) = KL(x||y) and x, y are probability distributions, and

g ≥ 0 elementwisely. For η > 0, − 1
η
BR(y||x) + 〈g, x− y〉 ≤ η

2

∑
i xi(gi)

2 = η
2
‖g‖2

x.

Thus, we have the upper bound

〈gn, θn+1 − θn〉 −
1

η
BR(θn+1||θn) =

C2
v

dim(θv)

η‖gn,v‖2
2

2
+
η‖gn,µ‖2

θµ,n

2

Together with the upper bound on 1
η
BR(x′||x1), it implies that

N∑

n=1

〈gn, xn − x′〉 ≤
1

η
BR(x′||x1) +

N∑

n=1

〈gn, xn+1 − xn〉 −
1

η
BR(xn+1||xn)

≤ Õ(1)

η
+
η

2

N∑

n=1

C2
v

dim(θv)
‖gn,v‖2

2 + ‖gn,µ‖2
θµ,n (9.40)

We can expect, with high probability,
∑N

n=1
C2
v

dim(θv)
‖gn,v‖2

2 + ‖gn,µ‖2
θµ,n

concentrates

toward its expectation, i.e.

N∑

n=1

C2
v

dim(θv)
‖gn,v‖2

2 + ‖gn,µ‖2
θµ,n ≤

N∑

n=1

E
[

C2
v

dim(θv)
‖gn,v‖2

2 + ‖gn,µ‖2
θµ,n

]
+ o(N)

To bound the right-hand side, we will use the upper bounds below, which largely follow

the proof of Lemma 9.E.1 and Lemma 9.E.2.

Lemma 9.E.3. E[‖gn,v‖2
2] ≤ 4dim(θv)

(1−γ)2 and E[‖gn,µ‖2
θµ,n

] ≤ 4dim(θµ)

(1−γ)2 .

Lemma 9.E.4. ‖gn,v‖2
2 ≤ 4dim(θv)

(1−γ)2 and ‖gn,µ‖2
θµ,n
≤ 4dim(θµ)2

(1−γ)2 .

By Azuma-Hoeffding’s inequality in Lemma 9.D.8,

N∑

n=1

C2
v

dim(θv)
‖gn,v‖2

2 + ‖gn,µ‖2
θµ,n

≤
N∑

n=1

E
[

C2
v

dim(θv)
‖gn,v‖2

2 + ‖gn,µ‖2
θµ,n

]
+O

(
C2
v + dim(θµ)2

(1− γ)2

√
N log

(
1

δ

))

310

≤ O

(
C2
v + dim(θµ)

(1− γ)2
N

)
+O

(
C2
v + dim(θµ)2

(1− γ)2

√
N log

(
1

δ

))

Now we suppose we set η = O

(
1−γ√

N(C2
v+dim(θµ))

)
. We have

N∑

n=1

〈gn, θn − θ′〉 ≤
Õ(1)

η
+
η

2

N∑

n=1

C2
v

dim(θv)
‖gn,v‖2

2 + ‖gn,µ‖2
θµ,n ≤ Õ

(√
(C2

v + dim(θµ))N

1− γ

)

Union Bound

Lastly we use an union bound to handle the term

N∑

n=1

(gn −∇hn(θn))>θ∗N

We follow the steps in Section 9.D.3: we will use again the fact that θ∗N = (θ∗v,N ,θ
∗
µ) ∈ Θ,

so we can handle the part with θ∗µ using the standard martingale concentration, and the part

with θ∗v,N using the union bound.

Using the previous analyses, we see can first show that the martingale due to the part θ∗µ

concentrates in Õ
(√

Ndim(θµ) log(1
δ

)

1−γ

)
. Likewise, using the union bound, we can show the

martingale due to the part θ∗v,N concentrates in Õ
(√

NC2
v log(N

δ
)

1−γ

)
where N some proper

the covering number of the set
{
θv : ‖θv‖2 ≤ Cv√

dim(θv)

}
. Because logN = O(dim(θv))

for an Euclidean ball. We can combine the two bounds and show together

N∑

n=1

(gn −∇hn(θn))>θ∗N = Õ

√
N(C2

v dim(θv) + dim(θµ)) log(1
δ
)

1− γ

311

Summary

Combining the results of the three parts above, we have, with probability 1− δ,

regretN(y∗N,θ)

≤
(

N∑

n=1

(∇hn(θn)− gn)>θn

)
+

(
max
θ∈Θ

N∑

n=1

g>n (θn − θ)
)

+

(
N∑

n=1

(gn −∇hn(θn))>θ∗N

)

= Õ

√
N(dim(θµ) + C2

v) log(1
δ
)

1− γ

+ Õ

(√
(C2

v + dim(θµ))N

1− γ

)

+ Õ

√
N(C2

v dim(θv) + dim(θµ)) log(1
δ
)

1− γ

= Õ

√
Ndim(Θ) log(1

δ
)

1− γ

where the last step is due to Cv is a universal constant. Or equivalently, the above bounds

means a sample complexity in Õ
(
dim(Θ) log(1

δ
)

(1−γ)2ε2

)
. Finally, we recall the policy performance

has a bias εΘ,N in Corollary 9.4.1 due to using function approximators. Considering this

effect, we have the final statement.

312

CHAPTER 10

PREDICTOR-CORRECTOR POLICY OPTIMIZATION

10.1 Introduction

Reinforcement learning (RL) has recently solved a number of challenging problems (Duan

et al., 2016; Mnih et al., 2013; Silver et al., 2017a). However, many of these successes are

confined to games and simulated environments, where a large number of agent-environment

interactions can be cheaply performed. Therefore, they are often unrealistic in real-word

applications (like robotics) where data collection is an expensive and time-consuming pro-

cess. Improving sample efficiency still remains a critical challenge for RL.

Model-based RL methods improve sample efficiency by leveraging an accurate model

that can cheaply simulate interactions to compute policy updates in lieu of real-world inter-

actions (Tan et al., 2018). A classical example of pure model-based methods is optimal con-

trol (Deisenroth and Rasmussen, 2011; Jacobson and Mayne, 1970; Pan and Theodorou,

2014; Todorov and Li, 2005), which has recently been extended to model abstract latent

dynamics with neural networks (Oh, Singh, and Lee, 2017; Silver et al., 2017b). These

methods use a (local) model of the dynamics and cost functions to predict cost-to-go func-

tions, policy gradients, or promising improvement direction when updating policies (An-

thony, Tian, and Barber, 2017; Levine and Koltun, 2013; Sun et al., 2018). Another way to

use model information is the hybrid DYNA framework (Sutton, 1991; Sutton et al., 2012),

which interleaves model-based and model-free updates, ideally cutting learning time in

half. However, all of these approaches, while potentially accelerating policy learning, suf-

fer from a common drawback: when the model is inaccurate, the performance of the policy

can become biased away from the best achievable in the policy class.

Several strategies have been proposed to remove this performance bias. Learning-to-

313

plan attempts to train the planning process end-to-end (Amos et al., 2018; Pascanu et al.,

2017; Srinivas et al., 2018), so the performance of a given planning structure is directly

optimized. However, these algorithms are still optimized through standard model-free RL

techniques; it is unclear as to whether they are more sample efficient. In parallel, another

class of bias-free algorithms is control variate methods (Chebotar et al., 2017; Grathwohl

et al., 2018; Papini et al., 2018), which use models to reduce the variance of sampled

gradients to improve convergence.

In this chapter, we provide a novel learning framework that can leverage models to

improve sample efficiency while avoiding performance bias due to modeling errors. Our

approach is built on techniques from online learning (Gordon, 1999; Zinkevich, 2003). The

use of online learning to analyze policy optimization was pioneered by Ross, Gordon, and

Bagnell (2011), who proposed to reduce imitation learning (IL) to adversarial online learn-

ing problems. This reduction provides a framework for performance analysis, leading to

algorithms such as DAGGER (Ross, Gordon, and Bagnell, 2011) and AGGREVATE (Ross

and Bagnell, 2014). However, it was recently shown that the naı̈ve reduction to adversarial

online learning loses information (Cheng and Boots, 2018) (cf. Part I of the thesis): in prac-

tice, IL is predictable (Cheng et al., 2019b) and can be thought of as a predictable online

learning problem (Rakhlin and Sridharan, 2012). Based on this insight, in Chapter 7 we

propose a two-step algorithm, MOBIL (Cheng et al., 2019b). We prove that, by leveraging

predictive models to estimate future gradients, MOBIL can speed up the convergence of

IL, without incurring performance bias due to imperfect models.

Given these theoretical advances in IL, it is natural to ask if similar ideas can be ex-

tended to RL. In this chapter, we show that RL can also be formulated as a predictable on-

line learning problem, and we propose a novel first-order learning framework, PICCOLO

(PredICtor-COrrector onLine Optimization)1, for general predictable online learning prob-

1In the original paper (Cheng et al., 2019d), PICCOLO was named after PredICtor-COrrector poLicy
Optimization. Here we change the name to PredICtor-COrrector onLine Optimization to better emphasize
the fact that PICCOLO is a generic reduction technique for online learning, not limited to policy optimization.

314

lems. PICCOLO is a meta-algorithm: it takes a standard online learning algorithm de-

signed for adversarial problems (e.g. ADAGRAD (Duchi, Hazan, and Singer, 2011)) as

input and returns a new hybrid algorithm that can use model information to accelerate con-

vergence. This new “PICCOLOed” algorithm optimizes the policy by alternating between

Prediction and Correction steps. In the Prediction Step, the learner uses a predictive model

to estimate the gradient of the next loss function and then uses it to update the policy; in the

Correction Step, the learner executes the updated policy in the environment, receives the

true gradient , and then corrects the policy using the gradient error. We note that PICCOLO

is orthogonal to control variate methods; it can still improve learning even in the noise-free

setting (see Section 10.5.2).

Theoretically, we prove that PICCOLO can improve the convergence rate of any base

algorithm that can be written as mirror descent (Beck and Teboulle, 2003) or Follow-the-

Regularized-Leader (FTRL) (McMahan and Streeter, 2010). This family of algorithms is

rich and covers most first-order algorithms used in RL and IL, as we showed in Chap-

ter 5 (Cheng et al., 2018a). And, importantly, we show that PICCOLO does not suffer from

performance bias due to model error, unlike previous model-based approaches. To validate

the theory, we “PICCOLO” multiple algorithms in simulation. The experimental results

show that the PICCOLOed versions consistently surpass the base algorithm and are robust

to model errors.

The design of PICCOLO is made possible by a novel reduction that converts a given

predictable online learning problem into a new adversarial problem, so that standard on-

line learning algorithms can be applied optimally without referring to specialized algo-

rithms. We show that PICCOLO includes and generalizes many existing algorithms, e.g.,

MOBIL, mirror-prox (Juditsky, Nemirovski, and Tauvel, 2011), and optimistic mirror de-

scent (Rakhlin and Sridharan, 2012) (Section 10.A). Thus, we can treat PICCOLO as an

automatic process for designing new algorithms that safely leverages imperfect predictive

models (such as off-policy gradients or gradients simulated through dynamics models) to

315

speed up learning. This chapter is partly based on our paper published as (Cheng et al.,

2019d).

10.2 Problem Definition

We consider solving policy optimization problems: given state and action spaces S and A,

and a parametric policy class Π, we desire a stationary policy π ∈ Π that solves

min
π∈Π

J̄(π), J̄(π) := Es∼dπEa∼π|s [c(s, a)] (10.1)

where c(s, a) is the instantaneous cost of state s ∈ S and a ∈ A, π(a|s) is the distribu-

tion of a at state s under policy π, and dπ is the average state distribution generated by

running policy π in a Markov decision process (MDP); the notation Ea∼π|s denotes eval-

uation when π is deterministic. The use of dπ in (10.1) abstracts different discrete-time

RL/IL problems into a common setup (see Chapter 2). For example, an infinite-horizon

γ-discounted problem with time-invariant cost c can be modeled by setting ct = c and

dπ(s) =
∑∞

t=0(1− γ)γtdπt (s), where dπt is the state distribution visited by policy π at time

t starting from some fixed but unknown initial state distribution.

For convenience, we will usually omit the random variable in expectation notation (e.g.

we will write (10.1) as EdπEπ [c]). For a policy π, we overload the notation π to also

denote its parameter, and write Qπ and V π := Eπ[Qπ] as its Q-function and value function,

respectively.

10.3 IL and RL as Predictable Online Learning

We study policy optimization through the lens of online learning (Hazan, 2016), by treating

a policy optimization algorithm as the learner in online learning and each intermediate

policy that it produces as an online decision. This identification recasts the iterative process

of policy optimization into a standard online learning setup: in round n, the learner plays

316

a decision πn ∈ Π, a per-round loss ln is then selected, and finally some information

of ln is revealed to the leaner for making the next decision. We note that the “rounds”

considered here are the number of episodes that an algorithm interacts with the (unknown)

MDP environment to obtain new information, not the time steps in the MDP. And we will

suppose the learner receives an unbiased stochastic approximation l̃n of ln as feedback.

We show that, when the per-round losses {ln} are properly selected, the policy per-

formance {J̄(πn)} in IL and RL can be upper bounded in terms the N -round weighted

regret

regretN(l) :=
N∑

n=1

wnln(πn)−min
π∈Π

N∑

n=1

wnln(π) (10.2)

and an expressiveness measure of the policy class Π

εΠ,N(l) :=
1

w1:N

min
π∈Π

N∑

n=1

wnln(π) (10.3)

where wn > 0 and w1:n :=
∑n

m=1 wm. Moreover, we show that these online learning

problems are predictable: that is, the per-round losses are not completely adversarial but

can be estimated from past information. We will use these ideas to design PICCOLO in the

next section.

10.3.1 IL as Online Learning

We start by reviewing the classical online learning approach to IL (online IL for short) (Ross,

Gordon, and Bagnell, 2011) in Chapter 3 to highlight some key ideas. IL leverages domain

knowledge about a policy optimization problem through expert demonstrations. Online IL,

in particular, optimizes policies by letting the learner π query the expert π? for desired ac-

tions, so that a policy can be quickly trained to perform as well as the expert. At its heart,

online IL is based on the following lemma, which relates the performance between π and

π?.

317

Lemma 10.3.1. (Kakade and Langford, 2002) Let π and π′ be two policies andAπ
′
(s, a) :=

Qπ′(s, a)− V π′(s). Then J̄(π) = J̄(π′) + EdπEπ[Aπ
′
].

Given the equality in Lemma 10.3.1, the performance difference between π and π? can

then be upper-bounded as

J̄(π)− J̄(π?) =EdπEπ[Aπ
?

] ≤ Cπ?Es∼dπ [D(π(·|s)?||π(·|s))]

for some positive constant Cπ? and function D, which is often derived from statistical

distances such as KL divergence (Cheng et al., 2018a). When Aπ∗ is available, we can also

set D(π(·|s)?||π(·|s)) = Ea∼π|s[Aπ
∗
(s, a)], as in value aggregation (AGGREVATE) (Ross

and Bagnell, 2014).

Without loss of generality, let us suppose D(π(·|s)?||π(·|s)) = Ea∼π|s[c̄(s, a)] for some

c̄. Online IL converts policy optimization into online learning with per-round loss

ln(π) := EdπnEπ[c̄]. (10.4)

By the inequality above, it holds that J̄(πn)− J̄(π?) ≤ Cπ?ln(πn) for every n, establishing

the reduction below.

Lemma 10.3.2. (Cheng et al., 2019b) For ln defined in (10.4), E
[∑N

n=1
wnJ̄(πn)
w1:N

]
≤ J̄(π?)+

Cπ
?E
[
εΠ,N (l) + regretN (l̃)

w1:N

]
, where the expectation is due to sampling l̃n.

That is, when a no-regret algorithm is used, the performance concentrates toward J̄(π?)+

Cπ?E[εΠ,N(l)].

318

10.3.2 RL as Online Learning

Can we also formulate RL as online learning? Here we propose a new perspective on RL

using Lemma 10.3.1. Given a policy πn in round n, we define a per-round loss

ln(π) := EdπnEπ[Aπn−1]. (10.5)

which describes how well a policy π performs relative to the previous policy πn−1 under

the state distribution of πn. By Lemma 10.3.1, for ln defined in (10.5), ln(πn) = J̄(πn) −

J̄(πn−1) for every n, similar to the pointwise inequality of ln that Lemma 10.3.2 is based

on. With this observation, we derive the reduction below (proved in Section 10.B).

Lemma 10.3.3. Suppose wn+k

wn
≤ wm+k

wm
, for all n ≥ m ≥ 1 and k ≥ 0. For (10.5) and

any π0, E[
∑N

n=1
wnJ̄(πn)
w1:N

] ≤ J̄(π0) +
∑N

n=1
wN−n+1

w1:N
E[regretn(l̃) + w1:nεΠ,n(l)], where the

expectation is due to sampling l̃n.

Interpretations

Lemma 10.3.3 is a policy improvement lemma, which shows that when the learning algo-

rithm is no-regret, the policy sequence improves on-average from the initial reference pol-

icy π0 that defines l1. This is attributed to an important property of the definition in (10.5)

that minπ∈Π ln(π) ≤ 0. To see this, suppose E[εΠ,n(l)] ≤ −Ω(1) (i.e. there is a policy that

is better than all previous n policies); this is true for small n or when the policy sequence is

concentrated. Under this assumption, if wn = 1 and regretn(l̃) ≤ O(
√
n), then the average

performance improves roughly NE[εΠ,N(l)] away from J̄(π0).

While it is unrealistic to expect E[εΠ,n(l)] ≤ 0 for large n, we can still use Lemma 10.3.3

to comprehend global properties of policy improvement, for two reasons. First, the in-

equality in Lemma 10.3.3 holds for any interval of the policy sequence. Second, as we

show in Section 10.B, the Lemma 10.3.3 also applies to dynamic regret (Zinkevich, 2003),

with respect to which E[εΠ,n(l)] is always negative. Therefore, if an algorithm is strongly-

319

adaptive (Daniely, Gonen, and Shalev-Shwartz, 2015) (i.e. it is no-regret for any interval)

or has sublinear dynamic regret (Jadbabaie et al., 2015), then its generated policy sequence

will strictly, non-asymptotically improve. In other words, for algorithms with a stronger

notion of convergence, Lemma 10.3.3 describes the global improvement rate.

Connections

The choice of per-round loss in (10.5) has an interesting relationship to both actor-critic in

RL (Konda and Tsitsiklis, 2000) and AGGREVATE in IL (Ross and Bagnell, 2014).

Relationship to Actor-Critic

Although actor-critic methods, theoretically, use Edπn (∇Eπ)[Aπn]|π=πn to update policy

πn, in practice, they use Edπn (∇Eπ)[Aπn−1]|π=πn , because the advantage/value function

estimate in round n is updated after the policy update in order to prevent bias due to

over-fitting on finite samples (Sutton and Barto, 1998). This practical gradient is exactly

∇l̃n(πn), the sampled gradient of (10.5). Therefore, Lemma 10.3.3 explains the properties

of these practical modifications.

Relationship to Value Aggregation

AGGREVATE (Ross and Bagnell, 2014) can be viewed as taking a policy improvement step

from some reference policy: e.g., with the per-round loss EdπnEπ[Aπ
?
], it improves one step

from π∗. Realizing this one step improvement in AGGREVATE, however, requires solving

multiple rounds of online learning, as it effectively solves an equilibrium point problem

(Cheng and Boots, 2018). Therefore, while ideally one can solve multiple AGGREVATE

problems (one for each policy improvement step) to optimize policies, computationally this

can be very challenging. Minimizing the loss in (10.5) can be viewed as an approximate

policy improvement step in the AGGREVATE style. Rather than waiting until convergence

in each AGGREVATE policy improvement step, it performs only a single policy update and

then switches to the next AGGREVATE problem with a new reference policy (i.e. the latest

policy πn−1). This connection is particularly tightened if we choose π0 = π? and the bound

320

in Lemma 10.3.3 becomes relative to J̄(π?).

Remark 10.3.1. Based on the continuous online learning perspective in Chapter 8, it is

possible to set also

ln(π) := EdπnEπ[Aπn]. (10.6)

where the gradient ∇ln(πn) will be the policy gradient. The corresponding equilibrium

problem of this per-round loss function would be finding the stationary point of the RL ob-

jective J̄(π). However, for this choice in (10.6), the policy improvement lemma, Lemma 10.3.3,

would not hold.

10.3.3 Predictability

An important property of the above online learning problems is that they are not completely

adversarial, as pointed out in Chapter 7 for IL (Cheng and Boots, 2018). This can be seen

from the definitions of ln in (10.4) and (10.5), respectively. For example, suppose the

cost ct in the original RL problem (10.1) is known; then the information unknown before

playing the decision πn in the environment is only the state distribution dπn . Therefore,

the per-round loss cannot be truly adversarial, as the same dynamics and cost functions are

used across different rounds. That is, in an idealized case where the true dynamics and cost

functions are exactly known, using the policy returned from a model-based RL algorithm

would incur zero regret, since only the interactions with the real MDP environment, not the

model, counts as rounds. We will exploit this property to design PICCOLO.

10.4 Predictor-Corrector Learning

We showed that the performance of RL and IL can be bounded by the regret of properly

constructed predictable online learning problems. These results provide a foundation for

designing policy optimization algorithms: efficient learning algorithms for policy optimiza-

321

tion can be constructed from powerful online learning algorithms that achieve small regret.

This perspective explains why common methods (e.g. mirror descent) based on gradients

of (10.4) and (10.5) work well in IL and RL. However, the predictable nature of policy

optimization problems suggests that directly applying these standard online learning algo-

rithms designed for adversarial settings is suboptimal. The predictable information must

be considered to achieve optimal convergence.

One way to include predictable information is to develop specialized two-step algo-

rithms based on, e.g., mirror-prox or FTRL-prediction (Ho-Nguyen and Kılınç-Karzan,

2018; Juditsky, Nemirovski, and Tauvel, 2011; Rakhlin and Sridharan, 2012). For IL, MO-

BIL was recently proposed (Cheng et al., 2019b) (cf. Chapter 7), which updates policies

by approximate Be-the-Leader (Kalai and Vempala, 2005) and provably achieves faster

convergence than previous methods. However, these two-step algorithms often have ob-

scure and non-sequential update rules, and their adaptive and accelerated versions are less

accessible (Diakonikolas and Orecchia, 2017). This can make it difficult to implement and

tune them in practice.

Here we take an alternative, reduction-based approach. We present PICCOLO, a gen-

eral first-order framework for solving predictable online learning problems. PICCOLO

is a meta-algorithm that turns a base algorithm designed for adversarial problems into a

new algorithm that can leverage the predictable information to achieve better performance.

As a result, we can adopt sophisticated first-order adaptive algorithms to optimally learn

policies, without reinventing the wheel. Specifically, given any first-order base algorithm

belonging to the family of (adaptive) mirror descent and FTRL algorithms, we show how

one can “PICCOLO it” to achieve a faster convergence rate without introducing additional

performance bias due to prediction errors. Most first-order policy optimization algorithms

belong to this family (see Chapter 5), so we can PICCOLO these model-free algorithms

into new hybrid algorithms that can robustly use (imperfect) predictive models, such as

off-policy gradients and simulated gradients, to improve policy learning.

322

10.4.1 The PICCOLO Idea

The design of PICCOLO is based on the observation that an N -round predictable online

learning problem can be written as a new adversarial problems with 2N rounds. To see

this, let {ln}Nn=1 be the original predictable loss sequence. Suppose, before observing ln, we

have access to a model loss l̂n that contains the predictable information of ln. Define δn =

ln− l̂n. We can then write the accumulated loss (which regret concerns) as
∑N

n=1 ln(πn) =
∑N

n=1 l̂n(πn)+δn(πn). That is, we can view the predictable problem with {ln}Nn=1 as a new

adversarial online learning problem with a loss sequence l̂1, δ1, l̂2, δ2, . . . , l̂N , δN .

The idea of PICCOLO is to apply standard online learning algorithms designed for

adversarial settings to this new 2N -round problem. This would create a new set of de-

cision variables {π̂n}Nn=1, in which π̂n denotes the decision made before seeing l̂n, and

leads to the following sequence π1, δ1, π̂2, l̂2, π2, δ2, . . . (in which we define δ1 = l1). We

show that when the base algorithm is optimal in adversarial settings, this simple strategy

results in a decision sequence {πn}Nn=1 whose regret with respect to {ln}Nn=1 is optimal, just

as those specialized two-step algorithms (Ho-Nguyen and Kılınç-Karzan, 2018; Juditsky,

Nemirovski, and Tauvel, 2011; Rakhlin and Sridharan, 2012). In Section 10.A, we show

PICCOLO unifies and generalize these two-step algorithms to be adaptive.

10.4.2 The Meta Algorithm PICCOLO

We provide details to realize this reduction. We suppose, in round n, the model loss is

given as l̂n(π) = 〈ĝn, π〉 for some vector ĝn, and stochastic first-order feedback gn =

∇l̃n(πn) from ln is received. Though this linear form of model loss seems restrictive, later

in Section 10.4.2 we will show that it is sufficient to represent predictable information.

Base Algorithms

We first give a single description of different base algorithms for the formal definition of

the reduction steps. Here we limit our discussions to mirror descent and postpone the

323

FTRL case to Section 10.C. We assume that Π is a convex compact subset in some normed

space with norm ‖ · ‖, and we use BR(π||π′) = R(π) − R(π′) − 〈∇R(π′), π − π′〉 to

denote a Bregman divergence generated by a strictly convex function R, called the distance

generator.

Mirror descent updates decisions based on proximal maps. In round n, given direction

gn and weight wn, it executes

πn+1 = arg min
π∈Π

〈wngn, π〉+BRn(π||πn) (10.7)

where Rn is a strongly convex function; (10.7) reduces to gradient descent with step size

ηn when Rn(·) = 1
2ηn
‖ · ‖2. More precisely, (10.7) is composed of two steps: 1) the update

of the distance generator to Rn, and 2) the update of the decision to πn+1; different mirror

descent algorithms differ in how the regularization is selected and adapted.

PICCOLO explicitly treats a base algorithm as the composition of two basic operations

(this applies also to FTRL)

Hn = adapt(hn, Hn−1, gn, wn)

hn+1 = update(hn, Hn, gn, wn)

(10.8)

so that later it can recompose them to generate the new algorithm. For generality, we use

h and H to denote the abstract representations of the decision variable and the regulariza-

tion, respectively. In mirror descent, h is exactly the decision variable, H is the distance

generator, and we can write update(h,H, g, w) = arg minπ′∈Π 〈wg, π′〉+ BH(π′||h). The

operation adapt denotes the algorithm-specific scheme for the regularization update (e.g.

changing the step size), which in general updates the size of regularization to grow slowly

and inversely proportional to the norm of gn.

324

The PICCOLOed Algorithm

PICCOLO generates decisions by applying a given base algorithm in (10.8) to the new

problem with losses δ1, l̂2, δ2, This is accomplished by recomposing the basic opera-

tions in (10.8) into the Prediction and the Correction Steps:

hn = update(ĥn, Hn−1, ĝn, wn) [Prediction]

Hn = adapt(hn, Hn−1, en, wn)

ĥn+1 = update(hn, Hn, en, wn)
[Correction]

where ĥn is the abstract representation of π̂n, and en = gn − ĝn is the error direction.

We can see that the Prediction and Correction Steps are exactly the update rules resulting

from applying (10.8) to the new adversarial problem, except that only hn is updated in

the Prediction Step, not the regularization (i.e. the step size). This asymmetry design is

important for achieving optimal regret, because in the end we care only about the regret of

{πn} on the original loss sequence {ln}.

In round n, the “PICCOLOed” algorithm first performs the Prediction Step using ĝn to

generate the learner’s decision (i.e. πn) and runs this new policy in the environment to get

the true gradient gn. Using this feedback, the algorithm performs the Correction Step to

amend the bias of using ĝn. This is done by first adapting the regularization to Hn and then

updating πn to π̂n+1 along the error en = gn − ĝn.

Model Losses and Predictive Models

The Prediction Step of PICCOLO relies on the vector ĝn to approximate the future gradient

gn. Here we discuss different ways to specify ĝn based on the concept of predictive models

in Chapter 7. A predictive model Φn is a first-order oracle such that Φn(·) approximates

∇ln(·). In practice, a predictive model can be a simulator with an (online learned) dynamics

model (Deisenroth and Rasmussen, 2011; Tan et al., 2018), or a neural network trained

325

to predict the required gradients (Oh, Singh, and Lee, 2017; Silver et al., 2017b). An

even simpler heuristic is to construct predictive models by off-policy gradients Φn(·) =
∑n−1

m=n−K ∇l̃m(·) where K is the buffer size.

In general, we wish to set ĝn to be close to gn, as we will later show in Section 10.5

that the convergence rate of PICCOLO depends on their distance. However, even when we

have perfect predictive models, this is still a non-trivial task. We face a chicken-or-the-egg

problem: gn depends on πn, which in turn depends on ĝn from the Prediction Step.

In Chapter 7, we show one effective heuristic is to set ĝn = Φn(π̂n), because we may

treat π̂n as an estimate of πn. However, due to the mismatch between π̂n and πn, this simple

approach has errors even when the predictive model is perfect. To better leverage a given

predictive model, we propose to solve for ĝn and πn simultaneously. That is, we wish to

solve a fixed-point problem, finding hn such that

hn = update(ĥn, Hn−1,Φn(πn(hn)), wn) (10.9)

The exact formulation of the fixed-point problem depends on the class of base algorithms.

For mirror descent, it is a variational inequality: find πn ∈ Π such that ∀π ∈ Π,

〈Φn(πn) +∇Rn−1(πn)−∇Rn−1(π̂n), π − πn〉 ≥ 0.

In a special case when Φn = ∇fn for some function fn, the above variational inequality

is equivalent to finding a stationary point of the optimization problem minπ∈Π fn(π) +

BRn−1(π||π̂n). In other words, one way to implement the Prediction Step is to solve the

above minimization problem for πn and use∇fn(πn) as the effective prediction ĝn.

10.4.3 Summary: Why Does PICCOLO Work?

We provide a summary of the full algorithm for policy optimization in Algorithm 4. We

see that PICCOLO uses the predicted gradient to take an extra step to accelerate learning,

326

and, meanwhile, to prevent the error accumulation, it adaptively adjusts the step size (i.e.

the regularization) based on the prediction error and corrects for the bias on the policy right

away. To gain some intuition, let us consider ADAGRAD (Duchi, Hazan, and Singer, 2011)

as a base algorithm2:

Gn = Gn−1 + diag(wngn � wngn)

πn+1 = arg min
π∈Π

〈wngn, π〉+
1

2η
(π − πn)>G1/2

n (π − πn)

where G0 = εI and η, ε > 0, and � denotes element-wise multiplication. This update

has an adapt operation as adapt(h,H, g, w) = G + diag(wg � wg) which updates the

Bregman divergence based on the gradient size.

PICCOLO transforms ADAGRAD into a new algorithm. In the Prediction Step, it per-

forms

πn = arg min
π∈Π

〈wnĝn, π〉+
1

2η
(π − πn−1)>G

1/2
n−1(π − πn−1)

In the Correction Step, it performs

Gn = Gn−1 + diag(wnen � wnen)

π̂n+1 = arg min
π∈Π

〈wnen, π〉+
1

2η
(π − π̂n)>G1/2

n (π − π̂n)

We see that the PICCOLO-ADAGRAD updates Gn proportional to the prediction error en

instead of gn. It takes larger steps when models are accurate, and decreases the step size

once the prediction deviates. As a result, PICCOLO is robust to model quality: it acceler-

ates learning when the model is informative, and prevents inaccurate (potentially adversar-

ial) models from hurting the policy. We will further demonstrate this in theory and in the

experiments.

2We provide another example in Section 10.E.
‡Here we assume project is automatically performed inside PredictionStep and

CorrectionStep.

327

Algorithm 4 PICCOLO
Input: policy π1, regularization H0, model Φ1, iteration N , exponent p
Output: π̄N

1: Set π̂1 = π1 and weights wn = np

2: Sample integer K ∈ [1, N] with P (K = n) ∝ wn
3: for n = 1 . . .K − 1‡ do
4: πn, ĝn = PredictionStep(π̂n,Φn, Hn−1, wn)
5: Dn, gn = DataCollection(πn)
6: Hn, π̂n+1 = CorrectionStep(πn, en, Hn−1, wn), where en = gn − ĝn.
7: Φn+1 = ModelUpdate(Φn,D), where D = D⋃Dn.
8: end for
9: Set π̄N = πK−1

10.5 Theoretical Analysis

In this section, we show that PICCOLO has two major benefits over previous approaches:

1) it accelerates policy learning when the models predict the required gradient well on

average; and 2) it does not bias the performance of the policy, even when the prediction is

incorrect.

To analyze PICCOLO, we introduce an assumption to quantify the adapt operator of a

base algorithm.

Assumption 10.5.1. adapt chooses a regularization sequence such that, for some MN =

o(w1:N), ‖H0‖R+
∑N

n=1 ‖Hn−Hn−1‖R ≤MN for some norm ‖ · ‖R which measures the

size of regularization.

This assumption, which requires the regularization to increase slower than the growth

of w1:N , is satisfied by most reasonably-designed base algorithms. For example, in a uni-

formly weighted problem, gradient descent with a decaying step size O(1√
n
) has MN =

O(
√
N). In general, for stochastic problems, an optimal base algorithm would ensure

MN = O(w1:N√
N

).

328

10.5.1 Convergence Properties

Now we state the main result, which quantifies the regret of PICCOLO with respect to the

sequence of linear loss functions that it has access to. The proof is given in Section 10.F.

Theorem 10.5.1. Suppose Hn defines a strongly convex function with respect to ‖ · ‖n.

Under Assumption 10.5.1, running PICCOLO ensures
∑N

n=1 〈wngn, πn − π〉 ≤ MN +
∑N

n=1
w2
n

2
‖en‖2

∗,n − 1
2
‖πn − π̂n‖2

n−1, for all π ∈ Π.

The term ‖en‖2
∗,n in Theorem 10.5.1 says that the performance of PICCOLO depends

on how well the base algorithm adapts to the error en through the adapt operation in the

Correction Step. Usually adapt updatesHn gradually (Assumption 10.5.1) while minimiz-

ing 1
2
‖en‖2

∗,n, like we showed in ADAGRAD.

In general, when the base algorithm is adaptive and optimal for adversarial problems,

we show in Section 10.G that its PICCOLOed version guarantees that, for any π,

E[
N∑

n=1

〈wngn, πn − π〉] ≤ O(1) + CΠ,Φ
w1:N√
N
,

whereCΠ,Φ = O(|Π|+EΦ+σ2
g+σ2

ĝ) is some constant related to the diameter of Π (denoted

as |Π|), the model bias EΦ, and the sampling variance σ2
g and σ2

ĝ of gn and ĝn, respectively.

Through Lemma 10.3.2 and 10.3.3, this bound directly implies accelerated and bias-free

policy performance.

Theorem 10.5.2. Suppose l̃n is convex4and wn ≥ Ω(1). Then running PICCOLO yields

E[regretN(l̃)/w1:N] = O(
CΠ,Φ√
N

), where CΠ,Φ = O(|Π|+ EΦ + σ2
g + σ2

ĝ) = O(1).

329

Table 10.1: Upper bounds of the average regret of different policy optimization algorithms.

ALGORITHMS UPPER BOUNDS IN BIG-O

PICCOLO 1√
N

(
|Π|+ σ2

g + σ2
ĝ + EΦ

)

MODEL-FREE 1√
N

(
|Π|+G2

g + σ2
g

)

MODEL-BASED 1√
N

(
|Π|+G2

ĝ + σ2
ĝ

)
+ EΦ

DYNA 1√
2N

(
|Π|+ 1

2

(
G2
g +G2

ĝ + σ2
g + σ2

ĝ

))
+EΦ

10.5.2 Comparison

To appreciate the advantages of PICCOLO, we review several policy optimization algo-

rithms and compare their regret. We show that they can be viewed as incomplete versions

of PICCOLO, which only either result in accelerated learning or are unbiased, but not both

(see in Table 10.1).

We first consider the common model-free approach (Cheng et al., 2018a; Kakade, 2002;

Peters, Mülling, and Altun, 2010; Peters and Schaal, 2008; Silver et al., 2014; Sun et

al., 2017; Sutton et al., 2000), i.e. applying the base algorithm with gn. To make the

comparison concrete, suppose ‖E[gn]‖2
∗ ≤ G2

g for some constant Gg, where we recall gn is

the sampled true gradient. As the model-free approach is equivalent to setting ĝn = 0 in

PICCOLO, by Theorem 10.5.1 (with en = gn), the constant CΠ in Theorem 10.5.2 would

become O(|Π|+G2
g + σ2

g). In other words, PICCOLOing the base algorithm improves the

constant factor from G2
g to σ2

ĝ +EΦ. Therefore, while the model-free approach is bias-free,

its convergence can be further improved by PICCOLO, as long as the models {Φn} are

reasonably accurate on average.5

Next we consider the pure model-based approach with a model that is potentially

learned online (Deisenroth and Rasmussen, 2011; Jacobson and Mayne, 1970; Levine and

4The convexity assumption is standard, as used in (Cheng and Boots, 2018; Duchi, Hazan, and Singer,
2011; Kingma and Ba, 2014; Ross, Gordon, and Bagnell, 2011), which holds for tabular problems as well as
some special cases, like continuous-time problems (cf. (Cheng and Boots, 2018)).

5It can be shown that if the model is learned online with a no-regret algorithm, it would perform similarly
to the best model in the hindsight (cf. Section 10.G.4)

330

Koltun, 2013; Pan and Theodorou, 2014; Sun et al., 2018; Todorov and Li, 2005). As

this approach is equivalent to only performing the Prediction Step6, its performance suffers

from any modeling error. Specifically, suppose ‖E[ĝn]‖2
∗ ≤ G2

ĝ for some constant Gĝ. One

can show that the bound in Theorem 10.5.2 would become O((|Π|+G2
ĝ +σ2

ĝ)/
√
N +EΦ),

introducing a constant bias in O(EΦ).

A hybrid heuristic to combine the model-based and model-free updates is DYNA (Sut-

ton, 1991; Sutton et al., 2012), which interleaves the two steps during policy optimization.

This is equivalent to applying gn, instead of the error en, in the Correction Step of PIC-

COLO. Following a similar analysis as above, one can show that the convergence rate in

Theorem 10.5.2 would become O((|Π|+G2 + σ2)/
√

2N +EΦ), where G2 = 1
2
(G2

g +G2
ĝ)

and σ2 = 1
2
(σ2

g + σ2
ĝ). Therefore, DYNA is effectively twice as fast as the pure model-free

approach when the model is accurate. However, it would eventually suffer from the perfor-

mance bias due model error, as reflected in the term EΦ. We will demonstrate this property

experimentally in Figure 10.1.

Finally, we note that the idea of using Φn as control variate (Chebotar et al., 2017;

Grathwohl et al., 2018; Papini et al., 2018) is orthogonal to the setups considered above,

and it can be naturally combined with PICCOLO. For example, we can also use Φn to

compute a better sampled gradient gn with smaller variance (line 5 of Algorithm 4). This

would improve σ2
g in the bounds of PICCOLO to a smaller σ̃2

g , the size of reduced variance.

10.6 Experiments

We corroborate our theoretical findings with experiments7 in learning neural network poli-

cies to solve robot RL tasks (CartPole, Hopper, Snake, and Walker3D) from OpenAI

Gym (Brockman et al., 2016) with the DART physics engine (Lee et al., 2018a)8. The

aim is to see if PICCOLO improves the performance of a base algorithm, even though in
6These algorithms can be realized by the fixed-point formulation of the Prediction Step with (arbitrarily

small) regularization.
7The codes are available at https://github.com/gtrll/rlfamily.
8The environments are defined in DartEnv, hosted at https://github.com/DartEnv.

331

https://github.com/gtrll/rlfamily
https://github.com/DartEnv

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

PICCOLO-ADVERSARIAL

DYNA-ADVERSARIAL

(a) Adversarial model

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

BIASEDDYN0.2-FP

BIASEDDYN0.5-FP

BIASEDDYN0.8-FP

(b) Different model fidelities

Figure 10.1: Performance of PICCOLO with different predictive models. x axis is iteration
number and y axis is sum of rewards. The curves are the median among 8 runs with
different seeds, and the shaded regions account for 25% percentile. ADAM is used as the
base algorithm, and the update rule, by default, is PICCOLO; e.g. TRUEDYN in (a) refers
to PICCOLO with TRUEDYN predictive model. (a) Comparison of PICCOLO and DYNA

with adversarial model. (b) PICCOLO with the fixed-point setting (10.9) with dynamics
model in different fidelities. BIASEDDYN0.8 indicates that the mass of each individual
robot link is either increased or decreased by 80% with probability 0.5 respectively.

these experiments the convexity assumption in the theory does not hold. We choose several

popular first-order mirror descent base algorithms (ADAM (Kingma and Ba, 2014), natural

gradient descent NATGRAD (Kakade, 2002), and trust-region optimizer TRPO (Schulman et

al., 2015b)). We compute gn by GAE (Schulman et al., 2015a). For predictive models, we

consider off-policy gradients (with the samples of the last iteration LAST or a replay buffer

REPLAY) and gradients computed through simulations with the true or biased dynamics

models (TRUEDYN or BIASEDDYN). We will label a model with FP if ĝn is determined by

the fixed-point formulation (10.9)9; otherwise, ĝn = Φn(π̂n). Please refer to Section 10.H

for the details.

In Fig. 10.1, we first use CartPole to study Theorem 10.5.2, which suggests that PIC-

COLO is unbiased and improves the performance when the prediction is accurate. Here we

additionally consider an extremely bad model, ADVERSARIAL, that predicts the gradients

adversarially.10 Figure 10.1 (a) illustrates the performance of PICCOLO and DYNA, when

9In implementation, we solve the corresponding optimization problem with a few number of iterations.
For example, BIASEDDYN-FP is aporoximatedly solved with 5 iterations.

10We set ĝn+1 = − (maxm=1,...,n ‖gm‖/‖gn‖) gn.

332

0 50 100 1500

1000

2000

3000

4000

5000
Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(a) Hopper ADAM

0 50 100 1500

500

1000

1500

2000

2500

3000

Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(b) Snake ADAM

0 200 400 600 8000

500

1000

1500

2000

2500

3000
Base Algorithm
LAST

REPLAY

TRUEDYN

(c) Walker3D NATGRAD

0 200 400 600 8000

500

1000

1500

2000

2500

3000
Base Algorithm
LAST

REPLAY

TRUEDYN

(d) Walker3D TRPO

Figure 10.2: Performance of PICCOLO in various tasks. x axis is iteration number and y
axis is sum of rewards. The curves are the median among 8 runs with different seeds, and
the shaded regions account for 25% percentile.

333

ADAM is chosen as the base algorithm. We observe that PICCOLO improves the perfor-

mance when the model is accurate (i.e. TRUEDYN). Moreover, PICCOLO is robust to

modeling errors. It still converges when the model is adversarially attacking the algorithm,

whereas DYNA fails completely. In Fig. 10.1 (b), we conduct a finer comparison of the

effects of different model accuracies (BIASEDDYN-FP), when ĝn is computed using (10.9).

To realize inaccurate dynamics models to be used in the Prediction step, we change the

mass of links of the robot by a certain factor, e.g. BIASEDDYN0.8 indicates that the mass

of each individual link is either increased or decreased by 80% with probability 0.5, re-

spectively. We see that the fixed-point formulation (10.9), which makes multiple queries

of Φn for computing ĝn, performs much better than the heuristic of setting ĝn = Φ(π̂n),

even when the latter is using the true model (TRUEDYN). Overall, we see PICCOLO with

BIASEDDYN-FP is able to accelerate learning, though with a degree varying with model

accuracies; but even for models with a large bias, it still converges unbiasedly, as we previ-

ously observed in Fig. 10.1 (a),

In Fig. 10.2, we study the performance of PICCOLO in a range of environments. In

general, we find that PICCOLO indeed improves the performance11 though the exact de-

gree depends on how ĝn is computed. In Fig. 10.2 (a) and (b), we show the results of using

ADAM as the base algorithm. We observe that, while setting ĝn = Φn(π̂n) is already an

effective heuristic, the performance of PICCOLO can be further and largely improved if we

adopt the fixed-point strategy in (10.9), as the latter allows the learner to take more globally

informed update directions. Finally, to demonstrate the flexibility of the proposed frame-

work, we also “PICCOLO” two other base algorithms, NATGRAD and TRPO, in Fig. 10.2

(c) and (d), respectively. The complete set of experimental results can be found in Sec-

tion 10.H.
11Note that different base algorithms are not directly comparable, as further fine-tuning of step sizes is

required.

334

10.7 Conclusion

PICCOLO is a general reduction-based framework for solving predictable online learning

problems. It can be viewed as an automatic strategy for generating new algorithms that

can leverage prediction to accelerate convergence. Furthermore, PICCOLO uses the Cor-

rection Step to recover from the mistake made in the Prediction Step, so the presence of

modeling errors does not bias convergence, as we show in both the theory and experiments.

The design of PICCOLO leaves open the question of how to design good predictive mod-

els. While PICCOLO is robust against modeling error, the accuracy of a predictive model

can affect its effectiveness. PICCOLO only improves the performance when the model can

make non-trivial predictions. In the experiments, we found that off-policy and simulated

gradients are often useful, but they are not perfect. It would be interesting to see whether

a predictive model that is trained to directly minimize the prediction error can further help

policy learning. Finally, we note that, despite the focus of this chapter on policy optimiza-

tion, PICCOLO can naturally be applied to other optimization and learning problems.

10.A Relationship between PICCOLO and Existing Algorithms

We discuss how the framework of PICCOLO unifies existing online learning algorithms

and provides their natural adaptive generalization. To make the presentation clear, we

summarize the effective update rule of PICCOLO when the base algorithm is mirror descent

πn = arg min
π∈Π

〈wnĝn, π〉+BRn−1(π||π̂n)

π̂n+1 = arg min
π∈Π

〈wnen, π〉+BRn(π||πn)

(10.10)

335

and that when the base algorithm is FTRL,

πn = arg min
π∈Π

〈wnĝn, π〉+
n−1∑

m=1

〈wmgm, π〉+Brm(π||πm)

π̂n+1 = arg min
π∈Π

〈wnen, π〉+Brn(π||πn) + 〈wnĝn, π〉+
n−1∑

m=1

〈wmgm, π〉+Brm(π||πm)

(10.11)

Because en = gn − ĝn, PICCOLO with FTRL exactly matches the update rule (MOBIL)

proposed by Cheng et al. (2018a)

πn = arg min
π∈Π

〈wnĝn, π〉+
n−1∑

m=1

〈wmgm, π〉+Brm(π||πm)

π̂n+1 = arg min
π∈Π

n∑

m=1

〈wmgm, π〉+Brm(π||πm)

(10.12)

As comparisons, we consider existing two-step update rules, which in our notation can

be written as follows:

• Extragradient descent (Korpelevich, 1976), mirror-prox (Juditsky, Nemirovski, and

Tauvel, 2011; Nemirovski, 2004) or optimistic mirror descent (Chiang et al., 2012;

Rakhlin and Sridharan, 2012)

πn = arg min
π∈Π

〈ĝn, π〉+BR(π||π̂n)

π̂n+1 = arg min
π∈Π

〈gn, π〉+BR(π||π̂n)

(10.13)

• FTRL-with-Prediction/optimistic FTRL (Rakhlin and Sridharan, 2012)

πn = arg min
π∈Π

R(π) + 〈ĝn, π〉+
n−1∑

m=1

〈wmgm, π〉 (10.14)

Let us first review the previous update rules. Originally extragradient descent (Kor-

pelevich, 1976) and mirror prox (Juditsky, Nemirovski, and Tauvel, 2011; Nemirovski,

336

2004) were proposed to solve VIs (the latter is an extension to consider general Bregman

divergences). As pointed out by Cheng et al. (2019b), when applied to an online learning

problem, these algorithms effectively assign ĝn to be the online gradient as if the learner

plays a decision at π̂n. On the other hand, in the online learning literature, optimistic mirror

descent (Chiang et al., 2012) was proposed to use ĝn = gn−1. Later Rakhlin and Sridharan,

2012 generalized it to use some arbitrary sequence ĝn, and provided a FTRL version update

rule in (10.14). However, it is unclear in (Rakhlin and Sridharan, 2012) where the predic-

tion ĝn comes from in general, though they provide an example in the form of learning

from experts.

Recently Cheng et al. (2018a) generalized the FTRL version of these ideas to design

MOBIL, which introduces extra features 1) use of weights 2) non-stationary Bregman di-

vergences (i.e. step size) and 3) the concept of predictive models (Φn ≈ ∇ln). The former

two features are important to speed up the convergence rate of IL. With predictive models,

they propose a conceptual idea (inspired by Be-the-Leader) which solves for πn by the VI

of finding πn such that

〈
wnΦn(πn) +

n∑

m=1

wmgm, π
′ − πn

〉
≥ 0 ∀π′ ∈ Π (10.15)

and a more practical version (10.12) which sets ĝn = Φn(πn). Under proper assumptions,

they prove that the practical version achieves the same rate of non-asymptotic convergence

as the conceptual one, up to constant factors.

PICCOLO unifies and generalizes the above update rules. We first notice that when

the weight is constant, the set Π is unconstrained, and the Bregman divergence is constant,

PICCOLO with mirror descent in (10.10) is the same as (10.13), i.e.,

π̂n+1 = arg min
π∈Π

〈en, π〉+BR(π||πn)

= arg min
π∈Π

〈en, π〉+R(π)− 〈∇R(πn), π〉

337

= arg min
π∈Π

〈gn − ĝn, π〉+R(π)− 〈∇R(π̂n)− ĝn, π〉

= arg min
π∈Π

〈gn, π〉+R(π)− 〈∇R(π̂n), π〉

= arg min
π∈Π

〈gn, π〉+BR(π||π̂n)

Therefore, PICCOLO with mirror descent includes previous two-step algorithms with proper

choices of ĝn. On the other hand, we showed above that PICCOLO with FTRL (10.11) re-

covers exactly (10.12).

PICCOLO further generalizes these updates in two important aspects. First, it provides

a systematic way to make these mirror descent and FTRL algorithms adaptive, by the

reduction that allows reusing existing adaptive algorithm designed for adversarial settings.

By contrast, all the previous update schemes discussed above (even MOBIL) are based on

constant or pre-scheduled Bregman divergences, which requires the knowledge of several

constants of problem properties that are usually unknown in practice. The use of adaptive

schemes more amenable to hyperparameter tuning in practice. We note that it is possible

to make mirror-prox-like algorithms adaptive too, which leads to update rule in the form

πn = arg min
π∈Π

〈ĝn, π〉+BRn−1(π||π̂n)

π̂n+1 = arg min
π∈Π

〈gn, π〉+BRn−1(π||π̂n)

(10.16)

Notice when updating along direction of gn in the above law, the regularization Rn−1 is

one-step delayed compared with PICCOLO which usesRn that includes the information of

gn in updating to π̂n+1. This delay is because these two steps in mirror-prox-like algorithms

need to couple the same distance generating function in defining the Bregman divergences.

Second, PICCOLO generalize the use of predictive models from the VI formulation

in (10.15) to the fixed-point formulation in (10.9). One can show that when the base al-

gorithm is FTRL and we remove the Bregman divergence12, (10.9) is the same as (10.15).

12Originally the conceptual MOBIL algorithm is based on the assumption that ln is strongly convex and

338

In other words, (10.15) essentially can be viewed as a mechanism to find ĝn for (10.12).

But importantly, the fixed-point formulation is method agnostic and therefore applies to

also the mirror descent case. In particular, in Section 10.4.2, we point out that when Φn

is a gradient map, the fixed-point problem reduces to finding a stationary point13 of a non-

convex optimization problem. This observation makes implementation of the fixed-point

idea much easier and more stable in practice (as we only require the function associated

with Φn to be lower bounded to yield a stable problem).

10.B Proof of Lemma 10.3.3

Without loss of generality we suppose w1 = 1 and J̄(π) ≥ 0 for all π. And we assume

the weighting sequence {wn} satisfies, for all n ≥ m ≥ 1 and k ≥ 0, wn+k

wn
≤ wm+k

wm
. This

means {wn} is an non-decreasing sequence and it does not grow faster than exponential

(for which wn+k

wn
= wm+k

wm
). For example, if wn = np with p ≥ 0, it easy to see that

(n+ k)p

np
≤ (m+ k)p

mp
⇐=

n+ k

n
≤ m+ k

m
⇐=

k

n
≤ k

m

For simplicity, let us first consider the case where ln is deterministic. Given this assumption,

we bound the performance in terms of the weighted regret below. For ln defined in (10.5),

we can write

N∑

n=1

wnJ̄(πn)

=
N∑

n=1

wnJ̄(πn−1) + wnEdπnEπn [Aπn−1]

=
N∑

n=1

wnJ̄(πn−1) + wnln(πn)

therefore does not require extra Bregman divergence. Here PICCOLO with FTRL provides a natural gener-
alization to online convex problems.

13Any stationary point will suffice.

339

= w1J̄(π0) +
N−1∑

n=1

wn+1J̄(πn) +
N∑

n=1

wnln(πn)

= w1J̄(π0) +
N−1∑

n=1

wn+1J̄(πn−1) +
N−1∑

n=1

wn+1ln(πn) +
N∑

n=1

wnln(πn)

= (w1 + w2)J̄(π0) +
N−2∑

n=1

wn+2J̄(πn) +
N−1∑

n=1

wn+1ln(πn) +
N∑

n=1

wnln(πn)

= w1:N J̄(π0) +

(
wN l1(π1) +

2∑

n=1

wn+N−2ln(πn) + · · ·+
N−1∑

n=1

wn+1ln(πn) +
N∑

n=1

wnln(πn)

)

= w1:N J̄(π0) +

(
wN l1(π1) +

2∑

n=1

wn+N−2

wn
wnln(πn) + · · ·+

N−1∑

n=1

wn+1

wn
wnln(πn) +

N∑

n=1

wnln(πn)

)

≤ w1:N J̄(π0) +

(
wN l1(π1) +

wN−1

w1

2∑

n=1

wnln(πn) + · · ·+ w2

w1

N−1∑

n=1

wnln(πn) +
N∑

n=1

wnln(πn)

)

= w1:N J̄(π0) +

(
wN l1(π1) + wN−1

2∑

n=1

wnln(πn) + · · ·+ w2

N−1∑

n=1

wnln(πn) +
N∑

n=1

wnln(πn)

)

where the inequality is due to the assumption on the weighting sequence.

We can further rearrange the second term in the final expression as

wN l1(π1) + wN−1

2∑

n=1

wnln(πn) + · · ·+ w2

N−1∑

n=1

wnln(πn) +
N∑

n=1

wnln(πn)

=wN

(
l1(π1)−min

π∈Π
l1(π) + min

π∈Π
l1(π)

)

+ wN−1

(
2∑

n=1

wnln(πn)−min
π∈Π

2∑

n=1

wnln(π) + min
π∈Π

2∑

n=1

wnln(π)

)

+ · · ·+
N∑

n=1

wnln(πn)−min
π∈Π

N∑

n=1

wnln(π) + min
π∈Π

N∑

n=1

wnln(π)

=
N∑

n=1

wN−n+1 (regretn(f) + w1:nεn(f))

where the last equality is due to the definition of static regret and εn.

340

Likewise, we can also write the above expression in terms of dynamic regret

wN l1(π1) + wN−1

2∑

n=1

wnln(πn) + · · ·+ w2

N−1∑

n=1

wnln(πn) +
N∑

n=1

wnln(πn)

=wN

(
l1(π1)−min

π∈Π
l1(π) + min

π∈Π
l1(π)

)

+ wN−1

(
2∑

n=1

wnln(πn)−
2∑

n=1

wn min
π∈Π

ln(π) +
2∑

n=1

min
π∈Π

wnln(π)

)

+ · · ·+
N∑

n=1

wnln(πn)−
N∑

n=1

min
π∈Π

wnln(π) +
N∑

n=1

min
π∈Π

wnln(π)

=
N∑

n=1

wN−n+1

(
regretdn(l) + w1:nε

d
n(l)
)

in which we define the weighted dynamic regret as

regretdn(l) =
n∑

m=1

wmlm(πm)−
n∑

m=1

wm min
π∈Π

lm(π)

and an expressive measure based on dynamic regret

εdn =
1

w1:n

n∑

m=1

wm min
π∈Π

lm(π) ≤ 0

For stochastic problems, because πn does not depends on l̃n, the above bound applies

to the performance in expectation. Specifically, let hn−1 denote all the random variables

observed before making decision πn and seeing l̃n. As πn is made independent of l̃n, we

have, for example,

E[ln(πn)|hn−1] = E[ln(πn)|hn−1]− E[ln(π∗n)|hn−1] + E[ln(π∗n)|hn−1]

= E[l̃n(πn)|hn−1]− E[l̃n(π∗n)|hn−1] + E[ln(π∗n)|hn−1]

≤ E[l̃n(πn)−min
π∈Π

l̃n(π)|hn−1] + E[ln(π∗n)|hn−1]

where π∗n = arg minπ∈Π ln(π). By applying a similar derivation as above recursively, we

341

can extend the previous deterministic bounds to bounds in expectation (for both the static

or the dynamic regret case), proving the desired statement.

10.C The Basic Operations of Base Algorithms

We provide details of the abstract basic operations shared by different base algorithms. In

general, the update rule of any base mirror-descent or FTRL algorithm can be represented

in terms of the three basic operations

h← update(h,H, g, w), H ← adapt(h,H, g, w), π ← project(h,H)

(10.17)

where update and project can be identified standardly, for mirror descent as,

update(h,H, g, w) = arg minπ′∈Π 〈wg, π′〉+BH(π||h), project(h,H) = h

(10.18)

and for FTRL as,

update(h,H, g, w) = h+ wg, project(h,H) = arg minπ′∈Π 〈h, π′〉+H(π′)

(10.19)

We note that in the main text of this paper the operation project is omitted for simplicity,

as it is equal to the identify map for mirror descent. In general, it represents the decoding

from the abstract representation of the decision h to π. The main difference between and

h and π is that h represents the sufficient information that defines the state of the base

algorithm.

While update and project are defined standardly, the exact definition of adapt de-

pends on the specific base algorithm. Particularly, adapt may depend also on whether

the problem is weighted, as different base algorithms may handle weighted problems dif-

342

ferently. Based on the way weighted problems are handled, we roughly categorize the

algorithms (in both mirror descent and FTRL families) into two classes: the stationary

regularization class and the non-stationary regularization class. Here we provide more de-

tails into the algorithm-dependent adapt operation, through some commonly used base

algorithms as examples.

Please see also Section 10.A for connection between PICCOLO and existing two-step

algorithms, like optimistic mirror descent (Rakhlin and Sridharan, 2013).

10.C.1 Stationary Regularization Class

The adapt operation of these base algorithms features two major functions: 1) a moving-

average adaptation and 2) a step-size adaption. The moving-average adaptation is designed

to estimate some statistics G such that ‖g‖∗ = O(G) (which is an important factor in regret

bounds), whereas the step-size adaptation updates a scalar multiplier η according to the

weight w to ensure convergence.

This family of algorithms includes basic mirror descent (Beck and Teboulle, 2003)

and FTRL (McMahan, 2017; McMahan and Streeter, 2010) with a scheduled step size,

and adaptive algorithms based on moving average e.g. RMSPROP (Tieleman and Hinton,

2012) ADADELTA (Zeiler, 2012), ADAM (Kingma and Ba, 2014), AMSGRAD (Reddi,

Kale, and Kumar, 2018), and the adaptive NATGRAD we used in the experiments. Below

we showcase how adapt is defined using some examples.

Basic mirror descent (Beck and Teboulle, 2003)

We define G to be some constant such that G ≥ sup ‖gn‖∗ and define

ηn =
η

1 + cw1:n/
√
n
, (10.20)

343

as a function of the iteration counter n, where η > 0 is a step size multiplier and c > 0

determines the decaying rate of the step size. The choice of hyperparameters η, c pertains

to how far the optimal solution is from the initial condition, which is related to the size of

Π. In implementation, adapt updates the iteration counter n and updates the multiplier ηn

using wn in (10.20).

Together (n,G, ηn) defines Hn = Rn in the mirror descent update rule (10.7) through

setting Rn = G
ηn
R, where R is a strongly convex function. That is, we can write (10.7)

equivalently as

πn+1 = arg min
π∈Π

〈wngn, π〉+
G

ηn
BR(π||πn)

= arg min
π∈Π

〈wngn, π〉+BHn(π||πn)

= update(hn, Hn, gn, wn)

When the weight is constant (i.e. wn = 1), we can easily see this update rule is equivalent to

the classical mirror descent with a step size η/G
1+c
√
n

, which is the optimal step size (McMa-

han, 2017). For general wn = Θ(np) with some p > −1, it can viewed as having an

effective step size wnηn
G

= O(1
G
√
n
), which is optimal in the weighted setting. The inclusion

of the constant G makes the algorithm invariant to the scaling of loss functions. But as the

same G is used across all the iterations, the basic mirror descent is conservative.

Basic FTRL (McMahan, 2017)

We provide details of general FTRL

πn+1 = arg min
π∈Π

n∑

m=1

〈gm, π〉+Brm(π||πm) (10.21)

where Brm(·||πm) is a Bregman divergence centered at πm.

344

We define, in the nth iteration, hn, Hn, and project of FTRL in (10.19) as

hn =
n∑

m=1

wmgm, Hn(π) =
n∑

m=1

Brm(π||πn), project(h,H) = arg min
π′∈Π

〈h, π′〉+H(π′)

Therefore, we can see that πn+1 = project(hn, Hn) indeed gives the update (10.21):

πn+1 = project(hn, Hn)

= project(
n∑

m=1

wmgm,
n∑

m=1

Brm(π||πn))

= arg min
π∈Π

n∑

m=1

〈wmgm, π〉+Brm(π||πm)

For the basic FTRL, the adapt operator is similar to the basic mirror descent, which

uses a constant G and updates the memory (n, ηn) using (10.20). The main differences are

how (G, ηn) is mapped to Hn and that the basic FTRL updates Hn also using hn (i.e. πn).

Specifically, it performs Hn ← adapt(hn, Hn−1, gn, wn) through the following:

Hn(·) = Hn−1(·) +Brn(·||πn)

where following (McMahan, 2017) we set

Brn(π||πn) = G(
1

ηn
− 1

ηn−1

)BR(π||πn)

and ηn is updated using some scheduled rule.

One can also show that the choice of ηn scheduling in (10.20) leads to an optimal regret.

When the problem is uniformly weighted (i.e. wn = 1), this gives exactly the update rule

in (McMahan, 2017). For general wn = Θ(np) with p > −1, a proof of optimality can be

found, for example, in the appendix of (Cheng et al., 2019b).

345

ADAM (Kingma and Ba, 2014) and AMSGRAD (Reddi, Kale, and Kumar, 2018)

As a representing mirror descent algorithm that uses moving-average estimates, ADAM

keeps in the memory of the statistics of the first-order information that is provided in

update and adapt. Here we first review the standard description of ADAM and then show

how it is summarized in

Hn = adapt(hn, Hn−1, gn, wn), hn+1 = update(hn, Hn, gn, wn) (10.8)

using properly constructed update, adapt, and project operations.

The update rule of ADAM proposed by Kingma and Ba (2014) is originally written as,

for n ≥ 1,14

mn = β1mn−1 + (1− β1)gn

vn = β2vn−1 + (1− β2)gn � gn

m̂n = mn/(1− βn1)

v̂n = vn/(1− βn2)

πn+1 = πn − ηnm̂n � (
√
v̂n + ε)

(10.22)

where ηn > 0 is the step size, β1, β2 ∈ [0, 1) (default β1 = 0.9 and β2 = 0.999) are

the mixing rate, and 0 < ε � 1 is some constant for stability (default ε = 10−8), and

m0 = v0 = 0. The symbols � and � denote element-wise multiplication and division,

respectively. The third and the forth steps are designed to remove the 0-bias due to running

moving averages starting from 0.

The above update rule can be written in terms of the three basic operations. First, we

define the memories hn = (mn, πn) for policy and (vn, ηn, n) for regularization that is

14We shift the iteration index so it conforms with our notation in online learning, in which π1 is the initial
policy before any update.

346

defined as

Hn(π) =
1

2ηn
π>(diag(

√
v̂n) + εI)π (10.23)

where v̂n is defined in the original ADAM equation in (10.22).

The adapt operation updates the memory to (vn, ηn, n) in the step

Hn ← adapt(hn, Hn−1, gn, wn)

It updates the iteration counter n and ηn in the same way in the basic mirror descent us-

ing (10.20), and update vn (which along with n defines v̂n used in (10.23)) using the original

ADAM equation in (10.22).

For update, we slightly modify the definition of update in (10.18) (replacing gn with

m̂n) to incorporate the moving average and write

update(hn, Hn, gn, wn) = arg min
π′∈Π

〈wnm̂n, π
′〉+BHn(π′||π) (10.24)

where mn and m̂n are defined the same as in the original ADAM equations in (10.22). One

can verify that, with these definitions, the update rule in (10.8) is equivalent to the update

rule (10.22), when the weight is uniform (i.e. wn = 1).

Here the
√
v̂n plays the role of G as in the basic mirror descent, which can be viewed

as an estimate of the upper bound of ‖gn‖∗. ADAM achieves a better performance because

a coordinate-wise online estimate is used. With this equivalence in mind, we can easily

deduct that using the same scheduling of ηn as in the basic mirror descent would achieve

an optimal regret (cf. (Kingma and Ba, 2014; Reddi, Kale, and Kumar, 2018)). We note that

ADAM may fail to converge in some particular problems due to the moving average (Reddi,

Kale, and Kumar, 2018). AMSGRAD (Reddi, Kale, and Kumar, 2018) modifies the moving

average and uses strictly increasing estimates. However in practice AMSGRAD behaves

347

more conservatively.

For weighted problems, we note one important nuance in our definition above: it sep-

arates the weight wn from the moving average and considers wn as part of the ηn update,

because the growth of wn in general can be much faster than the rate the moving average

converges. In other words, the moving average can only be used to estimate a station-

ary property, not a time-varying one like wn. Hence, we call this class of algorithms, the

stationary regularization class.

Adaptive NATGRAD

Given first-order information gn and weight wn, we consider an update rule based on Fisher

information matrix:

πn+1 = arg min
π∈Π

〈wngn, π〉+

√
Ĝn

2ηn
(π − πn)>Fn(π − πn) (10.25)

where Fn is the Fisher information matrix of policy πn (Amari, 1998) and Ĝn is an adaptive

multiplier for the step size which we will describe. When Ĝn = 1, the update in (10.25)

gives the standard natural gradient descent update with step size ηn (Kakade, 2002) .

The role of Ĝn is to adaptively and slowly changes the step size to minimize
∑N

n=1
ηn√
Gn
‖gn‖2

Fn,∗,

which plays an important part in the regret bound (see Section 10.5, Section 10.F, and

e.g. (McMahan, 2017) for details). Following the idea in ADAM, we update Ĝn by setting

(with G0 = 0)

Gn = β2Gn + (1− β2)
1

2
g>n F

−1
n gn

Ĝn = Gn/(1− βn2)

(10.26)

similar to the concept of updating vn and v̂n in ADAM in (10.22), and update ηn in the same

way as in the basic mirror descent using (10.20). Consequently, this would also lead to a

regret like ADAM but in terms of a different local norm.

348

The update operation of adaptive NATGRAD is defined standardly in (10.7) (as used

in the experiments). The adapt operation updates n and ηn like in ADAM and updates Gn

through (10.26).

10.C.2 Non-Stationary Regularization Class

The algorithms in the non-stationary regularization class maintains a regularization that

is increasing over the number of iterations. Notable examples of this class include ADA-

GRAD (Duchi, Hazan, and Singer, 2011) and ONLINE NEWTON STEP (Hazan, Agarwal,

and Kale, 2007), and its regularization function is updated by applying BTL in a secondary

online learning problem whose loss is an upper bound of the original regret (see (Gupta,

Koren, and Singer, 2017) for details). Therefore, compared with the previous stationary

regularization class, the adaption property of ηn and Gn exchanges: ηn here becomes con-

stant and Gn becomes time-varying. This will be shown more clearly in the ADAGRAD

example below. We note while these algorithms are designed to be optimal in the con-

vex, they are often too conservative (e.g. decaying the step size too fast) for non-convex

problems.

ADAGRAD

The update rule of the diagonal version of ADAGRAD in (Duchi, Hazan, and Singer, 2011)

is given as

Gn = Gn−1 + diag(gn � gn)

πn+1 = arg min
π∈Π

〈gn, π〉+
1

2η
(π − πn)>(εI +Gn)1/2(π − πn)

(10.27)

where G0 = 0 and η > 0 is a constant. ADAGRAD is designed to be optimal for online

linear optimization problems. Above we provide the update equations of its mirror descent

formulation in (10.27); a similar FTRL is also available (again the difference only happens

when Π is constrained).

349

In terms of our notation, its update and project are defined standardly as in (10.18),

i.e.

update(hn, Hn, gn, wn) = arg minπ′∈Π 〈wngn, π′〉+BHn(π′||πn) (10.28)

and its adapt essentially only updates Gn:

adapt(hn, Hn−1, gn, wn) : Gn = Gn−1 + diag(wngn � wngn)

where the regularization is defined the updated Gn and the constant η as

Hn(π) =
1

2η
π>(εI +Gn)1/2π.

One can simply verify the above definitions of update and adapt agrees with (10.27).

10.D A Practical Variation of PICCOLO

In Section 10.4.2, we show that, given a base algorithm in mirror descent/FTRL, PICCOLO

generates a new first-order update rule by recomposing the three basic operations into

hn = update(ĥn, Hn−1, ĝn, wn) [Prediction] (10.29)

Hn = adapt(hn, Hn−1, en, wn)

ĥn+1 = update(hn, Hn, en, wn)
[Correction] (10.30)

where en = gn − ĝn and ĝn is an estimate of gn given by a predictive model Φn.

Here we propose a slight variation which introduces another operation shift inside the

350

Prediction Step. This leads to the new set of update rules:

Ĥn = shift(ĥn, Hn−1)

hn = update(ĥn, Ĥn, ĝn, wn)

[Prediction] (10.31)

Hn = adapt(hn, Ĥn, en, wn)

ĥn+1 = update(hn, Hn, en, wn)
[Correction] (10.32)

The new shift operator additionally changes the regularization based on ĥn the current

representation of the policy in the Prediction Step, independent of the predicted gradient

ĝn and weight wn. The main purpose of including this additional step is to deal with

numerical difficulties, such as singularity of Hn. For example, in natural gradient descent,

the Fisher information of some policy can be close to being singular along the direction of

the gradients that are evaluated at different policies. As a result, in the original Prediction

Step of PICCOLO, Hn−1 which is evaluated at πn−1 might be singular in the direction of

ĝn which is evaluated π̂n.

The new operator shift brings in an extra degree of freedom to account for such is-

sue. Although from a theoretical point of view (cf. Section 10.F) the use of shift would

only increase regrets and should be avoided if possible, in practice, its merits in handling

numerical difficulties can out weight the drawback. Because shift does not depend on the

size of ĝn and wn, the extra regrets would only be proportional to O(
∑N

n=1 ‖πn − π̂n‖n),

which can be smaller than other terms in the regret bound (see Section 10.F).

10.E Example: PICCOLOing Natural Gradient Descent

We give an alternative example to illustrate how one can use the above procedure to

“PICCOLO” a base algorithm into a new algorithm. Here we consider the adaptive nat-

ural gradient descent rule in Section 10.C as the base algorithm, which (given first-order

351

information gn and weight wn) updates the policy through

πn+1 = arg minπ∈Π 〈wngn, π〉+

√
Ĝn

2ηn
(π − πn)>Fn(π − πn) (10.33)

where Fn is the Fisher information matrix of policy πn (Amari, 1998), ηn a scheduled

learning rate, and Ĝn is an adaptive multiplier for the step size which we will shortly

describe. When Ĝn = 1, the update in (10.33) gives the standard natural gradient descent

update with step size ηn (Kakade, 2002) .

The role of Ĝn is to adaptively and slowly changes the step size to minimize
∑N

n=1
ηn√
Gn
‖gn‖2

Fn,∗,

which plays an important part in the regret bound (see Section 10.5, Section 10.F, and

e.g. (McMahan, 2017) for details). To this end, we update Ĝn by setting (with G0 = 0)

Gn = β2Gn−1 + (1− β2)1
2
g>n F

−1
n gn, Ĝn = Gn/(1− βn2) (10.34)

similar to the moving average update rule in ADAM, and update ηn in the same way as

in the basic mirror descent algorithm (e.g. ηn = O(1/
√
n)). As a result, this leads to a

similar regret like ADAM with β1 = 0, but in terms of a local norm specified by the Fisher

information matrix.

Now, let’s see how to PICCOLO the adaptive natural gradient descent rule above. First,

it is easy to see that the adaptive natural gradient descent rule is an instance of mirror

descent (with hn = πn and Hn(g) =

√
Ĝn

2ηn
g>Fng), so the update and project operations

are defined in the standard way, as in Section 10.4.2. The adapt operation updates the

iteration counter n, the learning rate ηn, and updates Ĝn through (10.34).

To be more specific, let us explicitly write out the Prediction Step and the Correction

Step of the PICCOLOed adaptive natural gradient descent rule in closed form as below:

e.g. if ηn = 1√
n

, then we can write them as

[Prediction] πn = arg minπ∈Π 〈wnĝn, π〉+

√
Ĝn−1

2ηn−1
(π − π̂n)>Fn−1(π − π̂n)

352

[Correction]

ηn = 1/
√
n

Gn = β2Gn−1 + (1− β2)1
2
g>n F

−1
n gn

Ĝn = Gn/(1− βn2)

π̂n+1 = arg minπ∈Π 〈wnen, π〉+

√
Ĝn

2ηn
(π − πn)>Fn(π − πn)

10.F Regret Analysis of PICCOLO

The main idea of PICCOLO is to achieve optimal performance in predictable online learn-

ing problems by reusing existing adaptive, optimal first-order algorithms that are designed

for adversarial online learning problems. This is realized by the reduction techniques pre-

sented in this section.

Here we prove the performance of PICCOLO in general predictable online learning

problems, independent of the context of policy optimization. In Section 10.F.1, we first

show an elegant reduction from predictable problems to adversarial problems. Then we

prove Theorem 10.5.1 in Section 10.F.2, showing how the optimal regret bound for pre-

dictable linear problems can be achieved by PICCOLOing mirror descent and FTRL algo-

rithms. Note that we will abuse the notation ln to denote the per-round losses in this general

setting.

10.F.1 Reduction from Predictable Online Learning to Adversarial Online Learning

Consider a predictable online learning problem with per-round losses {ln}. Suppose in

round n, before playing πn and revealing ln, we have access to some prediction of ln, called

l̂n. In particular, we consider the case where l̂n(π) = 〈ĝn, π〉 for some vector ĝn. Running

an (adaptive) online learning algorithm designed for the general adversarial setting is not

optimal here, as its regret would be in O(
∑N

n=1 ‖∇ln‖2
n,∗), where ‖ · ‖n is some local norm

chosen by the algorithm and ‖ · ‖n,∗ is its dual norm. Ideally, we would only want to pay

353

for the information that is unpredictable. Specifically, we wish to achieve an optimal regret

in O(
∑N

n=1 ‖∇ln −∇l̂n‖2
n,∗) instead (Rakhlin and Sridharan, 2012).

To achieve the optimal regret bound yet without referring to specialized, nested two-

step algorithms (e.g. mirror-prox Juditsky, Nemirovski, and Tauvel, 2011, optimistic mirror

descent (Rakhlin and Sridharan, 2013), FTRL-prediction Rakhlin and Sridharan, 2012), we

consider decomposing a predictable problem with N rounds into an adversarial problem

with 2N rounds:

N∑

n=1

ln(πn) =
N∑

n=1

l̂n(πn) + δn(πn) (10.35)

where δn = ln − l̂n. Therefore, we can treat the predictable problem as a new adversarial

online learning problem with a loss sequence l̂1, δ1, l̂2, δ2, . . . , l̂N , δN and consider solving

this new problem with some standard online learning algorithm designed for the adversarial

setting.

Before analysis, we first introduce a new decision variable π̂n and denote the decision

sequence in this new problem as π̂1, π1, π̂2, π2, . . . , π̂N , πN , so the definition of the variables

are consistent with that in the problem before. Because this new problem is unpredictable,

the optimal regret of this new decision sequence is

N∑

n=1

l̂n(π̂n) + δn(πn)−min
π∈Π

N∑

n=1

l̂n(π) + δn(π) = O(
N∑

n=1

‖∇l̂n‖2
n,∗ + ‖∇δn‖2

n+1/2,∗)

(10.36)

where the subscript n+ 1/2 denotes the extra round due to the reduction.

At first glance, our reduction does not meet the expectation of achieving regret in

O(
∑N

n=1 ‖∇ln − ∇l̂n‖2
n,∗) = O(

∑N
n=1 ‖∇δn‖2

n,∗). However, we note that the regret for

354

the new problem is too loose for the regret of the original problem, which is

N∑

n=1

l̂n(πn) + δn(πn)−min
π∈Π

N∑

n=1

l̂n(π) + δn(π)

where the main difference is that originally we care about l̂n(πn) rather than l̂n(π̂n). Specif-

ically, we can write

N∑

n=1

ln(πn) =
N∑

n=1

l̂n(πn) + δn(πn)

=

(
N∑

n=1

l̂n(π̂n) + δn(πn)

)
+

(
N∑

n=1

l̂n(πn)− l̂n(π̂n)

)

Therefore, if the update rule for generating the decision sequence π̂1, π1, π̂2, π2, . . . , π̂N , πN

contributes sufficient negativity in the term l̂n(πn) − l̂n(π̂n) compared with the regret

of the new adversarial problem, then the regret of the original problem can be smaller

than (10.36). This is potentially possible, as πn is made after l̂n is revealed. Especially, in

the fixed-point formulation of PICCOLO, πn and l̂n can be decided simultaneously.

In the next section, we show that when the base algorithm, which is adopted to solve

the new adversarial problem given by the reduction, is in the family of mirror descent and

FTRL. Then the regret bound of PICCOLO with respect to the original predictable problem

is optimal.

10.F.2 Optimal Regret Bounds for Predictable Problems

We show that if the base algorithm of PICCOLO belongs to the family of optimal mirror

descent and FTRL designed for adversarial problems, then PICCOLO can achieve the op-

timal regret of predictable problems. In this subsection, we assume the loss sequence is

linear, i.e. ln(π) = 〈gn, π〉 for some gn, and the results are summarized as Theorem 10.5.1

in the main paper (in a slightly different notation).

355

Mirror Descent

First, we consider mirror descent as the base algorithm. In this case, we can write the

PICCOLO update rule as

πn = arg min
π∈Π

〈
∇l̂n(π̂n), x

〉
+BHn−1(π||π̂n) [Prediction]

π̂n+1 = arg min
π∈Π

〈∇δn(πn), π〉+BHn(π||πn) [Correction]

where Hn can be updated based on en := ∇δn(πn) = ∇ln(πn) − ∇l̂n(π̂n) (recall by

definition ∇ln(πn) = gn and ∇l̂n(π̂n) = ∇l̂n(πn) = ĝn). Notice that in the Prediction

Step, PICCOLO uses the regularization from the previous Correction Step.

To analyze the performance, we use a lemma of the mirror descent’s properties. The

proof is a straightforward application of the optimality condition of the proximal map Nes-

terov, 2013. We provide a proof here for completeness.

Lemma 10.F.1. Let K be a convex set. Suppose R is 1-strongly convex with respect to

norm ‖ · ‖. Let g be a vector in some Euclidean space and let

y = arg min
z∈K

〈g, z〉+
1

η
BR(z||x)

Then for all z ∈ K

η 〈g, y − z〉 ≤ BR(z||x)−BR(z||y)−BR(y||x) (10.37)

which implies

η 〈g, x− z〉 ≤ BR(z||x)−BR(z||y) +
η2

2
‖g‖2

∗ (10.38)

Proof. Recall the definition BR(z||x) = R(z) − R(x) − 〈∇R(x), z − x〉. The optimality

356

of the proximal map can be written as

〈ηg +∇R(y)−∇R(x), y − z〉 ≤ 0, ∀z ∈ K

By rearranging the terms, we can rewrite the above inequality in terms Bregman diver-

gences as follows and derive the first inequality (10.37):

〈ηg, y − z〉 ≤ 〈∇R(x)−∇R(y), y − z〉

= BR(z||x)−BR(z||y) + 〈∇R(x)−∇R(y), y〉 − 〈∇R(x), x〉

+ 〈∇R(y), y〉+R(x)−R(y)

= BR(z||x)−BR(z||y) + 〈∇R(x), y − x〉+R(x)−R(y)

= BR(z||x)−BR(z||y)−BR(y||x)

The second inequality is the consequence of (10.37). First, we rewrite (10.37) as

〈ηg, x− z〉 = BR(z||x)−BR(z||y)−BR(y||x) + 〈ηg, x− y〉

Then we use the fact that BR is 1-strongly convex with respect to ‖ · ‖, which implies

−BR(y||x) + 〈ηg, x− y〉 ≤ −1

2
‖x− y‖2 + 〈ηg, x− y〉 ≤ η2

2
‖g‖2

∗

Combining the two inequalities yields (10.38). �

Lemma 10.F.1 is usually stated with (10.38), which concerns the decision made before

seeing the per-round loss (as in the standard adversarial online learning setting). Here, we

additionally concern l̂n(πn), which is the decision made after seeing l̂n, so we need a tighter

bound (10.37).

Now we show that the regret bound of PICCOLO in the predictable linear problems

when the base algorithm is mirror descent.

357

Proposition 10.F.1. Assume the base algorithm of PICCOLO is mirror descent satisfying

the Assumption 10.5.1. Let gn = ∇ln(πn) and en = gn − ĝn. Then it holds that, for any

π ∈ Π,

N∑

n=1

wn 〈gn, πn − π〉 ≤MN +
N∑

n=1

w2
n

2
‖en‖2

∗,n −
1

2
‖πn − π̂n‖2

n−1

Proof. Suppose Rn, which is defined by Hn, is 1-strongly convex with respect to ‖ · ‖n.

Then by Lemma 10.F.1, we can write, for all π ∈ Π,

wn 〈gn, πn − π〉 = wn 〈ĝn, πn − π〉+ wn 〈en, πn − π〉

≤ BRn−1(π||π̂n)−BRn−1(π||πn)−BRn−1(πn||π̂n)

+BRn(π||πn)−BRn(π||π̂n+1) +
w2
n

2
‖en‖2

∗,n (10.39)

where we use (10.37) for ĝn and (10.38) for the loss en.

To show the regret bound of the original (predictable) problem, we first notice that

N∑

n=1

BRn−1(π||π̂n)−BRn−1(π||πn) +BRn(π||πn)−BRn(π||π̂n+1)

= BR0(π||π̂1)−BRN (π||π̂N+1) +
N∑

n=1

BRn−1(π||π̂n)−BRn−1(π||πn) +BRn(π||πn)−BRn−1(π||π̂n)

= BR0(π||π̂1)−BRN (π||π̂N+1) +
N∑

n=1

BRn(π||πn)−BRn−1(π||πn) ≤MN

where the last inequality follows from the assumption on the base algorithm. Therefore, by

telescoping the inequality in (10.39) and using the strong convexity of Rn, we get

N∑

n=1

wn 〈gn, πn − π〉 ≤MN +
N∑

n=1

w2
n

2
‖en‖2

∗,n −BRn−1(πn||π̂n)

≤MN +
N∑

n=1

w2
n

2
‖en‖2

∗,n −
1

2
‖πn − π̂n‖2

n−1 �

358

Follow-the-Regularized-Leader

We consider another type of base algorithm, FTRL, which is mainly different from mirror

descent in the way that constrained decision sets are handled (McMahan, 2017). In this

case, the exact update rule of PICCOLO can be written as

πn = arg min
π∈Π

〈wnĝn, π〉+
n−1∑

m=1

〈wmgm, π〉+Brm(π||πm) [Prediction]

π̂n+1 = arg min
π∈Π

n∑

m=1

〈wmgm, π〉+Brm(π||πm) [Correction]

From the above equations, we verify that MOBIL (Cheng et al., 2019b) is indeed a special

case of PICCOLO, when the base algorithm is FTRL.

We show PICCOLO with FTRL has the following guarantee.

Proposition 10.F.2. Assume the base algorithm of PICCOLO is FTRL satisfying the As-

sumption 10.5.1. Then it holds that, for any π ∈ Π,

N∑

n=1

wn 〈gn, πn − π〉 ≤MN +
N∑

n=1

w2
n

2
‖en‖2

∗,n −
1

2
‖πn − π̂n‖2

n−1

We show the above results of PICCOLO using a different technique from (Cheng et al.,

2019b). Instead of developing a specialized proof like they do, we simply use the properties

of FTRL on the 2N -step new adversarial problem!

To do so, we recall some facts of the base algorithm FTRL. First, FTRL in (10.21)

is equivalent to Follow-the-Leader (FTL) on a surrogate problem with the per-round loss

is 〈gn, π〉 + Brn(π||πn). Therefore, the regret of FTRL can be bounded by the regret of

FTL in the surrogate problem plus the size of the additional regularization Brn(π||πn).

Second, we recall a standard techniques in proving FTL, called Strong FTL Lemma (see

e.g. (McMahan, 2017)), which is proposed for adversarial online learning.

Lemma 10.F.2 (Strong FTL Lemma (McMahan, 2017)). For any sequence {πn ∈ Π} and

359

{ln},

regretN(l) :=
N∑

n=1

ln(πn)−min
π∈Π

N∑

n=1

ln(π) ≤
N∑

n=1

l1:n(πn)− l1:n(π?n)

where π?n ∈ arg minπ∈Π l1:n(π).

Using the decomposition idea above, we show the performance of PICCOLO follow-

ing sketch below: first, we show a bound on the regret in the surrogate predictable problem

with per-round loss 〈gn, π〉 + Brn(π||πn); second, we derive the bound for the original

predictable problem with per-round loss 〈gn, π〉 by considering the effects of Brn(π||πn).

We will prove the first step by applying FTL on the transformed 2N -step adversarial prob-

lem of the original N -step predictable surrogate problem and then showing that PICCOLO

achieves the optimal regret in the original N -step predictable surrogate problem. Interest-

ingly, we recover the bound in the stronger FTL Lemma (Lemma 10.F.3) by Cheng et al.

(2019b), which they suggest is necessary for proving the improved regret bound of their

FTRL-prediction algorithm (MOBIL).

Lemma 10.F.3 (Stronger FTL Lemma (Cheng et al., 2019b)). For any sequence {πn} and

{ln},

regretN(l) =
N∑

n=1

l1:n(πn)− l1:n(π?n)−∆n

where ∆n+1 := l1:n(πn+1)− l1:n(π?n) ≥ 0 and π?n ∈ arg minπ∈Π l1:n(π).

Our new reduction-based regret bound is presented below.

Proposition 10.F.3. Let {ln} be a predictable loss sequence with predictable information

{l̂n}. Suppose the decision sequence π̂1, π1, π̂2, . . . , π̂N , πN is generated by running FTL

on the transformed adversarial loss sequence l̂1, δ1, l̂2, . . . , l̂N , δN , then the bound in the

Stonger FTL Lemma holds. That is, regretN(l) ≤ ∑N
n=1 l1:n(πn) − l1:n(π?n) − ∆n, where

∆n+1 := l1:n(πn+1)− l1:n(π?n) ≥ 0 and π?n ∈ arg minπ∈Π l1:n(π).

360

Proof. First, we transform the loss sequence and write

N∑

n=1

ln(πn) =
N∑

n=1

l̂n(πn) + δn(πn) =

(
N∑

n=1

l̂n(π̂n) + δn(πn)

)
+

(
N∑

n=1

l̂n(πn)− l̂n(π̂n)

)

Then we apply standard Strong FTL Lemma on the new adversarial problem in the left

term.

N∑

n=1

l̂n(π̂n) + δn(πn)

≤
N∑

n=1

(l̂ + δ)1:n(πn)−min
π∈Π

(l̂ + δ)1:n(π) +
N∑

n=1

((l̂ + δ)1:n−1 + l̂n)(π̂n)−min
π∈Π

((l̂ + δ)1:n−1 + l̂n)(π)

=
N∑

n=1

l1:n(πn)−min
π∈Π

l1:n(π) +
N∑

n=1

(l1:n−1 + l̂n)(π̂n)− (l1:n−1 + l̂n)(πn)

where the first inequality is due to Strong FTL Lemma and the second equality is because

FTL update assumption.

Now we observe that if we add the second term above and
∑N

n=1 l̂n(πn) − l̂n(π̂n) to-

gether, we have

N∑

n=1

(l1:n−1 + l̂n)(π̂n)− (l1:n−1 + l̂n)(πn) + (l̂n(πn)− l̂n(π̂n))

=
N∑

n=1

(l1:n−1)(π̂n)− l1:n−1(πn) = ∆n

Thus, combing previous two inequalities, we have the bound in the Stronger FTL Lemma:

N∑

n=1

ln(πn) ≤
N∑

n=1

l1:n(πn)−min
π∈Π

l1:n(π)−∆n �

Using Proposition 10.F.3, we can now bound the regret of PICCOLO in Proposition 10.F.2

easily.

Proof of Proposition 10.F.2. Suppose
∑n

m=1Brm(·||πm) is 1-strongly convex with respect

361

to some norm ‖ · ‖n. Let fn = 〈wngn, πn〉 + Brn(π||πm). Then by a simple convexity

analysis (see e.g. see (McMahan, 2017)) and Proposition 10.F.3, we can derive

regretN(f) ≤
N∑

n=1

(f1:n(πn)−min
π∈Π

f1:n(π))− (f1:n−1(πn)− f1:n−1(π̂n))

≤
N∑

n=1

w2
n

2
‖en‖2

n,∗ −
1

2
‖πn − π̂n‖2

n−1

Finally, because rn is proximal (i.e. Brn(πn||πn) = 0), we can bound the original

regret: for any π ∈ Π, it satisfies that

N∑

n=1

wn 〈gn, πn − π〉 ≤
N∑

n=1

fn(πn)− fn(π) +Brn(π||πn)

≤MN +
N∑

n=1

w2
n

2
‖en‖2

∗,n −
1

2
‖πn − π̂n‖2

n−1

where we use Assumption 10.5.1 and the bound of regretN(f) in the second inequality. �

10.G Policy Optimization Analysis of PICCOLO

In this section, we discuss how to interpret the bound given in Theorem 10.5.1

N∑

n=1

wn 〈gn, πn − π〉 ≤MN +
N∑

n=1

w2
n

2
‖en‖2

∗,n −
1

2
‖πn − π̂n‖2

n−1

in the context of policy optimization and derive the bound

E

[
N∑

n=1

〈wngn, πn − π〉
]
≤ O(1) + CΠ,Φ

w1:N√
N

(10.40)

We will also discuss how model learning can further help minimize the regret bound later

in Section 10.G.4.

362

10.G.1 Assumptions

We introduce some assumptions to characterize the sampled gradient gn. Recall gn =

∇l̃n(πn).

Assumption 10.G.1. ‖E[gn]‖2
∗ ≤ G2

g and ‖gn−E[gn]‖2
∗ ≤ σ2

g for some finite constants Gg

and σg.

Similarly, we consider properties of the predictive model Φn that is used to estimate

the gradient of the next per-round loss. Let P denote the class of these models (i.e. Φn ∈

P), which can potentially be stochastic. We make assumptions on the size of ĝn and its

variance.

Assumption 10.G.2. ‖E[ĝn]‖2
∗ ≤ G2

ĝ and E[‖ĝn − E[ĝn]‖2
∗] ≤ σ2

ĝ for some finite constants

Gĝ and σĝ.

Additionally, we assume these models are Lipschitz continuous.

Assumption 10.G.3. There is a constant L ∈ [0,∞) such that, for any instantaneous cost

ψ and any Φ ∈ P , it satisfies ‖E[Φ(π)]− E[Φ(π′)]‖∗ ≤ L‖π − π′‖.

Lastly, as PICCOLO is agnostic to the base algorithm, we assume the local norm ‖ · ‖n
chosen by the base algorithm at round n satisfies ‖ · ‖2

n ≥ αn‖ · ‖2 for some αn > 0. This

condition implies that ‖ · ‖2
n,∗ ≤ 1

αn
‖ · ‖2

∗. In addition, we assume αn is non-decreasing so

that MN = O(αN) in Assumption 10.5.1, where the leading constant in the bound O(αN)

is proportional to |Π|, as commonly chosen in online convex optimization.

10.G.2 A Useful Lemma

We study the bound in Theorem 10.5.1 under the assumptions made in the previous section.

We first derive a basic inequality, following the idea in (Cheng et al., 2019b, Lemma 4.3).

363

Lemma 10.G.1. Under Assumptions 10.G.1, 10.G.2, and 10.G.3, it holds

E[‖en‖2
∗,n] = E[‖gn − ĝn‖2

∗,n] ≤ 4

αn

(
σ2
g + σ2

ĝ + L2
n‖πn − π̂n‖2

n + En(Φn)
)

where En(Φn) = ‖E[gn]− E[Φn(πn, ψn)]‖2
∗ is the prediction error of model Φn.

Proof. Recall ĝn = Φn(π̂n, ψn). Using the triangular inequality, we can simply derive

E[‖gn − ĝn‖2
∗,n]

≤ 4
(
E[‖gn − E[gn]‖2

∗,n] + ‖E[gn]− E[Φn(πn, ψn)]‖2
∗,n
)

+ 4
(
‖E[Φn(πn, ψn)]− E[ĝn]‖2

∗,n + E[‖E[ĝn]− ĝn‖2
∗,n]
)

= 4
(
E[‖gn − E[gn]‖2

∗,n] + ‖E[gn]− E[Φn(πn, ψn)]‖2
∗,n
)

4
(
+‖E[Φn(πn, ψn)]− E[Φn(π̂n, ψn)]‖2

∗,n + E[‖E[ĝn]− ĝn‖2
∗,n]
)

≤ 4

(
1

αn
σ2
g +

1

αn
En(Φn) + ‖E[Φn(πn, ψn)]− E[Φn(π̂n, ψn)]‖2

∗,n +
1

αn
σ2
ĝ

)

≤ 4

αn

(
σ2
g + σ2

ĝ + L2‖πn − π̂n‖2
n + En(Φn)

)

where the last inequality is due to Assumption 10.G.3. �

10.G.3 Optimal Regret Bounds

We now analyze the regret bound in Theorem 10.5.1

N∑

n=1

wn 〈gn, πn − π〉 ≤MN +
N∑

n=1

w2
n

2
‖en‖2

∗,n −
1

2
‖πn − π̂n‖2

n−1 (10.41)

We first gain some intuition about the size of

MN + E

[
N∑

n=1

w2
n

2
‖en‖2

∗,n

]
. (10.42)

364

Because when adapt(hn, Hn−1, en, wn) is called in the Correction Step in (10.30) with the

error gradient en as input, an optimal base algorithm (e.g. all the base algorithms listed

in Section 10.C) would choose a local norm sequence ‖ · ‖n such that (10.42) is optimal.

For example, suppose ‖en‖2
∗ = O(1) and wn = np for some p > −1. If the base algorithm

is basic mirror descent (cf. Section 10.C), then αn = O(w1:n√
n

). By our assumption that

MN = O(αN), it implies (10.42) can be upper bounded by

MN + E

[
N∑

n=1

w2
n

2
‖en‖2

∗,n

]
≤ O

(
w1:N√
N

)
+

[
N∑

n=1

w2
n

√
n

2w1:n

‖en‖2
∗

]

≤ O

(
w1:N√
N

+
N∑

n=1

w2
n

√
n

w1:n

)
= O

(
Np+1/2

)

which will lead to an optimal weighted average regret in O(1√
N

).

PICCOLO actually has a better regret than the simplified case discussed above, be-

cause of the negative term −1
2
‖πn − π̂n‖2

n−1 in (10.41). To see its effects, we combine

Lemma 10.G.1 with (10.41) to reveal some insights:

E

[
N∑

n=1

wn 〈gn, πn − π〉
]

(10.43)

≤ O(αN) + E

[
N∑

n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

]
(10.44)

≤ O(αN) + E

[
N∑

n=1

2w2
n

αn

(
σ2
g + σ2

ĝ + L2‖πn − π̂n‖2n + En(Φn)
)
− αn−1

2
‖πn − π̂n‖2

]

=

(
O(αN) + E

[
N∑

n=1

2w2
n

αn

(
σ2
g + σ2

ĝ + En(Φn)
)
])

+

(
E

[
N∑

n=1

(
2w2

n

αn
L2 − αn−1

2
)‖πn − π̂n‖2

])

(10.45)

The first term in (10.45) plays the same role as (10.42); when the base algorithm has an

optimal adapt operation and wn = np for some p > −1, it would be in O
(
Np+1/2

)
. Here

we see that the constant factor in this bound is proportional to σ2
g+σ2

ĝ+En(Φn). Therefore,

if the variances σ2
g , σ2

ĝ of the gradients are small, the regret would mainly depend on the

365

prediction error En(Φn) of Φn. In the next section (Section 10.G.4), we will show that

when Φn is learned online (as the authors in (Cheng et al., 2019b) suggest), on average

the regret is close to the regret of using the best model in the hindsight. The second term

in (10.45) contributes to O(1) in the regret, when the base algorithm adapts properly to wn.

For example, when αn = Θ(w1:n√
n

) and wn = np for some p > −1, then

N∑

n=1

2w2
n

αn
L2 − αn−1

2
=

N∑

n=1

O(np−1/2 − np+1/2) = O(1)

In addition, because ‖πn − π̂n‖ would converge to zero, the effects of the second term

in (10.45) becomes even minor.

In summary, for a reasonable base algorithm and wn = np with p > −1, running

PICCOLO has the regret bound, for any π,

E

[
N∑

n=1

wn 〈gn, πn − π〉
]

= O(αN) +O

(
w1:N√
N

(σ2
g + σ2

ĝ)

)
+O(1) + E

[
N∑

n=1

2w2
n

αn
En(Φn)

]

(10.46)

Suppose αn = Θ(|Π|w1:n√
n

) and wn = np for some p > −1, This implies the inequality

E

[
N∑

n=1

〈wngn, πn − π〉
]
≤ O(1) + CΠ,Φ

w1:N√
N

(10.40)

where CΠ,Φ = O(|Π|+σ2
g +σ2

ĝ + supnEn(Φn)). The use of non-uniform weights can lead

to a faster on average decay of the standing O(1) term in the final weighted average regret

bound, i.e.

1

w1:N

E

[
N∑

n=1

〈wngn, πn − π〉
]
≤ O

(
1

w1:N

)
+
CΠ,Φ√
N

In general, the authors in (Cheng et al., 2018a, 2019b) recommend using p � N (e.g. in

the range of [0, 5]) to remove the undesirable constant factor, yet without introducing large

366

multiplicative constant factor.

10.G.4 Model Learning

The regret bound in (10.46) reveals an important factor that is due to the prediction error

E
[∑N

n=1
2w2

n

αn
En(Φn)

]
, where we recall En(Φn) = ‖E[gn] − E[Φn(πn)]‖2

∗. Cheng et al.

(2019b) show that, to minimize this error sum through model learning, a secondary online

learning problem with per-round loss En(·) can be considered. Note that this is a standard

weighted adversarial online learning problem (weighted by 2w2
n

αn
), because En(·) is revealed

after one commits to using model Φn.

While in implementation the exact function En(·) is unavailable (as it requires infinite

data), we can adopt an unbiased upper bound. For example, Cheng et al. (2019b) show

that En(·) can be upper bounded by the single- or multi-step prediction error of a transition

dynamics model. More generally, we can learn a neural network to minimize the gradient

prediction error directly. As long as this secondary online learning problem is solved by

a no-regret algorithm, the error due to online model learning would contribute a term in

O(w1:NεP,N/
√
N) + o(w1:N/

√
N) in (10.46), where εP,N is the minimal error achieved by

the best model in the model class P (see (Cheng et al., 2019b) for details).

10.H Experimental Details

10.H.1 Algorithms

Base Algorithms In the experiments, we consider three commonly used first-order on-

line learning algorithms: ADAM, NATGRAD, and TRPO, all of which adapt the regulariza-

tion online to alleviate the burden of learning rate tuning. We provide the decomposition

of ADAM into the basic three operations in Section 10.C, and that of NATGRAD in Sec-

tion 10.E. In particular, the adaptivity of NATGRAD is achieved by adjusting the step size

based on a moving average of the dual norm of the gradient. TRPO adjusts the step size to

minimize a given cost function (here it is a linear function defined by the first-order ora-

367

cle) within a pre-specified KL divergence centered at the current decision. While greedily

changing the step size in every iteration makes TRPO an inappropriate candidate for adver-

sarial online learning. Nonetheless, it can still be written in the form of mirror descent and

allows a decomposition using the three basic operators; its adapt operator can be defined

as the process of finding the maximal scalar step along the natural gradient direction such

that the updated decision stays within the trust region. For all the algorithms, a decaying

step size multiplier in the form η/(1+α
√
n) is also used; for TRPO, it is used to specify the

size of trust regions. The values chosen for the hyperparameters η and α can be found in

Table 10.2. To the best of our knowledge, the conversion of these approaches into unbiased

model-based algorithms is novel.

Reinforcement Learning Per-round Loss In iteration n, in order to compute the online

gradient (10.5), GAE (Schulman et al., 2015a) is used to estimate the advantage function

Aπn−1 . More concretely, this advantage estimate utilizes an estimate of value function

V πn−1 (which we denote V̂πn−1) and on-policy samples. We chosen λ = 0.98 in GAE to

reduce influence of the error in V πn−1 , which can be catastrophic. Importance sampling

can be used to estimate Aπn−1 in order to leverage data that are collected on-policy by

running πn. However, since we select a large λ, importance sampling can lead to vanishing

importance weights, making the gradient extremely noisy. Therefore, in the experiments,

importance sampling is not applied.

Gradient Computation and Control Variate The gradients are computed using likelihood-

ratio trick and the associated advantage function estimates described above. A scalar con-

trol variate is further used to reduce the variance of the sampled gradient, which is set to

the mean of the advantage estimates evaluated on newly collected data.

Policies and Value Networks Simple feed-forward neural networks are used to construct

all of the function approximators (policy and value function) in the tasks. They have 1

368

hidden layer with 32 tanh units for all policy networks, and have 2 hidden layers with

64 tanh units for value function networks. Gaussian stochastic policies are considered,

i.e., for any state s ∈ S , π(a|s) is Gaussian, and the mean of π(a|s) is modeled by the

policy network, whereas the diagonal covariance matrix is state independent (which is also

learned). Initial value of log σ of the Gaussian policies −1.0, the standard deviation for

initializing the output layer is 0.01, and the standard deviation for initialization hidden

layer is 1.0. After the policy update, a new value function estimate V̂ πn is computed by

minimizing the mean of squared difference between V̂ πn and V̂ πn−1 + Âπn , where Âπn is

the GAE estimate using V̂ πn−1 and λ = 0.98, through ADAM with batch size 128, number

of batches 2048, and learning rate 0.001. Value function is pretrained using examples

collected by executing the randomly initialized policy.

Computing Model Gradients We compute ĝn in two ways. The first approach is to use

the simple heuristic that sets ĝn = Φn(π̂n), where Φn is some predictive models depending

on the exact experimental setup. The second approach is to use the fixed-point formula-

tion (10.9). This is realized by solving the equivalent optimization problem mentioned in

the paper. In implementation, we only solves this problem approximately using some finite

number of gradient steps; though this is insufficient to yield a stationary point as desired

in the theory, we experimentally find that it is sufficient to yield improvement over the

heuristic ĝn = Φn(π̂n).

Approximate Solution to Fixed-Point Problems of PICCOLO PICCOLO relies on the

predicted gradient ĝn in the Prediction Step. Recall ideally we wish to solve the fixed-point

problem that finds h∗n such that

h∗n = update(ĥn, Hn−1,Φn(πn(h∗n)), wn) (10.47)

369

and then apply ĝn = Φn(πn(h∗n)) in the Prediction Step to get hn, i.e.,

hn = update(ĥn, Hn−1, ĝn, wn)

Because h∗n is the solution to the fixed-point problem, we have hn = h∗n. Such choice

of ĝn will fully leverage the information provided by Φn, as it does not induce additional

linearization due to evaluating Φn at points different from hn.

Exactly solving the fixed-point problem is difficult. In the experiments, we adopt a

heuristic which computes an approximation to h∗n as follows. We suppose Φn = ∇fn
for some function fn, which is the case e.g. when Φn is the simulated gradient based on

some (biased) dynamics model. This restriction makes the fixed-point problem as finding a

stationary point of the optimization problem minπ∈Π fn(π) +BRn−1(π||π̂n). In implemen-

tation, we initialize the iterate in this subproblem as update(ĥn, Hn−1,Φn(π̂n), wn), which

is the output of the Prediction Step if we were to use ĝn = Φn(π̂n). We made this choice

in initializing the subproblem, as we know that using ĝn = Φn(π̂n) in PICCOLO already

works well (see the experiments) and it can be viewed as the solution to the fixed-point

problem with respect to the linearized version of Φn at π̂n. Given the this initialization

point, we proceed to compute the approximate solution to the fixed-point by applying the

given base algorithm for 5 iterations and then return the last iterate as the approximate solu-

tion. For example, if the base algorithm is natural gradient descent, we fixed the Bregman

divergence (i.e. its the Fisher information matrix as π̂n) and only updated the scalar stepsize

adaptively along with the policy in solving this regularized model-based RL problem (i.e.

minπ∈Π fn(π)+BRn−1(π||π̂n)). While such simple implementation is not ideal, we found it

works in practice, though we acknowledge that a better implementation of the subproblem

solver would improve the results.

370

10.H.2 Tasks

The robotic control tasks that are considered in the experiments are CartPole, Hopper,

Snake, and Walker3D from OpenAI Gym (Brockman et al., 2016) with the DART physics

engine (Lee et al., 2018a)15. CartPole is a classic control problem, and its goal is to keep a

pole balanced in a upright posture, by only applying force to the cart. Hopper, Snake, and

Walker3D are locomotion tasks, of which the goal is to control an agent to move forward

as quickly as possible without falling down (for Hopper and Walker3D) or deviating too

much from moving forward (for Snake). Hopper is monopedal and Walker3D is bipedal,

and both of them are subjected to significant contact discontinuities that are hard or even

impossible to predict.

10.H.3 Full Experimental Results

In Figure 10.3, we empirically study the properties of PICCOLO that are predicted by

theory on CartPole environment. In Figure 10.4, we “PICCOLO ” three base algorithms:

ADAM, NATGRAD, TRPO, and apply them on four simulated environments: Cartpole, Hop-

per, Snake, and Walker3D.

10.H.4 Experiment Hyperparameters

The hyperparameters used in the experiments and the basic attributes of the environments

are detailed in Table 10.2.
15The environments are defined in DartEnv, hosted at https://github.com/DartEnv.

371

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

PICCOLO-ADVERSARIAL

DYNA-ADVERSARIAL

(a) Adv. model, NATGRAD

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

PICCOLO-ADVERSARIAL

DYNA-ADVERSARIAL

(b) Adv. model, TRPO

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

BIASEDDYN0.2-FP

BIASEDDYN0.5-FP

BIASEDDYN0.8-FP

(c) Diff. fidelity, NATGRAD

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

BIASEDDYN0.2-FP

BIASEDDYN0.5-FP

BIASEDDYN0.8-FP

(d) Diff. fidelity, TRPO

Figure 10.3: Performance of PICCOLO with different predictive models on CartPole. x
axis is iteration number and y axis is sum of rewards. The curves are the median among 8
runs with different seeds, and the shaded regions account for 25% percentile. The update
rule, by default, is PICCOLO. For example TRUEDYN in (a) refers to PICCOLO with
TRUEDYN predictive model. (a), (b): Comparison of PICCOLO and DYNA with adver-
sarial model using NATGRAD and TRPO as base algorithms. (c), (d): PICCOLO with the
fixed-point setting (10.9) with dynamics model in different fidelities. BIASEDDYN0.8 in-
dicates that the mass of each individual robot link is either increased or decreased by 80%
with probablity 0.5 respectively.

CartPole Hopper Snake Walker3D

Observation space dimension 4 11 17 41

Action space dimension 1 3 6 15

State space dimension 4 12 18 42

Number of samples from env. per iteration 4k 16k 16k 32k

Number of samples from model dyn. per iteration 4k 16k 16k 32k

Length of horizon 1,000 1,000 1,000 1,000

Number of iterations 100 200 200 1,000

Number of iterations of samples for REPLAY buffer 5 4 3 2 (3 for ADAM)

α 16 0.1 0.1 0.1 0.01

η in ADAM 0.005 0.005 0.002 0.01

η in NATGRAD 0.05 0.05 0.2 0.2

η in TRPO 0.002 0.002 0.01 0.04

Table 10.2: Tasks specifics and hyperparameters.

16α and η appear in the decaying step size multiplier for all the algorithms in the form η/(1 + α
√
n). α

influences how fast the step size decays. We chose α in the experiments based on the number of iterations.

372

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
LAST

REPLAY

(a) CartPole ADAM

0 50 100 1500

1000

2000

3000

4000

5000
Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(b) Hopper ADAM

0 50 100 1500

1000

2000

3000

4000 Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(c) Snake ADAM

0 200 400 600 8000

500

1000

1500

2000

2500

3000
Base Algorithm
LAST

REPLAY

TRUEDYN

(d) Walker3D ADAM

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
LAST

REPLAY

TRUEDYN

(e) CartPole NATGRAD

0 50 100 1500

1000

2000

3000

4000

5000

Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(f) Hopper NATGRAD

0 50 100 1500

1000

2000

3000

4000

Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(g) Snake NATGRAD

0 200 400 600 8000

500

1000

1500

2000

2500

3000
Base Algorithm
LAST

REPLAY

TRUEDYN

(h) Walker3D NATGRAD

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
LAST

REPLAY

TRUEDYN

(i) CartPole TRPO

0 50 100 1500

1000

2000

3000

4000

5000
Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(j) Hopper TRPO

0 50 100 1500

1000

2000

3000

4000

Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(k) Snake TRPO

0 200 400 600 8000

500

1000

1500

2000

2500

3000
Base Algorithm
LAST

REPLAY

TRUEDYN

(l) Walker3D TRPO

Figure 10.4: The performance of PICCOLO with different predictive models on various
tasks, compared to base algorithms. The rows use ADAM, NATGRAD, and TRPO as the
base algorithms, respectively. x axis is iteration number and y axis is sum of rewards. The
curves are the median among 8 runs with different seeds, and the shaded regions account
for 25% percentile.

373

Part III

Structral Policy Fusion

374

ABSTRACT

In the last part, we study another important question in policy optimization: the design of

structural policies (Cheng et al., 2018b; Li et al., 2019b; Mukadam et al., 2019). Our goal

here is to develop a rich policy class where every policy is provably stable. Such a policy

class can supplement the statistical learning techniques developed in the first two parts of

the thesis, so that they can be robustly and safely applied to robotics applications.

Toward this end, in Chapter 11, we develop a novel policy synthesis algorithm, called

RMPflow, based on geometrically consistent transformations of Riemannian Motion Poli-

cies (RMPs). Given a set of RMPs designed for individual tasks, RMPflow can consistently

combine them to generate a global policy, while simultaneously exploiting sparse structure

for computational efficiency. Moreover, we show that this combined policy is Lyapunov

stable, if each user-provided RMP belongs to the family of Geometric Dynamical Systems.

While RMPflow can be used as a framework for policy fusion, we can also treat it

more generally as a differential computational graph for expressing motion policies with

inherent stability. In Chapter 12, we formally establish this idea and propose a variation of

RMPflow, called RMPfusion, which has extra weight functions to more finely control the

policy fusion process of RMPflow.

Finally, in Chapter 13, we provide a general stability result of RMPflow based on Con-

trol Lyapunov Function (CLF), showing that RMPflow is capable of stably combining a

large class of task-space policies that are stable with respect to a family of CLFs. Leverag-

ing this finding, we then design an efficient CLF-based computational framework that can

combine arbitrary subtask policies provided by users into a globally stable policy. In view

of policy optimization, this result again shows that RMPflow is indeed a rich, Lyapunov-

stable policy class, making RMPflow an ideal candidate for policy optimization with re-

quirements of safety and interpretability.

375

NOTATION

Table 10.3: Notation for RMPflow

Symbol Definition

C the configuration space
T the task space
q the coordinate of the configuration space
q̇ the velocity in view of q
q̈ the acceleration in view of q

π(q, q̇) the global motion policy
ψ the transformation between manifolds
J the Jacobian matrix of the transformation

(a,M)M the canonical form of an RMP on a manifoldM
[f ,M]M the natural form of the RMP above, where f = Ma

a the desired acceleration in the RMP
f the desired force in the RMP
M the virtual inertia in the RMP

GDS(M,G,B,Φ) the geometric dynamical system on a manifoldM
G(q, q̇) the metric matrix in the GDS
B(q, q̇) the damping matrix the GDS

Φ(q) the potential function the GDS
ξG(q, q̇), ΞG(q, q̇) the curvature terms derived from the metric G

C(q, q̇) the Coriolis term in a simple mechanical system
V (q, q̇) the global Lyapunov function
TM the tangent bundle of a manifoldM
TTM the double tangent bundle of a manifoldM

376

CHAPTER 11

A GEOMETRIC FRAMEWORK FOR POLICY FUSION

11.1 Introduction

In this chapter, we develop a new motion generation and control framework that enables

globally stable controller design for intrinsically non-Euclidean spaces, i.e., spaces defined

by non-constant Riemannian metrics with non-trivial curvature. Non-Euclidean geometries

arise commonly in the natural world, in particular in the problem of obstacle avoidance.

When obstacles are present, straight lines are no longer a reasonable definition of geodesics

(namely, paths with shortest distance). Rather, geodesics must naturally flow around these

obstacles that, in effect, become holes in the space and block trajectories from passing.

This behavior implies a form of non-Euclidean geometry, because the space is naturally

curved by the presence of obstacles.

The planning literature has made substantial progress in modeling non-Euclidean task-

space behaviors, but at the expense of efficiency and reactivity. Starting with early differ-

ential geometric models of obstacle avoidance (Rimon and Koditschek, 1991) and building

toward modern planning algorithms and optimization techniques (Gammell, Srinivasa, and

Barfoot, 2015; Ivan et al., 2013; Karaman and Frazzoli, 2011; LaValle, 2006; Mukadam

et al., 2018; Ratliff, Toussaint, and Schaal, 2015b; Toussaint, 2009; Watterson et al., 2018),

these algorithms can calculate highly nonlinear trajectories. However, they are often com-

putationally intensive, sensitive to noise, and unresponsive to perturbation. In addition, the

internal nonlinearities of robots due to kinematic constraints are sometimes simplified in

the optimization. While fast approximation and replanning heuristics have been proposed,

the above characteristics in their nature make them unsuitable for motion generation in

dynamic situations.

377

At the same time, a separate thread of literature, emphasizing fast reactive responses

over computationally expensive planning, developed efficient closed-loop control tech-

niques such as operational space control (Khatib, 1987). But while these techniques ac-

count for internal geometries from the robot’s kinematic structure, they assume simple

Euclidean geometry in task spaces (Peters et al., 2008; Udwadia, 2003), thus failing to pro-

vide a complete treatment of the external geometries. For example, the unified formulation

of operational space control (Peters et al., 2008; Udwadia, 2003) is implicitly built on a

classical mechanics concept called Gauss’s principle of least constraint (Udwadia and Kal-

aba, 1996) which assumes each task space is Euclidean. As a result, obstacle avoidance,

e.g., has to rely on extrinsic potential functions, leading to undesirable deceleration behav-

ior when the robot is close to the obstacle. If somehow the non-Euclidean geometry can

be intrinsically considered, then fast obstacle avoidance motion would naturally arise as

traveling along the induced geodesic. The need for a holistic solution to motion generation

and control has motivated a number of recent system architectures that tightly integrate

planning and control (Kappler et al., 2018; Mukadam et al., 2017).

We improve upon these works by developing a new approach to synthesizing control

policies that can accommodate and leverage the modeling capacity of intrinsically non-

Euclidean robotics tasks. Taking inspiration from Geometric Control Theory (Bullo and

Lewis, 2004),1 we design a novel recursive algorithm, RMPflow, for representing nonlin-

ear policies, based on a recently proposed mathematical object known as the Riemannian

Motion Policy (RMP) (Ratliff, Issac, and Kappler, 2018). RMPflow enables geometrically

consistent fusion of many component policies defined in non-Euclidean task spaces that are

related through a tree structure. In essence, RMPflow computes a robot’s acceleration by

solving a high-dimensional weighted least-squared problem in which the weight matrices

are nonlinear functions of the robot’s position and velocity (i.e. the system’s state). While

solving a high-dimensional optimization problem seems computationally difficult at first

1See Section 11.6.1 for a discussion of why geometric mechanics and geometric control theory constitute
a good starting point.

378

glance, RMPflow avoids this pitfall by computing the policy through performing forward

and backward message passing along the tree structure that relates different task spaces.

As a result, the computation paths shared across different tasks can be leveraged to achieve

efficiency. Algorithmically, we can view RMPflow as mimicking the Recursive Newton-

Euler algorithm (Walker and Orin, 1982) in structure, but generalizing it beyond rigid-body

systems to a broader class of highly nonlinear transformations and spaces.

In contrast to existing frameworks, our framework, through the use of nonlinear weight

matrix functions, naturally models non-Euclidean task spaces with Riemannian metrics that

are not only configuration dependent, but also velocity dependent. This allows RMPflow

to consider, e.g., the direction a robot travels to define the importance weights in combing

policies. For example, an obstacle, despite being close to the robot, can usually be ignored

if robot is heading away from it. This new class of policies leads to an extension of Ge-

ometric Control Theory, building on a new class of non-physical mechanical systems we

call geometric dynamical systems (GDS).

While RMPflow offers extra flexibility in control design, one might naturally ask if it is

even stable, as the use of weight function introduces additional feedback signals that could

destroy the original stability of the component policies. The answer to this question is

affirmative. We prove that RMPflow is Lyapunov-stable. Moreover, we show that the con-

struction of RMPflow is coordinate-free. In particular, when using RMPflow, robots can be

viewed each as different parameterizations of the same task space, defining a precise notion

of behavioral consistency between robots. Additionally, under this framework, the implicit

curvature arising from non-constant Riemannian metrics (which may be roughly viewed

as configuration-velocity dependent inertia matrices in operational space control) produces

nontrivial and intuitive policy contributions that are critical to guaranteeing stability and

generalization across embodiments.

We demonstrate the properties of RMPflow in simulations and experiments. Our exper-

imental results illustrate how these curvature terms can be impactful in practice, generating

379

nonlinear geodesics that result in curving or orbiting around obstacles. Furthermore, we

demonstrate the utility of our framework with a fully reactive real-world system imple-

mentation on multiple dual-arm manipulation problems.

This chapter is based on our paper (Cheng et al., 2019e). An earlier version of this

chapter was published as (Cheng et al., 2018b) with more details in a corresponding tech-

nical report (Cheng et al., 2018c) which includes many specific examples of the RMPs

used in the experiments (Appendix D). The design of RMPflow is highly inspired by the

seminal work of RMPs (Ratliff, Issac, and Kappler, 2018) that promotes the concept of in-

cluding geometric information in policy fusion. This chapter and its former version (Cheng

et al., 2018b) formalize the original intuition (Ratliff, Issac, and Kappler, 2018) and further

extend this idea to geometric mechanics and beyond. Increasingly RMPs and RMPflow

have been applied broadly into robotic systems, finding applications in autonomous nav-

igation (Meng et al., 2019), manipulation systems (Kappler et al., 2018), reactive logical

task sequencing (Paxton et al., 2019), tactile servoing (Sutanto et al., 2019), and multi-agent

systems (Li et al., 2019a,b).

11.2 Motion Generation and Control

Motion generation and control can be formulated as the problem of transforming curves

from the configuration space C to the task space T . Specifically, let the configuration space

C be a d-dimensional smooth manifold. A robot’s motion can be described as a curve

q : [0,∞) → C such that the robot’s configuration at time t is a point q(t) ∈ C. Without

loss of generality, suppose C has a global coordinate q : C → Rd, called the generalized

coordinate; for brevity, we identify the curve q with its coordinate expression q ◦ q and

write q(q(t)) as q(t) ∈ Rd. A typical example of the generalized coordinate is the joint

angles of a d-DOF (degrees-of-freedom) robot: we denote q(t) as the joint angles at time t

and q̇(t), q̈(t) as the joint velocities and accelerations, respectively. To describe the tasks,

we consider another manifold T , the task space, which is related to the configuration space

380

C through a smooth task map ψ : C → T . The task space T can be the end-effector

position/orientation (Albu-Schaffer and Hirzinger, 2002; Khatib, 1987), or more generally

can be a space that describes whole-body robot motion, e.g., in simultaneous tracking and

collision avoidance (Lo, Cheng, and Huang, 2016; Sentis and Khatib, 2006). Under this

setup, thus the goal of motion generation and control can be viewed as designing the curve

q (in a closed-loop manner) so that the transformed curve ψ ◦ q exhibits desired behaviors

on the task space T .

To simplify the exposition, below we suppose that the robot’s dynamics have been

feedback linearized and restrict our attention to designing acceleration-based controllers.

We remark that a torque-based setup can be similarly derived by redefining the pseudo-

inverse in resolve in Section 11.4.4 in terms of the inner product space induced by the

robot’s physical inertia on C (Peters et al., 2008), so long as the system is fully actuated

and the inverse dynamics can be modeled.

11.2.1 Notation

For clarity, we use boldface to distinguish the coordinate-dependent representations from

abstract objects; e.g. we write q(t) ∈ C and q(t) ∈ Rd. In addition, we will often omit

the time- and input-dependency of objects unless necessary; e.g., we may write q ∈ C and

(q, q̇, q̈). For derivatives, we use both symbols ∇ and ∂, with a transpose relationship: for

x ∈ Rm and a differential map y : Rm → Rn, we write∇xy(x) = ∂xy(x)> ∈ Rm×n. This

choice of notation allows us to write∇yf(y) ∈ Rn when f is a scalar function and perform

chain-rule ∂xf(y(x)) = ∂yf(y)∂xy(x) in the usual way. For a matrix M ∈ Rm×m, we

denote bi = (M)i as its ith column and Mij = (M)ij as its (i, j) element. To compose

a matrix from vector or scalar elements, we use (·)·· for vertical (or matrix) concatenation

and [·]·· for horizontal concatenation. For example, we write M = [bi]
m
i=1 = (Mij)

m
i,j=1 and

M> = (b>i)mi=1 = (Mji)
m
i,j=1. We use Rm×m

+ and Rm×m
++ to denote the symmetric, positive

semi-definite/definite matrices, respectively.

381

11.2.2 Motion Policies and the Geometry of Motion

We model motion as a second-order differential equation of q̈ = π(q, q̇), where we call π

a motion policy and (q, q̇) the state. In contrast to an open-loop trajectory, which forms the

basis of many motion planners, a motion policy expresses the entire continuous collection

of its integral trajectories and therefore is robust to perturbations. Motion policies can

model many adaptive behaviors, such as reactive obstacle avoidance (Erez et al., 2013;

Kappler et al., 2018) or responses driven by planned Q-functions (Todorov, 2006), and

their second-order formulation enables rich behavior that cannot be realized by the velocity-

based approach (Liegeois, 1977).

The geometry of motion has been considered by many planning and control algorithms.

Geometrical modeling of task spaces is used in topological motion planning (Ivan et al.,

2013), and motion optimization has leveraged Hessian to exploit the natural geometry of

costs (Dong et al., 2016; Mukadam, Yan, and Boots, 2016; Ratliff et al., 2009; Toussaint,

2009). Ratliff et al. (Ratliff, Toussaint, and Schaal, 2015b), e.g., use the workspace ge-

ometry inside a Gauss-Newton optimizer and generate natural obstacle-avoiding reaching

motion through traveling along geodesics of curved spaces.

Geometry-aware motion policies were also developed in parallel in controls. Opera-

tional space control is the best example (Khatib, 1987). Unlike the planning approaches,

operational space control focuses on the internal geometry of the robot and considers only

simple task-space geometry: it reshapes the workspace dynamics into a simple spring-

mass-damper system with a constant inertia matrix, enforcing a form of Euclidean geom-

etry in the task space. By contrast, pure potential-field approaches (Flacco et al., 2012;

Kaldestad et al., 2014; Khatib, 1985) fail to realize this idea of task-space geometry and

lead to inconsistent behaviors across robots. Variants of operational space control have

been proposed to consider different metrics (Lo, Cheng, and Huang, 2016; Nakanishi et

al., 2008; Peters et al., 2008), task hierarchies (Platt, Abdallah, and Wampler, 2011; Sentis

and Khatib, 2006), and non-stationary inputs (Ijspeert et al., 2013).

382

While these algorithms have led to many advances, we argue that their isolated focus on

either the internal or the external geometry limits the performance. The planning approach

fails to consider reactive dynamic behavior; the control approach cannot2 model the effects

of velocity dependent metrics, which are critical to generating sensible obstacle avoidance

motions, as discussed in the introduction. While the benefits of velocity dependent met-

rics was recently explored using RMPs (Ratliff, Issac, and Kappler, 2018), a systematic

understanding of its properties, like stability, is still an open question.

11.3 From Operational Space Control to Geometric Control

We set the stage for our development of RMPflow and geometric dynamical systems (GDSs)

in Section 11.4 and 11.5 by first giving some background on the key tools central to this

work. Specifically, we give a tutorial on the controller design technique known as energy

shaping and the geometric formulation of classical mechanics, both of which are commonly

less familiar to robotics researchers. Then we will show that geometric control (Bullo and

Lewis, 2004), which to a great extent developed independently of operational space control

within a distinct community, nicely summarizes these two ideas and leads to techniques of

leveraging energy shaping within the context of geometric mechanics.

This section targets at readers more familiar with operational space control and intro-

duces many of the relevant ideas in a way that we hope is more accessible than the tra-

ditional exposition which assumes a background in differential geometry. We begin with

a review of classical operational space control wherein tasks are represented as hard con-

straints on the mechanical system, and then show how energy shaping and the geometric

mechanics formalism enable us to easily develop provably stable operational space con-

trollers that simultaneously trade off many tasks. The material presented in this section pri-

marily rehashes existing techniques from a perhaps unfamiliar community, restating them

in a way that should be more natural to researchers familar with operational space con-
2Existing works, like variants of operational space control and designs centered around Geometric Control

Theory (Bullo and Lewis, 2004), can consider at most position-dependent metrics.

383

trol. We end with a discussion of the limitations of these geometric control techniques that

RMPflow and GDSs will address in Section 11.4 and 11.5.

11.3.1 Energy Shaping and Classical Operational Space Control

Energy shaping is a controller design technique, wherein the designer first configures a

virtual mechanical system by shaping its kinetic and potential energies to exhibit a certain

behavior, and then drive the robot’s dynamics to mimic that virtual system. This scheme

overall generates a control law with a well-defined Lyapunov function, given as the virtual

system’s total energy, and therefore has provable stability.

For instance, the earliest form of operational space control (Khatib, 1987) formulates a

virtual system that places all mass at the end-effector. Behavior is then shaped by applying

potential energy functions (regulated by a damper) to that virtual mass (e.g. by connecting

the end-effector to a target using a virtual (damped) spring). Controlling the system to

behave like that virtual system then generates a control law whose stability is governed

by the total energy of that virtual point-mass system. In this context, the choice of virtual

mechanical system (the point end-effector mass) is a form of kinetic energy shaping, and

the subsequent choice of potential energy applied to that point end-effector mass is known

as potential energy shaping. This particular pattern of task-centric kinetic and potential

energy shaping, is common throughout the operational space control literature.

A similar theme can be found in (Peters et al., 2008). Here the virtual mechanical sys-

tems are designed by constraining an existing mechanical system (e.g. the robot’s original

dynamics) to satisfy task constraints. This is achieved by designing controllers around a

generalized form of Gauss’s principle of least constraint (Udwadia and Kalaba, 1996), so

that virtual mechanical systems would behave in a sense as similarly as possible to the

true robotic mechanical system while realizing the required task accelerations. In other

words, the energies of the original mechanical system are reshaped to that given by the task

constraints.

384

In essence, these early examples above are based on the idea that faithful execution of

the task enables a simplified stability analysis as long as the task space behavior is itself

well-understood and stable. This style of simplified analysis and the controller design has

been successful in practice. Nonetheless, it imposes a limitation that the controllers cannot

have more tasks than the number of DOF in the system. This becomes particularly prob-

lematic when one wishes to introduce more complex auxiliary behaviors, such as collision

avoidance where the number of tasks might scale with the number of obstacles and the

number of control points on the robot’s body.

The rest of this section is dedicated to unify and then generalize these ideas through the

lens of geometric mechanics, so that we can use operational space control to handle these

more complex settings of many competing tasks, by using nuanced weighted priorities that

might change as a function of the robot’s configuration. However, we will eventually see

that even this is still not quite sufficient for representing many common behaviors (see

Section 11.3.5). The insights into sources of these limitation learned in this section are

the motivation of our more in-depth subsequent development of RMPflow and geometric

dynamical systems (GDSs).

11.3.2 A Simple First Step toward Weighted Priorities

This section leverages Gauss’s principle of least constraint (different from the techniques

mentioned briefly in Section 11.3.1 (Peters et al., 2008)) to illustrate the concept of en-

ergy shaping, which will be used more abstractly below to derive a simple technique for

combining multiple task-space policies.

Gauss’s Principle

Gauss’s principle of least constraint states that a nonlinearly constrained collection of par-

ticles evolves in a way that is most similar to its unconstrained evolution, as long as

this notion of similarity is measured using the inertia-weighted squared error (Udwadia,

385

2003). For example, let us consider N particles: xi ∈ R3 with respective (positive) inertia

mi ∈ R+, for i = 1, . . . , N . Then the acceleration ẍi of the ith particle under Gauss’s

principle can be written as

ẍ = arg min
ẍ′∈A

1

2
‖ẍd − ẍ′‖2

M (11.1)

where A denotes the set of admissible constrained accelerations. To simplify the notation,

we’ve stacked3 the particle accelerations into a vector ẍ = (ẍ1; . . . ; ẍN) and construct a

diagonal matrix M = diag(m1I, . . . ,mNI), where I ∈ R3×3 is the identity matrix.

Kinematic Control-Point Design

Let us use the above idea to design a robot controller. If we define many kinematic control

points xi ∈ R3, i = 1, . . . , N distributed across the robot’s body and calculate a desired

acceleration at those points ẍdi , a sensible way to trade off these different accelerations is

through the following quadratic program (QP):

min
ẍi

N∑

i=1

mi

2
‖ẍdi − ẍi‖2 s.t. ẍi = Jiq̈ + J̇iq̇, (11.2)

where mi > 0 is the importance weight, xi = ψi(q) is the forward kinematics map to

the ith control point and Ji = ∂qiψi is its Jacobian. This QP states that the system should

follow the desired accelerations as well as possible, with (constant) tradeoff prioritiesmi in

the event the tasks cannot be achieved exactly, subject to the physical kinematic constraints

on how each control point can accelerate.4

Comparing this QP to that given by Gauss’s principle in (11.1), one can immediately

see that its solution gives the constrained dynamics of a mechanical system defined by

N point particles of mass mi with unconstrained accelerations ẍdi and acceleration con-

3We use the notation v = (v1;v2; , . . . ,vN) to denote stacking of vectors vi ∈ R3 into a single vector
v ∈ R3N .

4As mentioned we assumed the system has been feedback linearized so we focus on acceleration only.

386

straints ẍi = Jiq̈ + J̇iq̇. In particular, if ẍdi = −m−1
i ∇φi − βiẋi for some non-negative

potential function φi and constant βi, we arrive at a mechanical system with total energy
∑N

i=1

(
mi
2
‖ẋi‖2 + φi(xi)

)
. Controlling the robot system according to desired accelerations

q̈∗ given by solving (11.2) ensures that this total energy dissipates at a rate defined by the

collective non-negative dissipation terms
∑

imiβi‖ẋi‖2. This total energy, therefore, acts

as a Lyapunov function.

This kinematic control-point design technique utilizes now more explicitly the method-

ology of energy shaping. In this case, we use Gauss’s principle to design a virtual mechan-

ical system that strategically distributes point masses throughout the robot’s body at key

control points (kinetic energy shaping). We then apply (damped) virtual potential func-

tions to those masses to generate behavior (potential energy shaping). In combination, we

see that the resulting system can be viewed as a QP which tries to achieve all tasks simul-

taneously as well as it can. Since exact replication of all tasks is impossible, the QP uses

the mass values as relative priorities to define how the system should trade off task errors

when necessary.

11.3.3 Abstract Task Spaces: Simplified Geometric Mechanics

The controller we just described demonstrates the core concept around energy shaping, but

is limited by requiring that tasks be designed specifically on kinematic control-points dis-

tributed physically across the robot’s body. Usually task spaces are often more abstract than

that, and most generally we consider any task space that can be described as a nonlinear

map from the configuration space.

This abstraction is common in trajectory optimization. For instance, (Toussaint, 2009)

describes some abstract topological spaces for behavior creation which enable behaviors

such as wrapping an arm around a pole and unwrapping it, and abstract models of workspace

geometry are represented in (Mainprice, Ratliff, and Schaal, 2016; Ratliff, Toussaint, and

Schaal, 2015b) by designing high-dimensional task spaces consisting of stacked (proximity

387

weighted) local coordinate representations of surrounding obstacles conveying how obsta-

cles shape the space around them. Likewise, similar abstract spaces are highly relevant for

describing common objectives in operational space control problems. Specifically, spaces

of interest include one-dimensional spaces encoding distances to barrier constraints such

as joint limits and obstacles, distances to targets, spaces of quaternions, and the joint space

itself; all of these are more abstract than specific kinematic control-points. In order to gen-

eralize these ideas to abstract task spaces we need better tools. Below we show the insights

from geometric mechanics and geometric control theory (Bullo and Lewis, 2004) provide

the generalization that we need.

Quick Review of Lagrangian Mechanics

Lagrangian mechanics is a reformulation of classical mechanics that derives the equations

of motion by applying the Euler-Lagrange equation the Lagrangian of the mechanical sys-

tem (Taylor, 2005). Specifically, given a generalized inertia matrix M(q) and a potential

function Φ(q), the Lagrangian is the difference between kinetic and potential energies:

L(q, q̇) =
1

2
q̇>M(q)q̇− Φ(q). (11.3)

The Euler-Lagrange equation is given by

d

dt
∂q̇L − ∂qL = τext (11.4)

where τext is the external force applied on the system. Applying (11.4) to the Lagrangian

(11.3) gives the equations of motion,

Mq̈ + C(q, q̇)q̇ +∇Φ(q) = τext, (11.5)

388

where C(q, q̇)q̇ = Ṁq̇− d
dt

(
1
2
q̇>M(q)q̇

)
. For convenience, we will define this term as

ξM(q, q̇) = Ṁq̇− d

dt

(
1

2
q̇>M(q)q̇

)
(11.6)

which will play an important role when we discuss about the geometry of implicit task

spaces. (This definition is consistent with the curvature term in GDSs that we later gener-

alize.)

Ambient Geometric Mechanics

Geometric mechanics (Bullo and Lewis, 2004) is a reformulation of classical mechanics

that builds on the observation that classical mechanical systems evolve as geodesics across

a Riemannian manifold whose geometry is defined by the system’s inertia matrix. We

can see what this means by examining a simple example, which we will use to derive an

operational space QP similar in form to (11.2).

Let x = ψ(q) be an arbitrary differentiable task map ψ : Rd → Rn where n ≥

d. In practice, the full task map often consists of many smaller task maps stacked on

top of one another, like a kinematic tree. We can define a positive definite matrix that

changes as a function of configuration using M(q) = J(q)>J(q) where J(q) = ∂qφ(q)

is the Jacobian of the task map. Geometric mechanics states that we can think of M(q)

as both the generalized inertia matrix of a mechanical system defining a dynamic behavior

M(q)q̈ + C(q, q̇)q̇ = τext (see also (11.5)), and equivalently as a Riemannian metric

defining an inner product 〈q̇1, q̇2〉M = q̇>1 Mq̇2 on the tangent space (for our purposes,

the space of velocities q̇ at a given q) of the configuration space C (the manifold where q

lives). Note that since ẋ = J(q)q̇, the columns of J(q) span this tangent space, which we

see from the dependency on q in J can change direction at different q.

Because we can suppose n ≥ d in general5, the setX = {x : x = ψ(q) for some q ∈ C}
5This holds when ψ is full rank. Reduced rank ψ result in a similar geometry, but we would need to

slightly modify the linear algebra used in the following discussion.

389

sweeps out a d-dimensional sub-manifold of the n-dimensional ambient Euclidean task

space. In light of this picture, we can also view the tangent space as a first-order Tay-

lor approximation to the surface at a point x0 = φ(q0) for some q0 in the sense x ≈

x0 + J(q)(q− q0).

Indeed, one connection between the mechanical system and this geometry is clear: the

kinetic energy of the mechanical system is given by the norm of q̇ with respect to the inner

product defined by the metric M(q):

K(q, q̇) =
1

2
q̇>M(q)q̇ = ‖q̇‖2

M = 〈q̇, q̇〉M. (11.7)

Likewise, in this particular case, since M = J>J we see that specifically the kinetic energy

is given by the Euclidean velocity through the task space

K(q, q̇) =
1

2
q̇>M(q)q̇ =

1

2
q̇>
(
J>J

)
q̇ =

1

2
‖ẋ‖2. (11.8)

More generally, for the same reason, Euclidean inner products between velocities in the

task space induce these generalized inner products in the configuration space in the sense

ẋ>1 ẋ2 = q̇>1 Mq̇2. This connection between task space and configuration space inner prod-

ucts, exemplified by the equivalence between task space velocity and the system’s kinetic

energy offers a concrete connection between mechanics and geometry, and we can exploit

to link the system’s equations of motion to geodesics across X .

For systems without potential functions and external forces, we can get some insight

into the connection between dynamics and geodesics from the view point of Lagrangian

mechanics (reviewed in Section 11.3.3) as well. The Lagrangian (11.3) in this case sim-

plifies to L = 1
2
q̇>Mq̇ − Φ(q) = 1

2
q̇>Mq̇. The Euler-Lagrange equation in (11.4) is the

first-order optimality condition of an action functional which measures the time integral of

390

the Lagrangian across a trajectory. In this case, it takes on a nice minimization form

min
ξ

∫ b

a

1

2
q̇>Mq̇dt ⇔ min

ξ

∫ b

a

1

2
‖ẋ‖2dt, (11.9)

where ξ is a trajectory through the configuration space C. One can show that these tra-

jectories are length-minimizing trajectories (i.e. solutions extremize the length functional
∫ b
a

1
2
‖ẋ‖dt), but with the additional property that the trajectories are of constant velocity.

This means the dyanmical system will curve across the manifold X along a trajectory

that is as straight as possible without speeding up or slowing down. Another way to charac-

terize that statement, is to say the system never accelerates tangentially to the sub-manifold

X , i.e. it has no component of acceleration parallel to the tangent space. The curve cer-

tainly must accelerate to avoid diverging from the sub-manifold X , but that acceleration

is always purely orthogonal to the tangent space. Since we know that J spans the tangent

space, we can capture that sentiment fully in the following simple equation:

J>ẍ = 0. (11.10)

Plugging in ẍ = Jq̈ + J̇q̇ we get

J>ẍ = J>
(
Jq̈ + J̇q̇

)
= 0

⇒
(
J>J

)
q̈ + J>J̇q̇ = 0. (11.11)

Comparing to (11.5) (with zero potential and external forces), since we already know

J>J = M, we can formally prove the connection between geodesics and classical me-

chanical dynamics if we can show that J>J̇q̇ = C(q, q̇)q̇. The required calculation is

fairly involved, so we omit it here but note for those inclined that it’s easiest to perform

using tensor notation and the Einstein summation convention as is common in differential

geometry. This equivalence also appears as by-product fo our RMPflow and GDS analysis,

391

as we will revisit in Section 11.6.1 as Lemma 11.6.1.

Forced Mechanical Systems and Geometric Control

So far we have derived only the unforced behavior of this system as natural geodesic flow

across the sub-manifold. To understand how desired accelerations contribute to the least

squares properties of the system we express (11.11) in x by pushing them through the

identity ẍ = Jq̈ + J̇q̇ and examine how arbitrary motion across the sub-manifold X de-

composes. First, the equations of motion in ẍ with (11.11), we get

ẍ = Jq̈ + J̇q̇ = −J
(
J>J

)−1
J>J̇q̇ + J̇q̇

=
(
I− J

(
J>J

)−1
J>
)

J̇q̇

= P⊥J̇q̇, (11.12)

where in the final expression, the matrix P⊥ = I − P// with P// = J
(
J>J

)−1
J> is the

nullspace projection operator projecting onto the space orthogonal to the tangent space

(spanned by the Jacobian J). Note again these projections P⊥ and P// are functions of the

configuration q.

By construction, these geodesics accelerate only orthogonally to the tangent space. This

implies that any trajectory, traveling on the sub-manifold X but deviating from geodesics,

would necessarily maintain an acceleration component parallel to the tangent space, which

we might write as ẍ//. Importantly, any such trajectory must still accelerate exactly as

(11.12) in the orthogonal direction in order to stay moving along the sub-manifold X .

Therefore, we see that the overall acceleration of a trajectory on X can be decomposed

nicely into the geodesic acceleration and the tangential acceleration:

ẍ = P⊥J̇q̇ + P//ẍd, (11.13)

392

where ẍd is any vector of “desired” acceleration whose tangential component matches the

tangential acceleration of the given trajectory, i.e. P//ẍ
d = ẍ//.

Now we show how the decomposition (11.13) is related to and generalizes (11.2). This

is based on the observation that (11.13) is the same as the solution to the least-squared

problem below

min
q̈

1

2
‖ẍd − ẍ‖2 s.t. ẍ = Jq̈ + J̇q̇. (11.14)

This equivalence can be easily seen by resolving the constraint, setting the gradient of the

resulting quadratic to zero, i.e.,

J>Jq̈ + J>J̇q̇ = J>ẍd (11.15)

and re-expressing the optimal solution in ẍ. This relationship demonstrates that a QP very

similar in structure to (11.2). Both express dynamics of the forced system as
(
J>J

)
q̈ +

J>J̇q̇ = J>f with f = ẍd (task space coordinates were chosen specifically so that weights

(equiv. masses) would be 1, so forces and accelerations have the same units—different task

coordinates would result in constant weights, corresponding to a notion of constant mass

in the ambient space).

The Curvature Terms

As a side note, the above discussion offers insight into the term C(q, q̇)q̇ = J>J̇q̇. The

term J̇q̇ captures components describing both curvature of the manifold through the am-

bient task space and components describing how the specific coordinate q (tangentially)

curves across the sub-manifold X . Explicitly, ẍc = J̇q̇ has units of acceleration in the am-

bient space and captures how the tangent space (given by the columns of J) changes in the

direction of motion. The acceleration ẍc decomposes as ẍc = ẍc⊥+ ẍc//, into two orthogonal

components consisting of a component perpendicular to the tangent space ẍc⊥ = P⊥ẍc and

393

a component parallel to the tangent space ẍc// = P//ẍ
c. The term P⊥J̇q̇ = P⊥ẍc given

in (11.12) extracts specifically the perpendicular component ẍc⊥. The other component

ẍc// is, therefore, in a sense irrelevant to fundamental geometric behavior of the underly-

ing system, and is only required when expressing the behavior in the specific coordinates

q. Indeed, when expressing the equations of motion in q, the related term manifests as

C(q, q̇)q̇ = J>J̇q̇ = J>ẍc// since J>ẍc⊥ = 0, and depends only on the parallel component

ẍc//. This observation emphasizes why we designate the term fictitious forces. Here and

below we will consider these terms to be curvature terms as they compensate for curvature

in the system coordinates.

11.3.4 Non-constant Weights and Implicit Task Spaces

Section 11.3.3 above derived the geometric perspective of equations of motion, but only for

mechanical systems whose inertia matrix (equiv. Riemannian metric) can be expressed as

M(q) = J(q)>J(q) globally for some map x = ψ(q) with J(q) = ∂qφ(q). Fortunately,

due to a deep and fundamental theorem proved by John Nash in 1956, called the Nash

embedding theorem (Nash, 1956), all Riemannian manifolds, and hence all mechanical

systems can be expressed this way, so the arguments of Section 11.3.3 hold without loss of

generality for all mechanical systems. It is called an embedding theorem because the map

x = ψ(q) acts to embed the manifold C into a higher-dimensional ambient Euclidean space

where we can replace implicit geometry represented by the metric M(q) with an explicit

sub-manifold in the ambient space.

This ambient representation is a convenient for understanding and visualizing the non-

linear geometry of a mechanical system, but it is unfortunately often difficult, or even

impossible, to find a closed form expression for a task map x = ψ(q) from a given metric

M(q). We, therefore, cannot rely our ability to operate directly in the ambient space using

the QP given in (11.14).

This subsection addresses that problem by deriving a QP expression analogous to (11.14),

394

but for which task space weights are general non-constant positive definite matrices (which

we will see are the same as Riemannian metrics). We will arrive at this expression by

considering again the ambient setting, but assuming that the unknown embedding can be

decomposed in the composition of a known task space x = ψ(q) and then an known map

from the task space to the ambient Euclidean space z = ζ(x) described in the Nash’s

theorem. We suppose the priority weight is given as the induced Riemannian metric

G(x) = Jζ(x)>Jζ(x) on x defined by the second map ζ . We note that the final result

will be expressed entirely in terms of G(x), so it can be used without explicit knowledge

of ζ .

Suppose we have a Riemannian metric (equiv. inertia matrix) M which decomposes as

M = J>J, where J = JζJφ is the Jacobian of the composite map z = ζ ◦φ(q) which itself

consists of two parts x = φ(q) and z = ζ(x). Because the intermediate task space metric

is G = J>ζ Jζ , denote the task space force as fx = J>ζ fz and by (11.15) we have

J>Jq̈ + J>J̇q̇ = J>fz

⇒
(
J>φ
(
J>ζ Jζ

)
Jφ
)

q̈ + J>φJ>ζ
d

dt
(JζJφ) q̇ = J>φJ>ζ fz

⇒ J>φGJφq̈ + J>φJ>ζ

(
J̇ζJφ + Jζ J̇φ

)
q̇ = J>φ fx

⇒ J>φGJφq̈ + J>φ
(
J>ζ J̇ζẋ

)
+ J>φ

(
J>ζ Jζ

)
J̇φq̇ = J>φ fx

⇒ J>φGJφq̈ + J>φGJ̇φq̇ = J>φ (fx − ξG) .

where we recall ξG in given in (11.6). Rearranging that final expression and denoting

ẍd = ẍd −G−1ξG with ẍd = G−1fx, we can write the above equation as

J>φG
(
ẍd −

(
Jφq̈ + J̇φq̇

))
= 0, (11.16)

395

which is the first-order optimality condition of the QP

min
q̈

1

2
‖ẍd − ẍ‖2

G s.t. ẍ = Jφq̈ + J̇φq̇. (11.17)

This QP is expressed in terms of the task map x = ψ(q), the task space metric G(x), the

task space desired accelerations ẍd, and the curvature term ξG derived from the task space

metric G(x). The QP follows a very similar pattern to the QPs described above, but this

time the priority weight matrix G is a non-constant function of x. The one modification

required to reach this matching form is to augment the desired acceleration ẍd with the

curvature term ξG calculated from G using (11.6) to get the target ẍd = ẍd − G−1ξG.

Importantly, while we start by assuming the map z = ζ(x), at the end we show that we

actually only need to know G.

11.3.5 Limitations of geometric control

Even with the tools of geometric mechanics, the final QP given in (11.17) can still only

express task priority weights as positive definite matrices that vary as a function of config-

uration (i.e. position). Frequently, more nuanced control over those priorities is crucial. For

instance, collision avoidance tasks should activate when the control-point is close to an ob-

stacle and heading toward it, but they should deactivate either when the control-point is far

from the obstacle or when it’s moving away from the obstacle, regardless of its proximity.

Importantly, reducing the desired acceleration to zero in these cases is not enough—when

these tasks deactivate, they should drop entirely from the equation rather than voting with

high weight for zero acceleration. Enabling priorities vary as a function of the full robot

state (configuration and velocity) is therefore paramount.

The theory of RMPflow and GDSs developed below generalizes geometric mechan-

ics to enable expressing these more nuanced priority matrices while maintaining stability.

Additionally, since geometric control theory itself is quite abstract, we build on results re-

396

ducing the calculations to recursive least squares similar to that given in Section 11.3.4 to

derive a concrete tree data structure to aid in the design of controllers within this energy

shaping framework.

11.4 RMPflow

RMPflow is an efficient manifold-oriented computational graph for automatic generation of

motion policies that can tackle multiple task specifications. Let Tli denote the ith subtask.

More precisely, RMPflow is aimed for problems with a task space T = {Tli} that is related

to the configuration space C through a tree-structured task map ψ, in which C is the root

node and the subtask spaces {Tli} are the leaf nodes. Given user-specified motion policies

{πli} on the subtask spaces {Tli} as RMPs, RMPflow is designed to consistently combine

these subtask policies into a global policy π on C.

To this end, RMPflow introduces 1) a data structure, called the RMP-tree, to describe

the tree-structured task map ψ and the policies, and 2) a set of operators, called the RMP-

algebra, to propagate information across the RMP-tree. To compute π(q(t), q̇(t)) at time

t, RMPflow operates in two steps: it first performs a forward pass to propagate the state

from the root node (i.e., C) to the leaf nodes (i.e., {Tli}); then it performs a backward pass

to propagate the RMPs from the leaf nodes to the root node while tracking their geometric

information to achieve consistency. These two steps are realized by recursive use of RMP-

algebra, exploiting shared computation paths arising from the tree structure to maximize

efficiency.

In the following, we describe the details of RMPflow and give some useful examples of

subtask motion policies.

11.4.1 Structured Task Maps

In many applications, the task-space manifold T is structured. In this chapter, we consider

the case where the task map ψ can be expressed through a tree-structured composition

397

Figure 11.1: Tree-structured task maps

of transformations {ψei}, where ψei is the ith transformation. Fig. 11.1 illustrates some

common examples, where each node denotes a manifold and each edge denotes a transfor-

mation. This family trivially includes the unstructured task space T (Fig. 11.1a) and the

product manifold T = Tl1 × · · · × TlK (Fig. 11.1b), where K is the number of subtasks. A

more interesting example is the kinematic tree (Fig. 11.1c), where the task map considers

the relationship between the configuration space C (the root node) and a collection of sub-

task spaces (the leaf nodes) that describe, e.g., the tracking and obstacle avoidance tasks

along a multi-DOF robot.

The main motivation of explicitly handling the structure in the task map ψ is two-fold.

First, it allows RMPflow to exploit computation shared across different subtask maps. Sec-

ond, it allows the user to focus on designing motion policies for each subtask individually,

which is easier than directly designing a global policy for the entire task space T . For

example, T may describe the problem of humanoid walking, which includes staying bal-

anced, scheduling contacts, and avoiding collisions. Directly parameterizing a policy to

satisfy all these objectives can be daunting, whereas designing a policy for each subtask is

more feasible.

11.4.2 Riemannian Motion Policies (RMPs)

Knowing the structure of the task map is not sufficient for consistently combining subtask

policies: we require some information about the motion policies’ behaviors (Ratliff, Issac,

and Kappler, 2018). Toward this end, we adopt an abstract description of motion policies,

called RMPs (Ratliff, Issac, and Kappler, 2018), for the nodes of the RMP-tree. An RMP

describes a second-order differential equation along with its geometric information on a

398

smooth manifold.

Specifically, let M be an m-dimensional manifold with coordinate x ∈ Rm. The

canonical form of an RMP on M is a pair (a,M)M, where a : Rm × Rm → Rm is a

continuous motion policy and M : Rm × Rm → Rm×m
+ is a differentiable map. Borrow-

ing terminology from mechanics, we call a(x, ẋ) the desired acceleration and M(x, ẋ) the

inertia matrix at (x, ẋ), respectively.6 For now, we can intuitively think that M defines

the directional importance of a when it is combined with other motion policies. Later in

Section 11.5, we will show that M is closely related to the concept of Riemannian met-

ric, which describes how the space is stretched along the curve generated by a; when M

depends on the state, the space becomes non-Euclidean.

In this chapter, we additionally introduce a new RMP form, called the natural form.

Given an RMP in its canonical form (a,M)M, we define another pair as its natural form

[f ,M]M, where f = Ma is the desired force map. While the transformation between these

two forms may look trivial, their distinction will be useful later when we introduce the

RMP-algebra.

11.4.3 RMP-tree

The RMP-tree is the core data structure used by RMPflow. An RMP-tree is a directed

tree, in which each node represents an RMP and its state, and each edge corresponds to

a transformation between manifolds. The root node of the RMP-tree describes the global

policy π on C, and the leaf nodes describe the local policies {πli} on {Tli}.

To illustrate, let us consider a node u and itsK child nodes {vi}Ki=1. Suppose u describes

an RMP [f ,M]M and vi describes an RMP [fi,Mi]
Ni , where Ni = ψei(M) for some ψei .

Then we write u = ((x, ẋ), [f ,M]M) and vi = ((yi, ẏi), [fi,Mi]
Ni), where (x, ẋ) is the

state of u, and (yi, ẏi) is the state of vi; the edge connecting u and vi points from u to vi

along ψei . We will continue to use this example to illustrate how RMP-algebra propagates

6Here we adopt a slightly different terminology from (Ratliff, Issac, and Kappler, 2018). We note that M
and f do not necessarily correspond to the inertia and force of a physical mechanical system.

399

the information across the RMP-tree.

11.4.4 RMP-algebra

The RMP-algebra of RMPflow consists of three operators (pushforward, pullback,

and resolve) to propagate information across the RMP-tree.7 They form the basis of the

forward and backward passes for automatic policy generation, described in the next section.

1. pushforward is the operator to forward propagate the state from a parent node

to its child nodes. Using the previous example, given (x, ẋ) from u, it computes

(yi, ẏi) = (ψei(x),Ji(x)ẋ) for each child node vi, where Ji = ∂xψei is a Jacobian

matrix. The name “pushforward” comes from the linear transformation of tangent

vector ẋ to the image tangent vector ẏi.

2. pullback is the operator to backward propagate the natural-formed RMPs from the

child nodes to the parent node. It is done by setting [f ,M]M with

f =
K∑

i=1

J>i (fi −MiJ̇iẋ), M =
K∑

i=1

J>i MiJi (11.18)

The name “pullback” comes from the linear transformations of the cotangent vector

(1-form) fi −MiJ̇iẋ and the inertia matrix (2-form) Mi. In summary, velocities can

be pushfowarded along the direction of ψi, and forces and inertial matrices can be

pullbacked in the opposite direction.

To gain more intuition of pullback, we write pullback in the canonical form of

RMPs. It can be shown that the canonical form (a,M)M of the natural form [f ,M]M

above is the solution to a least-squares problem:

a = arg min
a′

1

2

K∑

i=1

‖Jia′ + J̇iẋ− ai‖2
Mi

7Precisely they propagate the numerical values of RMPs and states at a particular time.

400

= (
K∑

i=1

J>i MiJi)
†(

K∑

i=1

J>i Mi(ai − J̇iẋ)) (11.19)

where ai = M†
i fi and ‖ · ‖2

Mi
= 〈·,Mi·〉 ·>Mi·. Because ÿi = Jiẍ + J̇iẋ, pullback

attempts to find an a that can realize the desired accelerations {ai} while trading

off approximation errors with an importance weight defined by the inertia matrix

Mi(yi, ẏi). The use of state dependent importance weights is a distinctive feature of

RMPflow. It allows RMPflow to activate different RMPs according to both config-

uration and velocity (see Section 11.4.6 for examples). Finally, we note that the

pullback operator defined in this chapter is slightly different from the original

definition given in (Ratliff, Issac, and Kappler, 2018), which ignores the term J̇iẋ

in (11.19). While ignoring J̇iẋ does not necessary destabilize the system (Lo, Cheng,

and Huang, 2016), its inclusion is critical to implement consistent policy behaviors.

3. resolve is the last operator of RMP-algebra. It maps an RMP from its natural form

to its canonical form. Given [f ,M]M, it outputs (a,M)M with a = M†f , where †

denotes Moore-Penrose inverse. The use of pseudo-inverse is because in general the

inertia matrix is only positive semi-definite. Therefore, we also call the natural form

of [f ,M]M the unresolved form, as potentially it can be realized by multiple RMPs

in the canonical form.

11.4.5 Algorithm: Motion Policy Generation

Now we show how RMPflow uses the RMP-tree and RMP-algebra to generate a global

policy π on C. Suppose each subtask policy is provided as an RMP in the natural form.

First, we construct an RMP-tree with the same structure as ψ, where we assign subtask

RMPs as the leaf nodes and the global RMP [fr,Mr]
C as the root node. With the RMP-tree

specified, RMPflow can perform automatic policy generation. At every time instance, it

first performs a forward pass: it recursively calls pushforward from the root node to the

401

leaf nodes to update the state information in each node in the RMP-tree. Second, it performs

a backward pass: it recursively calls pullback from the leaf nodes to the root node to back

propagate the values of the RMPs in the natural form, and finally calls resolve at the root

node to transform the global RMP [fr,Mr]
C into its canonical form (ar,Mr)

C for policy

execution (i.e. setting π(q, q̇) = ar).

The process of policy generation of RMPflow uses the tree structure for computational

efficiency. For K subtasks, it has time complexity O(K) in the worst case8 as opposed to

O(K logK) of a naive implementation which does not exploit the tree structure. Further-

more, all computations of RMPflow are carried out using matrix-multiplications, except for

the final resolve call, because the RMPs are expressed in the natural form in pullback

instead of the canonical form suggested originally in (Ratliff, Issac, and Kappler, 2018).

This design makes RMPflow numerically stable, as only one matrix inversion M†
rfr is per-

formed at the root node with both fr and Mr in the span of the same Jacobian matrix due

to pullback.

11.4.6 Example RMPs

We give a quick overview of some RMPs useful in practice (see Appendix D of the technical

report (Cheng et al., 2018c) for further discussion of these RMPs) We recall from (11.19)

that M dictates the directional importance of an RMP.

Collision/joint limit avoidance

Barrier-type RMPs are examples that use velocity dependent inertia matrices, which can

express importance as a function of robot heading (a property that traditional mechanical

principles fail to capture). Here we demonstrate a collision avoidance policy in the 1D

distance space x = d(q) to an obstacle. Let g(x, ẋ) = w(x)u(ẋ) > 0 for some functions w

and u. We consider a motion policy such that m(x, ẋ)ẍ + 1
2
ẋ2∂xg(x, ẋ) = −∂xΦ(x) − bẋ

8The case with a binary tree.

402

and define its inertia matrix m(x, ẋ) = g(x, ẋ) + 1
2
ẋ∂ẋg(x, ẋ), where Φ is a potential and

b > 0 is a damper. We choose w(x) to increase as x decreases (close to the obstacle), u(ẋ)

to increase when ẋ < 0 (moving toward the obstacle), and u(ẋ) to be constant when ẋ ≥ 0.

With this choice, the RMP can be turned off in pullback when the robot heads away

from the obstacle. This motion policy is a GDS and g is its metric (cf. Section 12.2.2);

the terms 1
2
ẋ∂ẋg(x, ẋ) and 1

2
ẋ2∂xg(x, ẋ) are due to non-Euclidean geometry and produce

natural repulsive behaviors as the robot moves toward the obstacle, and little or no force

when it starts to move away.

Target attractors

Designing an attractor policy is relatively straightforward. For a task space with coordinate

x, we can consider an inertia matrix M(x) � 0 and a motion policy such that ẍ = −∇Φ̃−

β(x)ẋ−M−1ξM, where Φ̃(x) ≈ ‖x‖ is a smooth attractor potential, β(x) ≥ 0 is a damper,

and ξM is a curvature term due to M. It can be shown that this differential equation is also

a GDS Cheng et al., 2018c, Appendix D.

Orientations

As RMPflow directly works with manifold objects, orientation controllers become straight-

forward to design, independent of the choice of coordinate (cf. Section 11.5.4). For ex-

ample, we can define RMPs on a robotic link’s surface in any preferred coordinate (e.g. in

one or two axes attached to an arbitrary point) with the above described attractor to control

the orientation. This follows a similar idea outlined in the Appendix of (Ratliff, Issac, and

Kappler, 2018).

Q-functions

Perhaps surprising, RMPs can be constructed using Q-functions as metrics (we invite read-

ers to read (Ratliff, Issac, and Kappler, 2018) for details on how motion optimizers can be

403

reduced to Q-functions and the corresponding RMPs). While these RMPs may not satisfy

the conditions of a GDS that we later analyze, they represent a broader class of RMPs that

leads to substantial benefits (e.g. escaping local minima) in practice. Also, Q-functions are

closely related to Lyapunov functions and geometric control (Lewis, 2000); we will further

explore this direction in future work.

11.5 Theoretical Analysis of RMPflow

We investigate the properties of RMPflow when the child-node motion policies belong to

a class of differential equations, which we call structured geometric dynamical systems

(structured GDSs). We present the following results.

1. Closure: We show that the pullback operator retains a closure of structured GDSs.

When the child-node motion policies are structured GDSs, the parent-node dynamics

also belong to the same class.

2. Stability: Using the closure property, we provide sufficient conditions for the feed-

back policy of RMPflow to be stable. In particular, we cover a class of dynamics

with velocity-dependent metrics that are new to the literature.

3. Invariance: As its name suggests, RMPflow is closely related to differential geom-

etry. We show that RMPflow is intrinsically coordinate-free. This means that a set

of subtask RMPs designed for one robot can be transferred to another robot while

maintaining the same task-space behaviors.

Setup Below we consider the manifolds in the nodes of the RMP-tree to be finite-dimensional

and smooth. Without loss of generality, for now we assume that each manifold can be de-

scribed in a single chart (i.e. using a global coordinate), so that we can write down the

equations concretely using finite-dimensional variables. This restriction will be removed

when we presents the coordinate-free form in Section 11.5.4. We also assume that all the

404

maps are sufficiently smooth so the required derivatives are well defined. The proofs of this

section can found in Section 11.B.

11.5.1 Geometric Dynamical Systems (GDSs)

We first define a new family of dynamics, called GDSs, useful to specify RMPs on man-

ifolds. (Structured GDSs will be introduced shortly in the next section.) At a high-

level, a GDS can be thought as a virtual mechanical system defined on a manifold with

an inertia that depends on both configuration and velocity. Formally, let us consider an

m-dimensional manifold M with chart (M,x) (i.e. a coordinate system on M). Let

G : Rm × Rm → Rm×m
+ , B : Rm × Rm → Rm×m

+ , and Φ : Rm → R be sufficiently

smooth functions. We say a dynamical system onM is a GDS (M,G,B,Φ), if it satisfies

the differential equation

(G(x, ẋ) + ΞG(x, ẋ)) ẍ + ξG(x, ẋ) = −∇xΦ(x)−B(x, ẋ)ẋ, (11.20)

where we define

ΞG(x, ẋ) :=
1

2

m∑

i=1

ẋi∂ẋgi(x, ẋ)

ξG(x, ẋ) :=
x

G(x, ẋ)ẋ− 1

2
∇x(ẋ>G(x, ẋ)ẋ)

x

G(x, ẋ) := [∂xgi(x, ẋ)ẋ]mi=1

and gi(x, ẋ) is the ith column of G(x, ẋ). We refer to G(x, ẋ) as the metric matrix, B(x, ẋ)

as the damping matrix, and Φ(x) as the potential function which is lower-bounded. In

addition, we call the term in front of ẍ in (13.3),

M(x, ẋ) := G(x, ẋ) + ΞG(x, ẋ), (11.21)

405

the inertia matrix of GDS (M,G,B,Φ), which can be asymmetric. When M(x, ẋ) is

nonsingular, we say the GDS is non-degenerate. We will assume (13.3) is non-degenerate

for now so that it uniquely defines a differential equation. The discussion on the general

case is postponed to Section 11.C.

In GDSs, G(x, ẋ) induces a metric of ẋ, measuring its length as 1
2
ẋ>G(x, ẋ)ẋ. When

G(x, ẋ) depends on x and ẋ, it also induces non-trivial curvature terms Ξ(x, ẋ) and

ξ(x, ẋ). In a particular case when G(x, ẋ) = G(x) (i.e. it depends on configuration

only), the GDSs reduce to the widely studied simple mechanical systems (SMSs) in geo-

metric mechanics (Bullo and Lewis, 2004) (see also (11.5))

M(x)ẍ + C(x, ẋ)ẋ +∇xΦ(x) = −B(x, ẋ)ẋ (11.22)

where the Coriolis force C(x, ẋ)ẋ can be shown equal to ξG(x, ẋ). In this special case,

we have M(x) = G(x), i.e., the inertia matrix is the same as the metric matrix (this

is exactly the finding in geometric mechanics discussed in Section 11.3.3) We will re-

visit the connection between GDSs and SMSs again in Section 11.6.1 (and show why

C(x, ẋ)ẋ = ξG(x, ẋ)) after the analysis of geometric properties of GDSs. For now, we can

think of GDSs as generalization of SMSs to have inertia G(x, ẋ) and metric M(x, ẋ) that

also change with velocity! This velocity-dependent extension is important and non-trivial.

As discussed in earlier Section 11.4.6, it generalizes the dynamics of classical rigid-body

systems, allowing the space to morph according to the velocity direction.

Finally, as its name hints, GDSs possess geometric properties. Particularly, when

G(x, ẋ) is invertible, the left-hand side of (13.3) is related to a quantity aG = ẍ +

G(x, ẋ)−1(ΞG(x, ẋ)ẍ+ξG(x, ẋ)), known as the geometric acceleration (cf. Section 11.5.4).

(Therefore these terms must not be separated; e.g. G(x, ẋ)ẍ alone may not possess par-

ticular meaning.) In other words, we can think of (13.3) as setting aG along the negative

natural gradient −G(x, ẋ)−1∇xΦ(x) while imposing damping −G(x, ẋ)−1B(x, ẋ)ẋ.

406

11.5.2 Closure

Earlier, we argued vaguely that by tracking the geometry in pullback in (11.18) through

propagating RMPs instead of just motion policies, the task properties can be preserved.

Here, we formalize this consistency concept of RMPflow as a closure of differential equa-

tions, named structured GDSs. Structured GDSs augment GDSs with information on how

the metric matrix G factorizes. We call such information a structure. Specifically, suppose

G has a structure S that factorizes G(x, ẋ) = J(x)>H(y, ẏ)J(x), where y : x 7→ y(x) ∈

Rn and H : Rn × Rn → Rn×n
+ , and J(x) = ∂xy is the Jacobian. We say a dynamical

system onM is a structured GDS (M,G,B,Φ)S if it satisfies the differential equation

(G(x, ẋ) + ΞG(x, ẋ)) ẍ + ηG;S(x, ẋ) = −∇xΦ(x)−B(x, ẋ)ẋ (11.23)

where ηG;S(x, ẋ) := J(x)>(ξH(y, ẏ) + (H(y, ẏ) + ΞH(y, ẏ))J̇(x, ẋ)ẋ). If we com-

pare GDSs in (13.3) and structured GDSs in (12.7), the difference is that ξG(x, ẋ) is now

replaced by a different curvature term ηG;S(x, ẋ) that is defined by both the metric and

factorization. In fact, GDSs are structured GDSs with a trivial structure (i.e. y = x). Also,

one can easily show that structured GDSs reduce to GDSs (i.e. the structure offers no extra

information) if G(x, ẋ) = G(x), or if n,m = 1. Given two structures, we say Sa pre-

serves Sb if Sa has the factorization (of H) made by Sb. In Section 11.5.4, we will show

that structured GDSs are related to a geometric object, pullback connection, which turns

out to be the coordinate-free version of pullback.

Below we show the closure property: when the children of a parent node are structured

GDSs, the parent node defined by pullback is also a structured GDS with respect to

the pullbacked structured metric matrix, damping matrix, and potentials. Without loss of

generality, we consider again a parent node onM with K child nodes on {Ni}Ki=1. We

note that Gi and Bi can be functions of both yi and ẏi.

Theorem 11.5.1. Let the ith child node follow (Ni,Gi,Bi,Φi)Si and have coordinate yi.

407

Let fi = −ηGi;Si −∇yiΦi −Biẏi and Mi = Gi + ΞGi
. If [f ,M]M of the parent node is

given by pullbackwith {[fi,Mi]
Ni}Ki=1 and M is non-singular, the parent node follows the

pullback structured GDS (M,G,B,Φ)S , where G =
∑K

i=1 J>i GiJi, B =
∑K

i=1 J>i BiJi,

Φ =
∑K

i=1 Φi ◦ yi, S preserves Si, and Ji = ∂xyi. In other words, the parent node is the

RMP (a,M)M where M =
∑K

i=1 J>i (Gi + ΞGi
)Ji and

a = (G + ΞG)† (−ηG;S −∇xΦ−Bẋ)

Particularly, if every Gi is velocity-free and the child nodes are GDSs, the parent node

follows (M,G,B,Φ).

Theorem 11.5.1 shows structured GDSs are closed under pullback. It means that the

differential equation of a structured GDS with a tree-structured task map can be computed

by recursively applying pullback from the leaves to the root, because in each recursive

step, the form of structured GDS is preserved by pullback. Particularly, when G is

velocity-free, one can show that pullback also preserves GDSs. We summarize these

properties below.

Corollary 11.5.1. If all leaf nodes follow GDSs and Mr at the root node is nonsingular,

then the root node follows (C,G,B,Φ)S as recursively defined by Theorem 11.5.1.

11.5.3 Stability

By the closure property above, we analyze the stability of RMPflow when the leaf nodes

are (structured) GDSs. For compactness, we will abuse the notation to write M = Mr.

Suppose M is nonsingular and let (C,G,B,Φ)S be the resultant structured GDS at the root

node. We consider a Lyapunov function candidate

V (q, q̇) =
1

2
q̇>G(q, q̇)q̇ + Φ(q) (11.24)

408

and derive its rate using properties of structured GDSs.

Proposition 11.5.1. For (C,G,B,Φ)S , it holds that V̇(q, q̇) = −q̇>B(q, q̇)q̇.

Proposition 11.5.1 directly implies the stability of structured GDSs by invoking LaSalle’s

invariance principle (Khalil, 1996). Here we summarize the result without proof.

Corollary 11.5.2. For (C,G,B,Φ)S , if G(q, q̇),B(q, q̇) � 0, the system converges to a

forward invariant set C∞ := {(q, q̇) : ∇qΦ(q) = 0, q̇ = 0}.

To show the stability of RMPflow, we need to further check when the assumptions in

Corollary 11.5.2 hold. The condition B(q, q̇) � 0 is easy to satisfy: by Theorem 11.5.1,

B(q, q̇) has the form
∑K

i=1 Ji(q)>Bi(xi, ẋi)Ji(q). Therefore, it automatically satisfies

B(q, q̇) � 0; to strictly ensure definiteness, we can copy C into an additional child node

with a (small) positive-definite damping matrix. The condition on G(q, q̇) � 0 can be

satisfied based on a similar argument about B(q, q̇). In addition, we need to verify the

assumption that M is nonsingular. Here we provide a sufficient condition. When satisfied,

it implies the global stability of RMPflow in the sense of Corollary 11.5.2.

Theorem 11.5.2. Suppose every leaf node is a GDS with a metric matrix in the form

R(x) + L(x)>D(x, ẋ)L(x) for differentiable functions R, L, and D satisfying R(x) � 0,

D(x, ẋ) = diag((di(x, ẏi))
n
i=1) � 0, and ẏi∂ẏidi(x, ẏi) ≥ 0, where x is the coordi-

nate of the leaf-node manifold and ẏ = Lẋ ∈ Rn. It holds ΞG(q, q̇) � 0. If further

G(q, q̇),B(q, q̇) � 0, then M ∈ Rd×d
++ , and the global RMP generated by RMPflow con-

verges to the forward invariant set C∞ in Corollary 11.5.2.

A particular condition in Theorem 11.5.2 is when all the leaf nodes with velocity dependent

metric are 1D. Suppose x ∈ R is its coordinate and g(x, ẋ) is its metric matrix. The

sufficient condition essentially boils down to g(x, ẋ) ≥ 0 and ẋ∂ẋg(x, ẋ) ≥ 0. This means

that, given any x ∈ R, g(x, 0) = 0, g(x, ẋ) is non-decreasing when ẋ > 0, and non-

increasing when ẋ < 0. This condition is satisfied by the collision avoidance policy in

Section 11.4.6.

409

11.5.4 Invariance

We now discuss the coordinate-free geometric properties of (C,G,B,Φ)S generated by

RMPflow. Due to space constraint, we only summarize the results. Here we assume that

G is positive-definite.

We first introduce some additional notations for the coordinate-free analysis and give

definitions of common differential geometric objects (please see, e.g., (Lee, 2009) for an

excellent tutorial). For a manifold C, we use TC to denote its tangent bundle (i.e. a mani-

fold that describes the tangent spaces on the base manifold C) and write pTC : TC → C to

denote the bundle projection, which recovers the corresponding point on C (i.e. configura-

tion) from a point on TC (a pair of position and the attached tangent vector). Specifically,

suppose (U, (q,v)) is a (local) chart on TC on a neighborhood U . Let { ∂
∂qi
, ∂
∂vi
}di=1 and

{dqi, dvi}di=1 denote the induced frame field and coframe field on TC (i.e. the basis vector

fields that characterize the tangent spaces and their dual spaces). For s ∈ U , we write s

in coordinate as (q(q),v(s)), if
∑d

i=1 vi(s)
∂
∂qi
|q ∈ TqC, where q = pTC(s) ∈ C. With

abuse of notation, we also write s = (q,v) for short unless clarity is lost. Similarly, a chart

(Ũ , (q,v,u, a)) can naturally be constructed on the double tangent bundle TTC, where

Ũ = p−1
TTC(U) and pTTC : TTC → TC is the bundle projection: we write h = (q,v,u, a) ∈

TTC if
∑d

i=1 ui(h) ∂
∂qi
|s + ai(h) ∂

∂vi
|s ∈ TsTC, where s = pTTC(h). Under these notations,

for a curve q(t) on C, we can write q̈(t) ∈ TTC in coordinate as (q(t), q̇(t), q̇(t), q̈(t)).

Finally, we define a geometric object called affine connection, which defines how tangent

spaces at different points on a manifold are related. Given Christoffel symbols Γki,j , an

affine connection ∇ on TTC is defined via ∇ ∂
∂si

∂
∂sj

=
∑2d

k=1 Γki,j
∂
∂sk

, where ∂
∂si

:= ∂
∂qi

and

∂
∂si+d

:= ∂
∂vi

for i = 1, . . . , d.

Using this new notation, we show that GDSs can be written in a coordinate-free manner

in terms of affine connection. Let TC denote the tangent bundle of C, which is a natural

manifold to describe the state space. Precisely, we prove that a GDS on C can be expressed

in terms of a unique, asymmetric affine connection G∇ that is compatible with a Rieman-

410

nian metric G (defined by G) on TC. It is important to note that G is defined on TC not the

original manifold C. As the metric matrix in a GDS can be velocity dependent, we need a

larger manifold.

Theorem 11.5.3. Let G be a Riemannian metric on TC such that, for s = (q, v) ∈ TC,

G(s) =
∑

i,j G
v
ij(s)dq

i ⊗ dqj + Ga
ijdv

i ⊗ dvj , where Gv
ij(s) and Ga

ij are symmetric and

positive-definite, and Gv
ij(·) is differentiable. Then there is a unique affine connection G∇

that is compatible with G and satisfies, Γki,j = Γkji, Γki,j+d = 0, and Γki+d,j+d = Γkj+d,i+d,

for i, j = 1, . . . , d and k = 1, . . . , 2d. In coordinates, if Gv
ij(q̇) is identified as G(q, q̇),

then pr3(G∇q̈ q̈) can be written as aG := q̈ + G(q, q̇)−1(ξG(q, q̇) + ΞG(q, q̇)q̈), where

pr3 : (q,v,u, a) 7→ u is a projection.

We call pr3(G∇q̇ q̇) the geometric acceleration of q(t) with respect to G∇. It is a coordinate-

free object, because pr3 is defined independent of the choice of chart on C. By Theo-

rem 11.5.3, it is clear that a GDS can be written abstractly as

pr3(G∇q̈ q̈) = (pr3 ◦G] ◦ F)(s) (11.25)

where F : s 7→ −dΦ(s) − B(s) defines the covectors due to the potential function and

damping, and G] : T ∗TC → TTC denotes the inverse of G. In coordinates, it reads as

q̈ + G(q, q̇)−1(ξG(q, q̇) + ΞG(q, q̇)q̈) = −G(q, q̇)−1(∇qΦ(q) + B(q, q̇)q̇), which is

exactly (13.3).

Extending this result, we present a coordinate-free representation of RMPflow when

the leaf-nodes are GDSs.

Theorem 11.5.4. Suppose C is related to K leaf-node task spaces by maps {ψi : C →

Ti}Ki=1 and the ith task space Ti has an affine connection Gi∇ on TTi, as defined in Theo-

rem 11.5.3, and a covector function Fi defined by some potential and damping as described

above. Let G∇̄ =
∑K

i=1 Tψ
∗
i
Gi∇ be the pullback connection, G =

∑K
i=1 Tψ

∗
iGi be the

pullback metric, and F =
∑K

i=1 Tψ
∗
i Fi be the pullback covector, where Tψ∗i : T ∗TTi →

411

T ∗TC. Then G∇̄ is compatible with G, and pr3(G∇̄q̈ q̈) = (pr3 ◦ G] ◦ F)(s) can be writ-

ten as q̈ + G(q, q̇)−1(ηG;S(q, q̇) + ΞG(q, q̇)q̈) = −G(q, q̇)−1(∇qΦ(q) + B(q, q̇)q̇). In

particular, if G is velocity-independent, then G∇̄ =G ∇.

Theorem 11.5.4 says that the structured GDS (C,G,B,Φ)S can be written abstractly, with-

out coordinates, using the pullback of task-space covectors, metrics, and asymmetric affine

connections (that are defined in Theorem 11.5.3). In other words, the recursive calls of

pullback in the backward pass of RMPflow is indeed performing “pullback” of geomet-

ric objects. We can think that the leaf nodes define the asymmetric affine connections, and

RMPflow performs pullback to pullback those connections onto C to define G∇̄. Theo-

rem 11.5.4 also shows, when G is velocity-independent, the pullback of connection and the

pullback of metric commutes. In this case, G∇̄ =G ∇, which is equivalent to the classic

Levi-Civita connection of G. The loss of commutativity in general is due to the asymmet-

ric definition of the connection in Theorem 11.5.3, which however is necessary to derive a

control law of acceleration, without further referring to higher-order time derivatives.

11.6 Operational Space Control and Geometric Mechanics in View of RMPflow

With the algorithm details and theoretical properties of RMPflow introduced, we now dis-

cuss more precisely how RMPflow is connected to and generalizes existing work in geo-

metric mechanics and operational space control.

11.6.1 From Operational Space Control to RMPflow with GDSs

Our study of GDSs (introduced in Section 12.2.2) is motivated by SMSs in geometric me-

chanics which describe the dynamics used in existing operational space control schemes

(cf. Section 11.3). Many formulations of mechanics exist, including Lagrangian mechan-

ics (Taylor, 2005) and the aforementioned Gauss’s principle of least constraint (Udwadia

and Kalaba, 1996), and they are all equivalent, implicitly sharing the same mathematical

structure. But among them, we find that geometric mechanics, which models physical sys-

412

tems as geodesic flow on Riemannian manifolds, is the most explicit one: it summarizes the

system properties arising from the underlying manifold structure compactly, as Riemannian

metrics, and connects to the broad mathematical tool set from Riemannian geometry.

These geometry-based insights provide us a way to generalize beyond the previous

SMSs studied in (Bullo and Lewis, 2004) and then design GDSs, a family non-classical

dynamical systems that, through the use of configuration-and-velocity dependent metrics,

more naturally describe behaviors of robots desired for tasks in non-Euclidean spaces.

The proposed generalization preserves several nice features from SMSs to GDSs. As in

SMSs, the properties of GDSs are captured by the metric matrix. For example, a GDS like a

SMS possesses the natural conservation property of kinematic energy, i.e. it travels along a

geodesic defined by G(x, ẋ) when there is no external perturbations due to Φ and B. Note

that G(x, ẋ) by definition may only be positive-semidefinite even when the system is non-

degenerate; here we allow the geodesic to be defined for a degenerate metric, meaning a

curve whose instant length measured by the (degenerate) metric is constant. This geometric

feature is an important tool to establish the stability of GDSs in our analysis; We highlight

this nice property below, which is a corollary of Proposition 11.5.1. Note that this property

also hold for degenerate GDSs provided that differential equations satisfying (11.34) exist.

Corollary 11.6.1. All GDSs in the form (M,G, 0, 0) travel on geodesics defined by G.

That is, K̇(x, ẋ) = 0, where K(x, ẋ) = 1
2
ẋ>G(x, ẋ)ẋ.

As we discussed earlier, these generalized metrics induce curvature terms ΞG and ξG

that can be useful to design sensible motions for tasks in non-Euclidean spaces (cf. Sec-

tion 11.4.6). As we showed GDSs are coordinate-free, these terms and behaviors arise nat-

urally when traveling on geodesics that is defined by configuration-and-velocity dependent

metrics. To gain more intuition about these curvature terms, we recall that the curvature

term ξG in GDSs is related to the Coriolis force in the SMSs. This is not surprising, as

from the analysis in Section 11.5.4 we know that ξG comes from the Christoffel symbols

413

of the asymmetric connection in Theorem 11.5.3, just as the Coriolis force comes from the

Christoffel symbols of Levi-Civita connection. Recall it is defined as

ξG(x, ẋ) :=
x

G(x, ẋ)ẋ− 1

2
∇x(ẋ>G(x, ẋ)ẋ)

Now we show their relationship explicitly below.

Lemma 11.6.1. Let Γijk = 1
2
(∂xkGij + ∂xjGik − ∂xjGjk) be the Christoffel symbol of the

first kind with respect to G(x, ẋ), where the subscript ij denotes the (i, j) element. Let

Cij =
∑d

k=1 ẋkΓijk and define C(x, ẋ) = (Cij)
m
i,j=1. Then ξG(x, ẋ) = C(x, ẋ)ẋ.

Proof of Lemma 11.6.1. Suppose ξG = (ξi)
m
i=1. We can compare the two definitions and

verify they are indeed equivalent:

ξi =
d∑

j,k=1

ẋjẋk∂xjGik −
1

2

d∑

j,k=1

ẋjẋk∂xiGjk

=
1

2

d∑

j,k=1

ẋjẋk∂xkGij +
1

2

d∑

j,k=1

ẋjẋk∂xjGik −
1

2

d∑

j,k=1

ẋjẋk∂xiGjk = (C(x, ẋ)ẋ)i �

Thus, we can think intuitively that GDSs modify the inertia and the Coriolis forces in SMSs

so that the dynamical system can preserve a generalized notion of kinematic energy that is

no-longer necessarily quadratic in velocity.

Finally, we note that the benefits of using configuration-and-velocity dependent met-

rics can also be understood from their connection to the weight matrices in least-squared

problems. Recall from Section 11.3 that for SMSs, the inertia matrix (which is the same

as the metric matrix according to geometric mechanics) forms the importance weight in

the least-squared problem. In other words, we can view common operational space control

schemes as implicitly combining policies with constant or configuration dependent impor-

tance weight matrix in the least-squared sense, which implies certain restriction on the

richness of behaviors that it can generate. By contrast, RMPflow allows generally impor-

tance weight matrices to depend also on velocity in the least-square problems prescribed by

414

(11.18), which combines RMPs from the child nodes as a RMP at the parent node in every

level of the RMP-tree (cf. Section 11.4). When the polices come from (structured) GDSs,

these weight matrices now again are inertia matrices and the geometric properties of GDSs

lead to similar stability and convergence properties as their SMS predecessors. Thus, in

a sense, we can view RMPflow as generalizing operational space control to consider also

configuration-and-velocity dependent weights in policy generation, allowing more flexible

trade-offs between different policies.

11.6.2 Relationship between RMPflow and Recursive Newton-Euler Algorithms

For readers familiar with robot dynamics, we remark that the forward-backward policy

generation procedure of RMPflow is closely related to the algorithms (Walker and Orin,

1982) for computing forward dynamics (i.e. computing accelerations given forces) based

on recursive Newton-Euler algorithm. Here we discuss their relationship.

In a summary, these classic algorithms compute the forward dynamics using following

steps:

1. It propagates positions and velocities from the base to the end-effector.

2. It computes the Coriollis force by backward propagating the inverse dynamics of

each link under the condition that the acceleration is zero.

3. It computes the (full/upper-triangular/lower-triangular) joint inertia matrix.

4. It solves a linear system of equations to obtain the joint acceleration.

In (Walker and Orin, 1982), they assume a recursive Newton-Euler algorithm (RNE) for

inverse dynamics is given, and realize Step 1 and Step 2 above by calling the RNE subrou-

tine. The computation of Step 3 depends on which part of the inertia matrix is computed.

In particular, their Method 3 (also called the Composite-Rigid-Body Algorithm in Feather-

stone, 2008, Chapter 6) computes the upper triangle part of the inertia matrix by a backward

propagation from the end-effector to the base.

415

RMPflow can also be used to compute forward dynamics, when we set the leaf-node

policy as the constant inertia system on the body frame of each link and we set the trans-

formation in the RMP-tree as the change of coordinates across of robot links. This works

because we showed that when leaf-node policies are GDSs (which cover SMSs of rigid-

body dynamics as a special case), the effective dynamics at the root node is the pullback

GDS, which in this case is the effective robot dynamics defined by the inertia matrix of

each link.

We can use this special case to compare RMPflow with the above procedure. We

see that the forward pass of RMPflow is equivalent to Step 1, and the backward pass of

RMPflow is equivalent of Step 2 and Step 3, and the final resolve operation is equivalent

to Step 4.

Despite similarity, the main difference is that RMPflow computes the force and the

inertia matrix in a single backward pass to exploit shared computations. This change is im-

portant, especially, the number of subtasks are large, e.g., in avoiding multiples obstacles.

In addition, the design of RMPflow generalizes these classical computational procedures

(e.g. designed only for rigid bodies, rotational/prismatic joints) to handle abstract and even

non-Euclidean task spaces that have velocity-dependent metrics/inertias. This extension

provides a unified framework of different algorithms and results in an expressive class of

motion policies.

Finally, we note that the above idea can be slightly modified so that we can also use

RMPflow to compute the inverse dynamics. This can be done similarly to the above con-

struction using physical inertia to initialize leaf-node RMPs; but at the end, after the back-

ward pass, we solve for instead the torque as τ = Mrq̇d −Mrfr where q̇d is the desired

joint-space acceleration.

416

11.6.3 Related Approaches to Motion Policy Generation

While here we focus on the special case of RMPflow with GDSs, this family already cov-

ers a wide range of reactive policies commonly used in practice. For example, when the

task metric is Euclidean (i.e. constant), RMPflow recovers operational space control (and

its variants) (Khatib, 1987; Lo, Cheng, and Huang, 2016; Peters et al., 2008; Sentis and

Khatib, 2006; Udwadia, 2003). When the task metric is only configuration dependent,

RMPflow can be viewed as performing energy shaping to combine multiple SMSs in geo-

metric control (Bullo and Lewis, 2004). Further, RMPflow allows using velocity dependent

metrics, generating behaviors all those previous rigid mechanics-based approaches fail to

model. We also note that RMPflow can be easily modified to incorporate exogenous time-

varying inputs (e.g. forces to realize impedance control (Albu-Schaffer and Hirzinger,

2002) or learned perturbations as in DMPs (Ijspeert et al., 2013)). In computation, the

structure of RMPflow in natural-formed RMPs resembles the classical Recursive Newton-

Euler algorithm (Featherstone, 2008; Walker and Orin, 1982) (as we just discussed above).

Alternatively, the canonical form of RMPflow in (11.19) resembles Gauss’s Principle (Pe-

ters et al., 2008; Udwadia, 2003), but with a curvature correction ΞG on the inertia matrix

(suggested by Theorem 11.5.1) to account for velocity dependent metrics. Thus, we can

view RMPflow as a natural generalization of these approaches to a broader class of non-

Euclidean behaviors.

11.7 Relationship between RMPflow, Factor-Graph, and Sparse Linear Systems

In this section, we discuss the relationship between the computation procedure of RMPflow

and algorithms for sparse linear systems. We show that the policy generation process of

RMPflow is equivalent to a version of block Gauss elimination. In addition, this identifi-

cation suggests that the final policy desired in RMPflow can be computed through other

solvers of linear systems.

417

11.7.1 Preliminary: Quadratic Program

Let us refresh some basic properties of linearly constrained quadratic programs (QPs).

Consider the abstract QP problem below:

min
x

1

2
x>Hx+ g>x

s.t. Ax = b

where H is positive definite, g, b are arbitrary. Without loss of generality, we suppose A is

not full rank (otherwise, this is just a linear system). Let λ be the Lagrangian multiplier of

the constraint. Then the Lagrangian of this QP can be written as

L(x, λ) =
1

2
x>Hx+ g>x+ λ>(Ax− b).

and the optimal solution to the QP can be solved by the KarushKuhnTucker (KKT) condi-

tion

A>λ+Hx+ g = 0

Ax = b

⇐⇒

A 0

H A>

x

λ

 =

b

−g

11.7.2 The Quadratic Program RMPflow Solves

As mentioned early sections, RMPflow is essentially solving a huge weighted least-squares

problem, where the weights are given by the intertia matrices of the task spaces, and the

constraints are given by the kinematic relationship of the forward maps. This fact can be

observed from the relationship between pullback and the weighted least-squares and that

only one resolve is called at the end.

Let us precisely illustrate this effective QP by considering an RMP-tree with three lay-

ers (i.e. depth two). Suppose that we denote the root as r, the leafs as l, and the others as

418

o. Then the backward pass of RMPflow solves the QP below

min
a

1

2
(al − adl)>Ml(al − adl)

s.t. al = Jlao + cl

ao = Joar + co

where adl is the desired leaf-node accelerations, Ml is a block diagonal matrix given by

the inertia matrices of the leaf nodes, Jl, Jo are the associated Jacobian matrices, and cl,

co are the associated curvature terms. Here we adopt a slightly different, abstract notation

from the previous sections in this chapter to better highlight the relationship. For example,

al denotes the collection of all leaf-node accelerations in an RMP-tree, instead of that of a

single leaf-node. Similarly, ao denotes the collections of other intermediate accelerations.

Finally, we note that the assumption of three layers does not lose generality. A deeper tree

can be handled naturally by introducing extra equality constraints between the root and the

leaves.

Define fdl = Mla
d
l. We can then rite the objective of this QP as

1

2
(al − adl)>Ml(al − adl) =

1

2
a>lMlal − fdl al + const.

or the full problem as

min
a

1

2

ar

ao

al

>

0 0 0

0 0 0

0 0 Ml

ar

ao

al

−

0

0

fdl

>

ar

ao

al

s.t.

−Jo I 0

0 −Jl I

ar

ao

al

=

co

cl

419

To solve this QP, we introduce Lagrange multiplier rl and ro for the two constraints, and

then we write down the KKT condition of the QP:

−Jo I 0 0 0

0 −Jl I 0 0

0 0 0 −J>o 0

0 0 0 I −J>l
0 0 Ml 0 I

ar

ao

al

ro

rl

=

co

cl

0

0

fdl

or equivalently (after exchanging row 3 and 5, and exchanging column 4 and 5)

−Jo I 0 0 0

0 −Jl I 0 0

0 0 Ml I 0

0 0 0 −J>l I

0 0 0 0 −J>o

ar

ao

al

rl

ro

=

co

cl

fdl

0

0

(11.26)

From (11.26), it is clear that the Lagrange multiplier rl is the residue of the linear equation

Mlal + rl = fdl , and ro = J>l rl is the propagated residue.

The linear system (11.26) is block tridiagonal and sparse, with non-empty entries only

the edges of the RMP-tree. Therefore, it is possible to use a sparse linear solver to compute

all the unknown variables using a time complexity linearly in the number of nodes and

edges in the RMP-tree. While a generic solver does provide a solution, it may not be the

best idea. We can actually solve this linear system more efficiently by leveraging the fact

that in RMPflow we only care about the desired acceleration ar (the motion policy at the

root node) not all the unknown variables.

RMPflow resembles a specific form of back substitution that uses this insight to incom-

pletely solve the linear system. Specially, RMPflow performs the following steps, while

grouping shared computations.

420

1.

−Jo I 0 0 0

0 −Jl I 0 0

0 0 Ml I 0

0 0 0 −J>o J>l 0

0 0 0 0 −J>o

ar

ao

al

rl

ro

=

co

cl

fdl

0

0

2.

−Jo I 0 0 0

0 −Jl I 0 0

0 0 J>o J
>
l Ml 0 0

0 0 0 −J>o J>l 0

0 0 0 0 −J>o

ar

ao

al

rl

ro

=

co

cl

J>o J
>
l f

d
l

0

0

3.

−Jo I 0 0 0

0 J>o J
>
l MlJl 0 0 0

0 0 J>o J
>
l Ml 0 0

0 0 0 −J>o J>l 0

0 0 0 0 −J>o

ar

ao

al

rl

ro

=

co

J>o J
>
l f

d
l − J>o J>l Mlcl

J>o J
>
l f

d
l

0

0

4.

J>o J
>
l MlJlJo 0 0 0 0

0 J>o J
>
l MlJl 0 0 0

0 0 J>o J
>
l Ml 0 0

0 0 0 −J>o J>l 0

0 0 0 0 −J>o

ar

ao

al

rl

ro

=

J>o J
>
l (fdl −Ml(cl − Jlco))

J>o J
>
l (fdl −Mlcl)

J>o J
>
l f

d
l

0

0

421

In the steps above, we can recognize intermediate variables are Mo, Mr, fr, fo, and fr used

in RMPflow.

11.7.3 Discussion

We show that RMPflow essentially solves a sparse, block upper tridiagonal system:

−Jo I 0 0 0

0 −Jl I 0 0

0 0 Ml I 0

0 0 0 −J>l I

0 0 0 0 −J>o

ar

ao

al

rl

ro

=

co

cl

fdl

0

0

(11.26)

where all the matrices and vectors are given in the forward pass. Particularly, the matrices

Jo and Jl are block sparse, and Ml is block diagonal.

From this identification, we see that RMPflow is not the unique algorithm to achieve

this goal. It is also possible to use other existing sparse linear solvers, e.g., a factor-graph

solver. Indeed one can identify each row, or a block of rows in (11.26) as a quadratic factor

in a factor graph (Dellaert and Kaess, 2017, Chapter 3).

While all linear solvers are admissible here, we remark some important considerations

for developing efficient new algorithms. First, because the multiplied matrix J>o J
>
l is dense

in general, an algorithm for the linear system in (11.26) should not directly create such a

matrix in its computation. Instead it needs to retain the sparsity pattern (which is equivalent

to performing message passing along the edges of the RMP-tree). This feature can be

realized by most standard sparse solvers. In addition, the algorithm should leverage the

fact that ar is only the variable concerned in generating the robot’s motion policy. This

insight can save computation complexity around by half, and is equivalent to the ordering

of variables in solving linear systems. The current design of RMPflow leverages these two

properties to achieve efficient computation, but it is nonetheless sequential. Based on the

422

above insight, parallel solvers to generate the motion policy of RMPflow becomes possible.

We consider this an interesting future direction, which is suitable for large-scale or multi-

agent systems.

11.8 Experiments

We first perform controlled experiments to study the curvature effects of nonlinear metrics,

which is important for stability and collision avoidance. Then we conduct several full-body

experiments (video: https://youtu.be/Fl4WvsXQDzo) to demonstrate the capabilities

of RMPflow on high-DOF manipulation problems in clutter, and implement an integrated

vision-and-motion system on two physical robots. Extra details of the RMPs used in this

section can found in the Appendix D of the technical report (Cheng et al., 2018c).

11.8.1 Controlled Experiments

1D Example

Let q ∈ R. We consider a barrier-type task map x = 1/q and define a GDS in (13.3) with

G = 1, Φ(x) = 1
2
(x − x0)2, and B = (1 + 1/x), where x0 > 0. Using the GDS, we

can define an RMP [−∇xΦ − Bẋ − ξG,M]R, where M and ξG are defined according to

Section 12.2.2. We use this example to study the effects of J̇q̇ in pullback (11.18), where

we define J = ∂qx. Fig. 11.2 compares the desired behavior (Fig. 11.2a) and the behaviors

of correct/incorrect pullback. If pullback is performed correctly with J̇q̇, the behavior

matches the designed one (Fig. 11.2b). By contrast, if J̇q̇ is ignored, the observed behavior

becomes inconsistent and unstable (Fig. 11.2c). While the instability of neglecting J̇q̇ can

be recovered with a damping B = (1 + ẋ2

x
) nonlinear in ẋ (suggested in (Lo, Cheng, and

Huang, 2016)), the behavior remains inconsistent (Fig. 11.2d).

423

https://youtu.be/Fl4WvsXQDzo

0 30 60

-80

-30

20

(a)

0 30 60

-80

-30

20

(b)

0 30 60

-80

-30

20

(c)

0 30 60

-80

-30

20

(d)

Figure 11.2: Phase portraits (gray) and integral curves (blue; from black circles to red crosses)
of 1D example. (a) Desired behavior. (b) With curvature terms. (c) Without curvature terms. (d)
Without curvature terms but with nonlinear damping.

424

-5 0 5
-5

0

5

(a)

-5 0 5
-5

0

5

(b)

-5 0 5
-5

0

5

(c)

-5 0 5
-5

0

5

(d)

-5 0 5
-5

0

5 w/ curvature

w/o curvature

w/o velocity-based metric

(e)

0 10 20 30 40 50

time

0

2

4

6

8

10

e
n
e
rg

y

(f)

Figure 11.3: 2D example; initial positions (small circle) and velocities (arrows). (a-d) Obstacle
(circle) avoidance: (a) w/o curvature terms and w/o potential. (b) w/ curvature terms and w/o
potential. (c) w/o curvature terms and w/ potential. (d) w/ curvature terms and w/ potential. (e)
Combined obstacle avoidance and goal (square) reaching. (f) The change of Lyapunov function in
(11.24) over time along the trajectories in (e).

425

2D Example

We consider a 2D goal-reaching task with collision avoidance and study the effects of ve-

locity dependent metrics. First, we define an RMP (a GDS as in Section 11.4.6) in x = d(q)

(the 1D task space of the distance to the obstacle). We pick a metric G(x, ẋ) = w(x)u(ẋ),

where w(x) = 1/x4 increases if the particle is close to the obstacle and u(ẋ) = ε +

min(0, ẋ)ẋ (where ε ≥ 0), increases if it moves towards the obstacle. As this metric is non-

constant, the GDS has curvature terms ΞG = 1
2
ẋw(x)∂ẋu(ẋ) and ξG = 1

2
ẋ2u(ẋ)∂xw(x).

These curvature terms along with J̇q̇ produce an acceleration that lead to natural obstacle

avoidance behavior, coaxing the system toward isocontours of the obstacle (Fig. 11.3b).

On the other hand, when the curvature terms are ignored, the particle travels in straight

lines with constant velocity (Fig. 11.3a). To define the full collision avoidance RMP, we

introduce a barrier-type potential Φ(x) = 1
2
αw(x)2 to create extra repulsive forces, where

α ≥ 0. A comparison of the curvature effects in this setting is shown in Fig. 11.3c and 11.3d

(with α = 1). Next, we use RMPflow to combine the collision avoidance RMP above (with

α = 0.001) and an attractor RMP. Let qg be the goal. The attractor RMP is a GDS in

the task space y = q − qg with a metric w(y)I, a damping ηw(y)I, and a potential that

is zero at y = 0, where η > 0 (see Cheng et al., 2018c, Appendix D). Fig. 11.3e shows

the trajectories of the combined RMP. The combined non-constant metrics generate a be-

havior that transitions smoothly towards the goal while heading away from the obstacle.

When the curvature terms are ignored (for both RMPs), the trajectories oscillate near the

obstacle. In practice, this can result in jittery behavior on manipulators. When the metric is

not velocity-based (G(x) = w(x)) the behavior is less efficient in breaking free from the

obstacle to go toward the goal. Finally, we show the change of Lyapunov function (11.24)

over time along these trajectories in Fig. 11.3f as verification of our theory.

426

𝒒

𝒍𝟏

𝑻𝟏

𝒂𝟏
𝒛

𝒂𝟏
𝒚

𝒂𝟏
𝒙

𝒐𝟏
𝒙𝟎

𝒙𝒊

𝒙𝒎

𝒅𝟏
𝒐𝟏

𝒅𝟏
𝒐𝟐

𝒅𝟏
𝒐𝒌

𝒅𝒊
𝒐𝟏

𝒅𝒊
𝒐𝟐 𝒅𝒊

𝒐𝒌

𝒅𝒎
𝒐𝟏

𝒅𝒎
𝒐𝟐

𝒅𝒎
𝒐𝒌

𝒅𝟏
𝒛

𝒅𝟏
𝒚

𝒅𝟏
𝒙

𝒅𝟏
𝒐

𝒍𝟐

𝒍𝒅

𝑻𝑳
𝒂𝒍
𝒛

𝒂𝒍
𝒚

𝒂𝒍
𝒙𝒐𝒍

𝒅𝑳
𝒛

𝒅𝑳
𝒚

𝒅𝑳
𝒙

𝒅𝑳
𝒐

𝒙𝒏𝒅𝒏
𝒐𝟏

𝒅𝒏
𝒐𝟐

𝒅𝒏
𝒐𝒌

𝒙𝒊+𝒏

𝒅𝒊+𝒏
𝒐𝟏 𝒅𝒊+𝒏

𝒐𝟐

𝒅𝒊+𝒏
𝒐𝒌

𝒙𝒎+𝒏

𝒅𝒎+𝒏
𝒐𝟏

𝒅𝒎+𝒏
𝒐𝟐

𝒅𝒎+𝒏
𝒐𝒌

𝒂𝒍
𝒛

𝒂𝒍
𝒚

𝒂𝒍
𝒙𝒂𝟏

𝒛
𝒂𝟏
𝒚 𝒐𝒍

𝒂𝒍
𝒛

𝒂𝒍
𝒚

𝒂𝒍
𝒙

𝒂𝟏
𝒙

𝒐𝟏

𝒂𝟏
𝒛

𝒂𝟏
𝒚 𝒐𝑳

𝒂𝑳
𝒛

𝒂𝑳
𝒚

𝒂𝑳
𝒙

Figure 11.4: This figure depicts the tree of task maps used in the experiments. See Section 11.8.2
for details.

11.8.2 System Experiments

Task map and its Tree Structure

Fig. 11.4 depicts the tree of task maps used in the full-robot experiments. The chosen struc-

ture emphasizes potential for parallelization over fully exploiting the recursive nature of the

kinematic chain, treating each link frame as just one forward kinematic map step from the

configuration space.9 The configuration space q is linked to L link frames T1, . . . ,TL

through the robot’s forward kinematics (the details of tasks will be described later on for

each individual experiment). Each frame has 4 frame element spaces: the origin oi and each

of the axes axi , a
y
i , a

z
i , with corresponding distance spaces to targets doi , d

x
i , d

y
i , d

z
i (if they

are active). Additionally, there are a number of obstacle control points xj distributed across

each of the links, each with k associated distance spaces do1
j , . . . , d

ok
j , one for each obstacle

o1, . . . , ok. Finally, for each dimension of the configuration space there’s an associated joint

9We could possibly have saved some computation by defining the forward kinematic maps recursively as
(Ti+1,qi+1, . . . ,qd) = ψi(Ti,qi, . . . ,qd).

427

simulated worlds real-world experiments

Figure 11.5: Two of the six simulated worlds in the reaching experiments (left), and the two
physical dual-arm platforms in the full system experiment (right).

time length goal distance collision intensity collision failure

0

0.5

1

1.5

2 RMPflow

PF-nonlinear

PF-basic

PF-basic-low

PF-basic-med

PF-basic-high

Figure 11.6: Results for reaching experiments. Though some methods achieve a shorter goal
distance than RMPflow in successful trials, they end up in collision in most the trials.

limit space l1, . . . , ld.

Reaching-through-clutter Experiments

We set up a collection of clutter-filled environments with cylindrical obstacles of varying

sizes in simulation as depicted in Fig. 11.5, and tested the performance of RMPflow and

two potential field methods on a modeled ABB YuMi robot.

Compared methods:

(i) RMPflow: We implement RMPflow using the RMPs in Section 11.4.6 and detailed

in Cheng et al., 2018c, Appendix D. In particular, we place collision-avoidance con-

trollers on distance spaces sij = dj(xi), where j = 1, . . . ,m indexes the world

obstacle oj and i = 1, . . . , n indexes the n control point along the robot’s body. Each

collision-avoidance controller uses a weight function wo(x) that ranges from 0 when

the robot is far from the obstacle to wmax
o � 0 when the robot is in contact with the

obstacle’s surface. Similarly, the attractor potential uses a weight function wa(x) that

428

ranges from wmin
a far from the target to wmax

a close to the target.

(ii) PF-basic: This variant is a basic implementation of obstacle avoidance potential

fields with dynamics shaping. We use the RMP framework to implement this variant

by placing collision-avoidance controllers on the same body control points used in

RMPflow but with isotropic metrics of the form Gbasic
o (x) = wmax

o I for each control

point, with wmax
o matching the value RMPflow uses. Similarly, the attractor uses the

same attractor potential as RMPflow, but with a constant isotropic metric with the

form Gbasic
a (x) = wmax

a I.

(iii) PF-nonlinear: This variant matches PF-basic in construction, except it uses a non-

linear isotropic metrics of the form Gnlin
o (xi) = wo(x)I and Gnlin

a (xi) = wa(x)I

for obstacle-avoidance and attraction, respectively, using weight functions matching

RMPflow.

A note on curvature terms: PF-basic uses constant metrics, so has no curvature terms;

PF-nonlinear has nontrivial curvature terms arising from the spatially varying metrics, but

we ignore them here to match common practice from the operational space control litera-

ture.

Parameter scaling of PF-basic: Isotropic metrics do not express spacial directionality

toward obstacles, and that leads to an inability of the system to effectively trade off the

competing controller requirements. That conflict results in more collisions and increased

instability. We, therefore, compare PF-basic under these baseline metric weights (matching

RMPflow) with variants that incrementally strengthen collision avoidance controllers and

C-space postural controllers (fC(q, q̇) = γp(q0 − q)− γdq̇) to improve these performance

measures in the experiment. We use the following weight scalings (first entry denotes

the obstacle metric scalar, and the second entry denotes the C-space metric scalar): “low”

(3, 10), “med” (5, 50), and “high” (10, 100).

Environments: We run each of these variants on 6 obstacle environments with 20

429

randomly sampled target locations each distributed on the opposite side of the obstacle field

from the robot. Three of the environments use four smaller obstacles (depicted in panel 3

of Fig. 11.5), and the remaining three environments used two large obstacles (depicted in

panel 4 of Fig. 11.5). Each environment used the same 20 targets to avoid implicit sampling

bias in target choice.

Performance measures: We report results in Fig. 11.6 in terms of mean and one stan-

dard deviation error bars calculated across the 120 trials for each of the following perfor-

mance measures:10

(i) Time to goal (“time”): Length of time, in seconds, it takes for the robot to reach a

convergence state. This convergence state is either the target, or its best-effort local

minimum. If the system never converges, as in the case of many potential field trials

for infeasible problems, the trial times out after 5 seconds. This metric measures

time-efficiency of the movement.

(ii) C-space path length (“length”): This is the total path length
∫
‖q̇‖dt of the move-

ment through the configuration space across the trial. This metric measures how eco-

nomical the movement is. In many of the potential-field variants with lower weights,

we see significant fighting among the controllers resulting in highly inefficient extra-

neous motions.

(iii) Minimal achievable distance to goal (“goal distance”): Measures how close, in me-

ters, the system is able to get to the goal with its end-effector.

(iv) Percent time in collision for colliding trials (“collision intensity”): Given that a trial

has a collision, this metric measures the fraction of time the system is in collision

throughout the trial. This metric indicates the intensity of the collision. Low val-

ues indicate short grazing collisions while higher values indicate long term obstacle

10There is no guarantee of feasibility in planning problems in general, so in all cases, we measure perfor-
mance relative to the performance of RMPflow, which is empirically stable and near optimal across these
problems.

430

penetration.

(v) Fraction of trails with collisions (“collision failure”): Reports the fraction of tri-

als with any collision event. We consider these to be collision-avoidance controller

failures.

Discussion: In Fig. 11.6, we see that RMPflow outperforms each of these variants

significantly, with some informative trends:

(i) RMPflow never collides, so its collision intensity and collision failure values are 0.

(ii) The other techniques, progressing from no scaling of collision-avoidance and C-

space controller weights to substantial scaling, show a profile of substantial collision

in the beginning to fewer (but still non-zero) collision events in the end. But we note

that improvement in collision-avoidance is achieved at the expense of time-efficiency

and the robot’s ability to reach the goal (it is too conservative).

(iii) Lower weight scaling of both PF-basic and PF-nonlinear actually achieve some faster

times and better goal distances, but that is because the system pushes directly through

obstacles, effectively “cheating” during the trial. RMPflow remains highly economi-

cal with its best effort reaching behaviors while ensuring the trials remain collision-

free.

(iv) Lower weight scalings of PF-basic are highly uneconomical in their motion reflec-

tive of their relative instability. As the C-space weights on the posture controllers

increase, the stability and economy of motion increase, but, again, at the expense of

time-efficiency and optimality of the final reach.

(v) There is little empirical difference between PF-basic and PF-nonlinear indicating that

the defining feature separating RMPflow from the potential field techniques is its use

of a highly nonlinear metric that explicitly stretches the space in the direction of the

obstacle as well as in the direction of the velocity toward the target. Those stretchings

431

penalize deviations in the stretched directions during combination with other con-

trollers while allowing variation along orthogonal directions. By being more explicit

about how controllers should instantaneously trade off with one another, RMPflow is

better able to mitigate the otherwise conflicting control signals.

Summary: Isotropic metrics do not effectively convey how each collision and attractor

controller should trade off with one another, resulting in a conflict of signals that obscure

the intent of each controller making simultaneous collision avoidance, attraction, and pos-

ture maintenance more difficult. Increasing the weights of the controllers can improve their

effectiveness, but at the expense of decreased overall system performance. The resulting

motions are slower and less effective in reaching the goal in spite of more stable behavior

and fewer collisions. A key feature of RMPflow is its ability to leverage highly nonlinear

metrics that better convey information about how controllers should trade off with one an-

other, while retaining provable stability guarantees. In combination, these features result in

efficient and economical obstacle avoidance behavior while reaching toward targets amid

clutter.

System Integration for Real-Time Reactive Motion Generation

We demonstrate the integrated vision and motion system on two physical dual arm ma-

nipulation platforms: a Baxter robot from Rethink Robotics, and a YuMi robot from ABB.

Footage of our fully integrated system (see start of Section 11.8 for the link) depicting tasks

such as pick and place amid clutter, reactive manipulation of a cabinet drawers and doors

with human interaction, active leadthrough with collision controllers running, and pick and

place into a cabinet drawer.11

This full integrated system, shown in the supplementary video, uses the RMPs de-

scribed in Section 11.4.6 (detailed in Cheng et al., 2018c, Appendix D) with a slight mod-

11We have also run the RMP portion of the system on an ABB IRB120 and a dual arm Kuka manipulation
platform with lightweight collaborative arms. Only the two platforms mentioned here, the YuMi and the
Baxter, which use the full motion and vision integration, are shown in the video for economy of space.

432

ification that the curvature terms are ignored. Instead, we maintain theoretical stability by

using sufficient damping terms as described in Section 11.8.1 and by operating at slower

speeds. Generalization of these RMPs between embodiments was anecdotally pretty con-

sistent, although, as we demonstrate in our experiments, we would expect more empirical

deviation at higher speeds. For these manipulation tasks, this early version of the system

worked well as demonstrated in the video.

For visual perception, we leveraged consumer depth cameras along with two levels of

perceptual feedback:

(i) Ambient world: For the Baxter system we create a voxelized representation of the

unmodeled ambient world, and use distance fields to focus the collision controllers

on just the closest obstacle points surrounding the arms. This methodology is similar

in nature to (Kappler et al., 2018), except we found empirically that attending to

only the closest point to a skeleton representation resulted in oscillation in concaved

regions where distance functions might result in nonsmooth kinks. We mitigate this

issue by finding the closest points to a volume around each control point, effectively

smoothing over points of nondifferentiability in the distance field.

(ii) Tracked objects: We use the Dense Articulated Real-time Tracking (DART) sys-

tem of (Schmidt, Newcombe, and Fox, 2015) to track articulated objects in real time

through manipulations. This system is able to track both the robot and environmental

objects, such as an articulated cabinet, simultaneously to give accurate measurements

of their relative configuration effectively obviating the need for explicit camera-world

calibration. As long as the system is initialized in the general region of the object lo-

cations (where for the cabinet and the robot, that would mean even up to half a foot

of error in translation and a similar scale of error in rotation), the DART optimizer

will snap to the right configuration when turned on. DART sends information about

object locations to the motion generation, and receives back information about ex-

pected joint configurations (priors) from the motion system generating a robust world

433

representation usable in a number of practical real-world manipulation problems.

Each of our behaviors are decomposed as state machines that use visual feedback to

detect transitions, including transitions to reaction states as needed to implement behav-

ioral robustness. Each arm is represented as a separate robot for efficiency, receiving real-

time information about other arm’s current state enabling coordination. Both arms are

programmed simultaneously using a high level language that provides the programmer a

unified view of the surrounding world and command of both arms.

11.9 Conclusion

We propose an efficient policy synthesis framework, RMPflow, for generating policies with

non-Euclidean behavior, including motion with velocity dependent metrics that are new to

the literature. In design, RMPflow is implemented as a computational graph, which can ge-

ometrically consistently combine subtask policies into a global policy for the robot. In the-

ory, we provide conditions for stability and show that RMPflow is intrinsically coordinate-

free. In the experiments, we demonstrate that RMPflow can generate smooth and natural

motion for various tasks, when proper subtask RMPs are specified. Future work is to

further relax the requirement on the quality of designing subtask RMPs by introducing

learning components into RMPflow for additional flexibility.

11.A Non-holonomic Systems

We can also extend the definition of GDSs to cover non-holonomic constraints. For sim-

plicity, we assume Ξ � 0. Without loss of generality, we consider a constraint of the type

In this case, we can write

ẋ = P(x)v(x) + N(x)u (11.27)

434

where P(x) is a projection matrix that is compatible with G(x, ẋ) and N(x) = I−P(x),

v(x) is the constraint velocity and u is the free velocity. We recall a projection P is

compatible with G(x, ẋ) if, for any u ∈ Rm, GPu = Gu. This type of constraint can

be used to describe the linearly constraint of the form L>(x)ẋ = a used in the mechanics

literature, or more generally cover the constraints arising from hierarchical control. In

the coordinate-free representation, the constraint in (11.27) specifies a distribution on the

manifoldM.

Given that v(x) in general can be any vector field, here we says a GDS honors the

non-holonomic constraint in (11.27), if

N(x)
(
ẍ + G(x, ẋ)†(ΞG(x, ẋ)ẍ + ξG(x, ẋ))

)
= −G(x, ẋ)†(∇xΦ(x) + B(x, ẋ)ẋ)

(11.28)

As N = I− P and P is compatible with G(x, ẋ), it is not hard to see that if v,Φ,B = 0,

then (11.28) also travels on the geodesic.

11.B Proofs of RMPflow Analysis

11.B.1 Proof of Theorem 11.5.1

Theorem 11.5.1. Let the ith child node follow (Ni,Gi,Bi,Φi)Si and have coordinate yi.

Let fi = −ηGi;Si −∇yiΦi −Biẏi and Mi = Gi + ΞGi
. If [f ,M]M of the parent node is

given by pullbackwith {[fi,Mi]
Ni}Ki=1 and M is non-singular, the parent node follows the

pullback structured GDS (M,G,B,Φ)S , where G =
∑K

i=1 J>i GiJi, B =
∑K

i=1 J>i BiJi,

Φ =
∑K

i=1 Φi ◦ yi, S preserves Si, and Ji = ∂xyi. In other words, the parent node is the

RMP (a,M)M where M =
∑K

i=1 J>i (Gi + ΞGi
)Ji and

a = (G + ΞG)† (−ηG;S −∇xΦ−Bẋ)

435

Particularly, if every Gi is velocity-free and the child nodes are GDSs, the parent node

follows (M,G,B,Φ).

Proof of Theorem 11.5.1. We will use the non-degeneracy assumption that G+ΞG (i.e. M

as we will show) is non-singular, so that the differential equation specified by an RMP in

normal form or a (structured) GDS is unique. This assumption is made to simplify writing.

At the end of the proof, we will show that this assumption only needs to be true at the root

node of RMPflow.

The general case We first show the differential equation given by pullback is equivalent

to the differential equation of pullback structured GDS (M,G,B,Φ)S . Under the non-

degeneracy assumption, suppose Si factorizes Gi as Gi = L>i HiLi, where Li is some

Jacobian matrix. On one hand, for pullback, because in the child node ÿi satisfies (Gi +

ΞGi
)ÿi = −ηGi;Si − ∇yiΦi − Biẏi (where by definition ηGi;Si = L>i (ξHi

+ (Hi +

ΞHi
)L̇iẏi)), the pullback operator combines the child nodes into the differential equation

at the parent node,

Mẍ =
K∑

i=1

J>i Mi(ÿi − J̇iẋ) (11.29)

where we recall M =
∑K

i=1 J>i MiJi is given by pullback. On the other hand, for

(M,G,B,Φ)S with S preserving Si, its dynamics satisfy

(G + ΞG) ẍ + ηG;S = −∇xΦ−Bẋ (11.30)

where G is factorized by S into

G =

J1

...

JK

>

G1

. . .

GK

J1

...

JK

=

L1J1

...

LKJK

>

H1

. . .

HK

L1J1

...

LKJK

=: J̄>H̄J̄

436

and the curvature term ηG;S by S is given as ηG;S := J̄>(ξH̄ + (H̄ + ΞH̄) ˙̄Jẋ).

To prove the general statement, we will show (11.29) and (11.30) are equivalent. First,

we introduce a lemma to write ΞG in terms of ΞGi
(proved later in this section).

Lemma 11.B.1. LetM and N be two manifolds and let x and y(x) be the coordinates.

Define M(x, ẋ) = J(x)>N(y, ẏ)J(x), where J(x) = ∂xy(x). Then

ΞM(x, ẋ) = J>(x)ΞN(y, ẏ)J(x)

Therefore, we see that on the LHSs

(G + ΞG)ẍ = Mẍ

and on the RHSs

(
K∑

i=1

J>i Mi(ÿi − J̇iẋ)

)

=

(
K∑

i=1

J>i (−ηGi;Si −∇yiΦi −Biẏi − (Gi + ΞGi
)J̇iẋ)

)

=

(
K∑

i=1

J>i (−L>i (ξHi
+ (Hi + ΞHi

)L̇iẏi)− (Gi + ΞGi
)J̇iẋ)

)
+

(
K∑

i=1

J>i (−∇yiΦi −Biẏi)

)

=

(
K∑

i=1

−J̄>i ξHi
− J̄>i (Hi + ΞHi

)(L̇iJi + LiJ̇i)ẋ

)
−∇xΦ−Bẋ

= −ηG;S −∇xΦ−Bẋ

where the first equality is due to Lemma 11.B.1, the second equality is due to (11.29),

and the third equality is due to the definition of structured GDSs. The above derivations

show the equivalence between the RHSs and LHSs of (11.29) and (11.30), respectively.

Therefore, when the non-degenerate assumption holds, (11.29) and (11.30) are equivalent.

The special case With the closure of structured GDSs proved, we next show the closure

437

of GDSs under pullback, when the metric is only configuration-dependent. That is, we

want to show that, when the metric is only configuration-dependent, the choice of structure

does not matter. This amounts to show that ξG = ηG;S because by definition Ξi = 0 and

Ξ = 0. Below we show how ξG is written in terms of ξGi
and ΞGi

for general metric

matrices and specialize it to the configuration-dependent special case (proved later in this

section).

Lemma 11.B.2. Let M and N be two manifolds and x and y(x) be the coordinates.

Suppose M(x, ẋ) is structured as J(x)>N(y, ẏ)J(x), where J(x) = ∂xy(x). Then

ξM(x, ẋ) = J(x)>
(
ξN(y, ẏ) + (N(y, ẏ) + 2ΞN(y, ẏ))J̇(x, ẋ)ẋ

)

− J̇(x, ẋ)>ΞN(y, ẏ)>J(x)ẋ

When M(x, ẋ) = M(x), ξM = ηM;S regardless of the structure of S.

By Lemma 11.B.2, we see that structured GDSs are GDSs regardless of the chosen structure

when the metric is only configuration dependent. Thus, the statement of the special case

follows by combining Lemma 11.B.2 and the previous proof for structured GDSs.

Remarks: Proof of Corollary 11.5.1 We note that the non-degenerate assumption does

not need to hold for every nodes in RMPflow but only for the root node. This can be seen

from the proof above, where we propagate the LHSs and RHSs separately. Therefore, as

long as the inertial matrix at the root node is invertible, the differential equation on the

configuration space is well defined. �

Proof of Lemma 11.B.1. Let bi, ni, ji be the ith column of M, N, and J, respectively.

SupposeM and N are of m and n dimensions, respectively. By definition of ΞM,

2ΞM(x, ẋ) =
m∑

i=1

ẋi∂ẋbi(x, ẋ) = J(x)>
m∑

i=1

ẋi∂ẋ(N(y, ẏ)ji(x))

= J(x)>

(
m∑

i=1

ẋi∂ẏ(N(y, ẏ)ji(x))

)
J(x)

438

= J(x)>

(
n∑

j=1

∂ẏnj(y, ẏ)
m∑

i=1

ẋiJji(x)

)
J(x)

= J(x)>

(
n∑

j=1

yj∂ẏnj(y, ẏ)

)
J(x)

= 2J(x)>ΞN(y, ẏ)J(x) �

Proof of Lemma 11.B.2. Before the proof, we first note a useful identity ∂xẏ = J̇(x, ẋ).

This can be derived simply by the definition of the Jacobian matrix (∂xJ(x)ẋ)ij =
∑m

k=1 ẋk∂xjJik =
∑m

k=1 ẋk∂xj∂xkyi =
∑m

k=1 ẋk∂xkJij = (J̇)ij .

To prove the lemma, we derive ξM by its definition

ξM =
x

M(x, ẋ)ẋ− 1

2
∇x(ẋ>M(x, ẋ)ẋ)

= J̇(x, ẋ)>N(y, ẏ)J(x)ẋ + J(x)>N(y, ẏ)J̇(x, ẋ)ẋ + J(x)>
x

N(y, ẏ)J(x)ẋ

− 1

2
∇x(ẋ>J(x)>N(y, ẏ)J(x)ẋ)

= J̇(x, ẋ)>N(y, ẏ)ẏ + J(x)>N(y, ẏ)J̇(x, ẋ)ẋ + J(x)>
x

N(y, ẏ)ẏ − 1

2
∇x(ẏ>N(y, ẏ)ẏ)

= J̇(x, ẋ)>N(y, ẏ)ẏ + J(x)>N(y, ẏ)J̇(x, ẋ)ẋ + J(x)>
x

N(y, ẏ)ẏ

− 1

2
J(x)>∇y(ẏ>N(y, ẏ)ẏ)− J̇(x, ẋ)>N(y, ẏ)ẏ − J̇(x, ẋ)>ΞN(y, ẏ)>J(x)ẋ

= J(x)>(N(y, ẏ)J̇(x, ẋ)ẋ +
x

N(y, ẏ)J(x)ẋ− 1

2
∇y(ẏ>N(y, ẏ)ẏ))− J̇(x, ẋ)>ΞN(y, ẏ)>J(x)ẋ

In the second to the last equality above, we use ∂xẏ = J̇(x, ẋ) and derive

1

2
∇x(ẏ>N(y, ẏ)ẏ) =

1

2
J>∇y(ẏ>N(y, ẏ)ẏ) +

1

2
∇x(ẏ)∇ẏ(ẏ>N(y, ẏ)ẏ)

=
1

2
J>∇y(ẏ>N(y, ẏ)ẏ) + J̇(x, ẋ)>N(y, ẏ)ẏ +

1

2
J̇(x, ẋ)>∇ẏ(z>N(y, ẏ)ż)|z=ẏ

=
1

2
J>∇y(ẏ>N(y, ẏ)ẏ) + J̇(x, ẋ)>N(y, ẏ)ẏ + J̇(x, ẋ)>ΞN(y, ẏ)>J(x)ẋ

as 1
2
∂ẏ(z>N(y, ẏ)ż)|z=ẏ = 1

2
ẏ> (

∑n
i=1 ẏi∂ẏni(y, ẏ)) = ẏ>ΞN(y, ẏ), where ni is the ith

column of N.

439

To further simplify the expression, we note that by ∂xẏ = J̇(x, ẋ) we have

x

N(y, ẏ)ẏ =
n∑

i=1

ẏi∂xni(y, ẏ)ẋ

=
n∑

i=1

ẏi(∂yni(y, ẏ)J(x)ẋ + ∂ẏni(y, ẏ)∂x(ẏ)ẋ)

=
n∑

i=1

ẏi∂yni(y, ẏ)ẏ + ẏi∂ẏni(y, ẏ)J̇(x, ẋ)ẋ

=

(
n∑

i=1

ẏi∂yni(y, ẏ)

)
ẏ +

(
n∑

i=1

ẏi∂ẏni(y, ẏ)

)
J̇(x, ẋ)ẋ

=
y

N(y, ẏ)ẏ + 2ΞN(y, ẏ)J̇(x, ẋ)ẋ

Combining these two equalities, we can write

ξM(x, ẋ) = J(x)>
(

y

N(y, ẏ)ẏ − 1

2
∇y(ẏ>N(y, ẏ)ẏ) + (N(y, ẏ) + 2ΞN(y, ẏ))J̇(x, ẋ)ẋ

)

− J̇(x, ẋ)>ΞN(y, ẏ)>J(x)ẋ

Substituting the definition of ξN(y, ẏ) =
y

N(y, ẏ)ẏ − 1
2
∇y(ẏ>N(y, ẏ)ẏ) proves the gen-

eral statement.

In the special case, M(x, ẋ) = M(x) (which implies ΞM = 0),

ξM(x, ẋ) = J(x)>
(
ξN(y, ẏ) + N(y)J̇(x, ẋ)ẋ

)

We show this expression is equal to ηM;S regardless of the structure S. This can be seen

from the follows: If further N(y) = L(y)>C(z)L(y) and M is structured as (LJ)>C(LJ)

from some Jacobian matrix L(y) = ∂yz, we can write

ηM;S = J>L>(ξC̄ + C
d(LJ)

dt
ẋ)

= J>(L>ξC̄ + L>C(L̇J + LJ̇)ẋ)

440

= J>
(
L>(ξC̄ + CL̇ẏ) + L>CLJ̇ẋ

)

= J>
(
ξN + NJ̇ẋ

)
= ξM �

11.B.2 Proof of Proposition 11.5.1

Proposition 11.5.1. For (C,G,B,Φ)S , it holds that V̇(q, q̇) = −q̇>B(q, q̇)q̇.

Proof of Proposition 11.5.1. Let K(q, q̇) = 1
2
q̇>G(q, q̇)q̇. Its time derivative can be writ-

ten as

d

dt
K(q, q̇) = q̇>

(
G(q, q̇)q̈ +

1

2
(
d

dt
G(q, q̇))q̇

)

= q̇>

(
G(q, q̇)q̈ +

1

2

d∑

i=1

q̇i
d

dt
gi(q, q̇)

)

= q̇>

(
G(q, q̇)q̈ +

1

2

d∑

i=1

q̇i∂qgi(q, q̇)q̇ +
1

2

d∑

i=1

q̇i∂q̇gi(q, q̇)q̈

)

= q̇>
(

(G(q, q̇) + ΞG(q, q̇))q̈ +
1

2

q

G(q, q̇)q̇

)

where we recall G is symmetric and
q

G(q, q̇) := [∂qgi(q, q̇)q̇]di=1. Therefore, by definition

(G(q, q̇) + ΞG(q, q̇))q̈ = (−ηG;S(q, q̇)−∇qΦ(q)−B(q, q̇)q̇(q, q̇)), we can derive

d

dt
V(q, q̇) =

d

dt
K(q, q̇) + q̇>∇qΦ(q)

= q̇>
(
−ηG;S(q, q̇)−∇qΦ(q)−B(q, q̇)ẋ +

1

2

q

G(q, q̇)q̇ +∇qΦ(q)

)

= −q̇>B(q, q̇)q̇ + q̇>
(
−ηG;S(q, q̇) +

1

2

q

G(q, q̇)q̇

)

To finish the proof, we use two lemmas below.

Lemma 11.B.3. 1
2
q̇>

q

G(q, q̇)q̇ = q̇>ξG(q, q̇).

441

Proof of Lemma 11.B.3. This can be shown by definition:

q̇>ξG(q, q̇) = q̇>
(

q

G(q, q̇)q̇− 1

2
∇q(q̇>G(q, q̇)q̇)

)

=
d∑

k=1

q̇k

(
d∑

i,j=1

q̇iq̇j∂qjGk,i −
1

2

d∑

i,j=1

q̇iq̇j∂qkGi,j

)

=
d∑

i,j,k=1

q̇iq̇j q̇k∂qjGk,i −
1

2

d∑

i,j,k=1

q̇iq̇j q̇k∂qkGi,j

=
d∑

i,j,k=1

q̇iq̇j q̇k∂qkGj,i −
1

2

d∑

i,j,k=1

q̇iq̇j q̇k∂qkGi,j

=
1

2

d∑

i,j,k=1

q̇iq̇j q̇k∂qjGk,i =
1

2
q̇>

q

G(q, q̇)q̇

where for the second to the last equality we use the symmetry Gi,j = Gj,i. �

Using Lemma 11.B.3, we can show another equality.

Lemma 11.B.4. For all structure S, q̇>
(
−ηG;S(q, q̇) + 1

2

q

G(q, q̇)q̇
)

= 0

Proof of Lemma 11.B.4. This can be seen from Lemma 11.B.2. Suppose S factorizes

G(q, q̇) = J(q)>H(x, ẋ)J(q) where J(q) = ∂qx. By Lemma 11.B.2, we know

ξG = J>
(
ξH + (H + 2ΞH)J̇ẋ

)
− J̇>Ξ>HJẋ

On the other hand, by definition, we have ηG;S := J>(ξH + (H + ΞH)J̇ẋ). Therefore, by

comparing the two, we can derive,

q̇>ξG = q̇>
(
ηG;S + J>ΞHJ̇q̇− J̇>Ξ>HJq̇

)
= q̇>ηG;S

Combing the above equality and Lemma 11.B.3 proves the equality. �

442

Finally, we use Lemma 11.B.4 and the previous result and conclude

d

dt
V(q, q̇) = −q̇>B(q, q̇)q̇ + q̇>

(
−ηG;S(q, q̇) +

1

2

q

G(q, q̇)q̇

)
= −q̇>B(q, q̇)q̇�

11.B.3 Proof of Theorem 11.5.2

Theorem 11.5.2. Suppose every leaf node is a GDS with a metric matrix in the form

R(x) + L(x)>D(x, ẋ)L(x) for differentiable functions R, L, and D satisfying R(x) � 0,

D(x, ẋ) = diag((di(x, ẏi))
n
i=1) � 0, and ẏi∂ẏidi(x, ẏi) ≥ 0, where x is the coordi-

nate of the leaf-node manifold and ẏ = Lẋ ∈ Rn. It holds ΞG(q, q̇) � 0. If further

G(q, q̇),B(q, q̇) � 0, then M ∈ Rd×d
++ , and the global RMP generated by RMPflow con-

verges to the forward invariant set C∞ in Corollary 11.5.2.

Proof. Let A(x, ẋ) = R(x) + L(x)>D(x, ẋ)L(x). The proof of the theorem is straight-

forward, if we show that ΞA(x, ẋ) � 0. To see this, suppose L = Rn×m. Let ω>j be the

jth row L, respectively. By definition of ΞA(x, ẋ) we can write

ΞA(x, ẋ) =
1

2

m∑

i=1

ẋi∂ẋai(x, ẋ)

=
1

2
L(x)>

m∑

i=1

ẋi∂ẋ(D(x, ẋ)li(x))

=
1

2
L(x)>

m∑

i=1

n∑

j=1

ẋi∂ẋ(dj(x, ẏj)Lji(x)ej)

=
1

2
L(x)>

n∑

j=1

(
m∑

i=1

Lji(x)ẋi

)
∂ẏjdj(x, ẏj)ejω

>
j

=
1

2
L(x)>

n∑

j=1

ẏj∂ẏjdj(x, ẏj)ejω
>
j

= L(x)>ΞD(x, ẋ)L(x)

where ej the jth canonical basis and ΞD(x, ẋ) = 1
2
diag((∂ẏidi(x, ẏi))

n
i=1). Therefore, un-

der the assumption that ∂ẏidi(x, ẏi) ≥ 0, ΞA(x, ẋ) � 0. This further implies ΞG(q, q̇) � 0

443

by Theorem 11.5.1.

The stability of the entire system follows naturally from the rule of pullback, which

ensures that Mr(q, q̇) = M(q, q̇) = G(q, q̇) + ΞG(q, q̇) � 0 given that the leaf-node

condition is satisfied. Consequently, the condition in Corollary 11.5.2 holds and the con-

vergence to C∞ is guaranteed. �

11.B.4 Notation for Coordinate-Free Analysis

We introduce some extra notations for the coordinate-free analysis. Let pTC : TC → C

be the bundle projection. Suppose (U, (q,v)) is a (local) chart on TC. Let { ∂
∂qi
, ∂
∂vi
}di=1

and {dqi, dvi}di=1 denote the induced frame field and coframe field on TC. For s ∈ U , we

write s in coordinate as (q(q),v(s)), if
∑d

i=1 vi(s)
∂
∂qi
|q ∈ TqC, where q = pTC(s) ∈ C.

With abuse of notation, we also write s = (q,v) for short unless clarity is lost. Simi-

larly, a chart (Ũ , (q,v,u, a)) can naturally be constructed on the double tangent bundle

TTC, where Ũ = p−1
TTC(U) and pTTC : TTC → TC is the bundle projection: we write

h = (q,v,u, a) ∈ TTC if
∑d

i=1 ui(h) ∂
∂qi
|s + ai(h) ∂

∂vi
|s ∈ TsTC, where s = pTTC(h).

Under these notations, for a curve q(t) on C, we can write q̈(t) ∈ TTC in coordinate

as (q(t), q̇(t), q̇(t), q̈(t)). Finally, given Christoffel symbols Γki,j , an affine connection ∇

on TTC is defined via ∇ ∂
∂si

∂
∂sj

=
∑2d

k=1 Γki,j
∂
∂sk

, where ∂
∂si

:= ∂
∂qi

and ∂
∂si+d

:= ∂
∂vi

for

i = 1, . . . , d.

11.B.5 Proof of Theorem 11.5.3

Theorem 11.5.3. Let G be a Riemannian metric on TC such that, for s = (q, v) ∈ TC,

G(s) =
∑

i,j G
v
ij(s)dq

i ⊗ dqj + Ga
ijdv

i ⊗ dvj , where Gv
ij(s) and Ga

ij are symmetric and

positive-definite, and Gv
ij(·) is differentiable. Then there is a unique affine connection G∇

that is compatible with G and satisfies, Γki,j = Γkji, Γki,j+d = 0, and Γki+d,j+d = Γkj+d,i+d,

for i, j = 1, . . . , d and k = 1, . . . , 2d. In coordinates, if Gv
ij(q̇) is identified as G(q, q̇),

then pr3(G∇q̈ q̈) can be written as aG := q̈ + G(q, q̇)−1(ξG(q, q̇) + ΞG(q, q̇)q̈), where

444

pr3 : (q,v,u, a) 7→ u is a projection.

Proof of Theorem 11.5.3. We first show G∇ is unique, if it exists. That is, there is at most

one affine connection that is compatible with the given the Riemannian metric G and satis-

fies for i, j = 1, . . . , d and k = 1, . . . , 2d

Γki,j = Γkji, Γki,j+d = 0, Γki+d,j+d = Γkj+d,i+d,

Importantly, we note that this definition is coordinate-free, independent of the choice of

chart on C.

The uniqueness is easy to see. As G is non-degenerate by definition, we recall there is

an unique Levi-Civita connection, which is compatible with G and satisfies the symmetric

condition

Γki,j = Γkj,i, for i, j = 1, . . . , 2d

Comparing our asymmetric condition and the symmetric condition of the Levi-Civita con-

nection, we see that number of the linearly independent constraints are the same; therefore

if there is a solution to the required asymmetric affine connection, then it is unique.

Next we show such a solution exists. We consider the candidate Christoffel symbols

below and show that they satisfy the requirements: Consider an arbitrary choice of chart

on C. For i, j, k = 1, . . . , d,

Γki,j =
1

2

d∑

l=1

Gv]
k,l(∂qjG

v
l,i + ∂qiG

v
l,j − ∂qlGv

i,j)

Γki,j+d = 0, Γki+d,j =
1

2

d∑

l=1

Gv]
k,l(∂viG

v
l,j), Γki+d,j+d = 0

Γk+d
i,j = 0, Γk+d

i,j+d = 0, Γk+d
i+d,j = 0, Γk+d

i+d,j+d = 0

where Gv] denotes the inverse of Gv, i.e.
∑d

k=1G
v]
i,kG

v
k,j = δi,j . Note we choose not to

445

adopt the Einstein summation notation, so the sparse pattern of the proposed Christoffel

symbols are clear.

It is clear that the above candidate Christoffel symbols satisfies the asymmetric condi-

tion. Therefore, to show it is a solution, we only need to show such choice is compatible

with G. Equivalently, it means for arbitrary smooth sections of TTC, X =
∑2d

i=1Xi
∂
∂si

,

Y =
∑2d

i=1 Yi
∂
∂si

, Z =
∑2d

i=1 Zi
∂
∂si

, it holds12

G∇ZG(X, Y) = G(G∇ZX, Y) +G(X,G∇ZY) (11.31)

To verify (11.31), we first write out G∇ZX using the chosen Christoffel symbols:

G∇ZX =
2d∑

k=1

(
G∇ZXk +

2d∑

i,j=1

ΓkijZiXj

)
∂

∂sk

=
d∑

k=1

DZ(Xk)
∂

∂qk
+

d∑

k=1

DZ(Xk+d)
∂

∂vk
(11.32)

+
1

2

d∑

k,l=1

Gv,kl

(
d∑

i,j,=1

(∂qjG
v
li + ∂qiG

v
lj − ∂qlGv

ij)ZiXj + (∂viG
v
lj)Zi+dXj

)
∂

∂qk

where DZ(·) denotes the derivation with respect to Z. The above implies

G(G∇ZX, Y) =
d∑

j,k=1

Gv
kiYkDZ(Xi) +

d∑

j,k=1

Ga
kjYk+dDZ(Xj+d)

+
1

2

(
d∑

i,j,k=1

(∂qjG
v
ki + ∂qiG

v
kj − ∂qkGv

ij)ZiXjYk + (∂viG
v
kj)Zi+dXjYk

)

Similarly, we can derive G(X,G∇ZY). Using the symmetry Gv
ij = Gv

ji, we can combine

the previous results together and write

G(G∇ZX,Y) +G(X,G∇ZY)

12The section requirement on Z can be dropped.

446

=
d∑

j,k=1

GvkiYkDZ(Xi) +
d∑

j,k=1

GakjYk+dDZ(Xj+d) +
d∑

j,k=1

GvkiXkDZ(Yi) +
d∑

j,k=1

GakjXk+dDZ(Yj+d)

+
1

2

d∑

i,j,k=1

(∂qjG
v
ki + ∂qiG

v
kj − ∂qkGvij)ZiXjYk + (∂viG

v
kj)Zi+dXjYk

+
1

2

d∑

i,j,k=1

(∂qjG
v
ki + ∂qiG

v
kj − ∂qkGvij)ZiYjXk + (∂viG

v
kj)Zi+dYjXk

=
d∑

i,j=1

GvijDZ(Xi)Yj +GvijXiDZ(Yj) +
d∑

i,j=1

GaijDZ(Xd+i)Yd+j +GaijXd+iDZ(Yd+j)

+
d∑

i,j,k=1

XiYjZk∂qkG
v
ij +XiYjZk+d∂vkG

v
ij

=
d∑

i,j=1

DZ(Gvij)XiYj +GvijDZ(Xi)Yj +GvijXiDZ(Yj) +
d∑

i,j=1

GaijDZ(Xd+i)Yd+j +GaijXd+iDZ(Yd+j)

=G ∇Z

d∑

i,j=1

GvijXiYj +

d∑

i,j=1

GaijXd+iYd+j

 =G ∇ZG(X,Y)

Therefore G∇ is compatible with G.

So far we have proved the first statement of Theorem 11.5.3 that G∇ is the unique

solution that is compatible with G and satisfies the asymmetric condition. Below we show

the expression of pr3(G∇q̈ q̈), where we recall q̈(t) is a curve in TTC. We use (11.32). By

definition of pr3 it extracts the parts on { ∂
∂qi
}di=1. Therefore, suppose we choose some chart

on C of interest and we can write pr3(G∇q̈ q̈) as

pr3(G∇q̈ q̈)

=

d∑

k

DZ(Xk) +

d∑

l=1

1

2
Gv,kl

d∑

i,j,=1

(∂qjG
v
li + ∂qiG

v
lj − ∂qlGvij)ZiXj + (∂viG

v
lj)Zi+dXj

 ∂

∂qk

=

d∑

k

q̈k +

d∑

l=1

1

2
Gv,kl

d∑

i,j,=1

(∂qjG
v
li + ∂qiG

v
lj − ∂qlGvij)q̇iq̇j + (∂viG

v
lj)q̈iq̇j

 ∂

∂qk

=

d∑

k

aG;k
∂

∂qk

where aG;k is the kth element of aG := q̈ + G(q, q̇)−1(ξG(q, q̇) + ΞG(q, q̇)q̈). �

447

11.B.6 Proof of Theorem 11.5.4

Theorem 11.5.4. Suppose C is related to K leaf-node task spaces by maps {ψi : C →

Ti}Ki=1 and the ith task space Ti has an affine connection Gi∇ on TTi, as defined in Theo-

rem 11.5.3, and a covector function Fi defined by some potential and damping as described

above. Let G∇̄ =
∑K

i=1 Tψ
∗
i
Gi∇ be the pullback connection, G =

∑K
i=1 Tψ

∗
iGi be the

pullback metric, and F =
∑K

i=1 Tψ
∗
i Fi be the pullback covector, where Tψ∗i : T ∗TTi →

T ∗TC. Then G∇̄ is compatible with G, and pr3(G∇̄q̈ q̈) = (pr3 ◦ G] ◦ F)(s) can be writ-

ten as q̈ + G(q, q̇)−1(ηG;S(q, q̇) + ΞG(q, q̇)q̈) = −G(q, q̇)−1(∇qΦ(q) + B(q, q̇)q̇). In

particular, if G is velocity-independent, then G∇̄ =G ∇.

Proof of Theorem 11.5.4. Let T = T1 × · · · × TK and G̃ be the induced metric on TT

by {Gi}Ki=1. In addition, let ψ : C → T be the equivalent expression of {ψi}. Again

we focus on the tangent bundle not the base manifold. Recall the definition of a pullback

connection13 Tψ∗G̃∇ is

Tψ∗(Tψ
∗G̃∇XY) = prG̃Tψ∗

(
G̃∇Tψ∗XTψ∗Y

)
(11.33)

for all sections X and Y on TTC, where prG̃Tψ∗ is the projection onto the distribution

spanned by Tψ∗ with respect to G̃, i.e. G̃(Tψ∗X, prG̃Tψ∗(Z)) = G̃(Tψ∗X,Z) for all

X ∈ TTC and Z ∈ TTT . Note by the construction of the product manifold T , Tψ∗G̃∇ =
∑K

i=1 Tψ
∗
i
Gi∇.

Compatibility We show that Tψ∗G̃∇ is compatible with the pullback metric G. Let

X, Y, Z be arbitrary sections on TTC and recall the definition of the pullback metric

G(X, Y) = Tψ∗G̃(X, Y) = G̃(Tψ∗X,Tψ∗Y)

13We note the distinction between ψ∗ : T ∗T → T ∗C and Tψ∗ : T ∗TT → T ∗TC.

448

To show that Tψ∗G̃∇ is compatible, we derive an expression of G(Tψ∗G̃∇ZX, Y):

G(Tψ∗G̃∇ZX, Y) = Tψ∗G̃(Tψ∗G̃∇ZX, Y)

= G̃(Tψ∗(Tψ
∗G̃∇ZX), Tψ∗Y)

= G̃
(

prG̃Tψ∗

(
G̃∇Tψ∗ZTψ∗X

)
, Tψ∗Y

)

= G̃
(
G̃∇Tψ∗ZTψ∗X,Tψ∗Y

)

where we use (11.33) and the definition of projection. Using the above equation, we can

see the compatibility easily:

G(Tψ∗G̃∇ZX, Y) +G(X,Tψ∗G̃∇ZY)

= G̃
(
G̃∇Tψ∗ZTψ∗X,Tψ∗Y

)
+ G̃

(
Tψ∗X,

G̃∇Tψ∗ZTψ∗Y
)

= G̃∇Tψ∗ZG̃(Tψ∗X,Tψ∗Y)

= ψ∗G∇ZG̃(Tψ∗X,Tψ∗Y)

= ψ∗G∇ZG(X, Y)

Coordinate expression The coordinate expression of the pullback metric can be de-

rived by its definition in (11.33), and the expression for the pullback covector is standard.

For the pullback connection, similar to the proof of Theorem 11.5.3, we can show that

pr3(G∇̄q̈ q̈) can be written as q̈ + G(q, q̇)−1(ηG;S(q, q̇) + ΞG(q, q̇)q̈). In other words,

the structured GDS equations are the coordinate expression of the pullback connection

Tψ∗G̃∇, where the structure structure S is induced through the recursive application of

pullback in RMPflow. Note that this is in general different from the connection of the

pullback metric G∇, which by Theorem 11.5.3 instead defines the unstructured GDS equa-

tion q̈ + G(q, q̇)−1(ξG(q, q̇) + ΞG(q, q̇)q̈).

Commutability However, in the special case when G is velocity-independent, we show

that they are equivalent. That is, the pullback connection Tψ∗G̃∇ is equal to the connection

449

of the pullback matrix G∇. This property is early shown in Theorem 11.5.1, which shows

that in the velocity-independent case there is no need to distinguish structures. To prove

this, we first note that G∇ becomes symmetric as G is velocity-independent. As it is also

compatible with G, we know that G∇ is the Levi-Civita connection with respect to G.

(Recall G is the Riemannian metric on the tangent bundle.) On the other hand, knowing

that Tψ∗G̃∇ is compatible, to show that G∇ = Tψ∗G̃∇ we only need to check if Tψ∗G̃∇ is

symmetric. Without further details, we note this is implied by the proof of Theorem 11.5.1.

Therefore, we have Tψ∗G̃∇ =G ∇. �

11.C Degenerate GDSs

We discuss properties of degenerate GDSs. Let us recall the GDS (M,G,B,Φ) means the

differential equation

M(x, ẋ)ẍ + ξG(x, ẋ) = −∇xΦ(x)−B(x, ẋ)ẋ (11.34)

where M(x, ẋ) = G(x, ẋ) + ΞG(x, ẋ). For degenerate cases, M(x, ẋ) can be singular

and (11.34) define rather a family of differential equations. Degenerate cases are not un-

common; for example, the leaf-node dynamics could have G being only positive semidefi-

nite. Having degenerate GDSs does not change the properties that we have proved, but one

must be careful about whether differential equation satisfying (11.34) exist. For example,

the existence is handled by the assumption on M in Theorem 11.5.1 and the assumption

on Mr in Corollary 11.5.1. For RMPflow, we only need that Mr at the root node is non-

singular. In other words, the natural-form RMP created by pullback at the root node can

be resolved in the canonical-form RMP for policy execution. A sufficient and yet practical

condition is provided in Theorem 11.5.2.

To represent the above equation as an RMP, which is useful if we choose to design

behavior by directly defining dΦ̃
ds

, we can write it in the natural form as [−w dΦ̃
ds
− ξ,m]R+ .

450

Note that the curvature term ξ behaves as a nonlinear damping term, slowing the system

(from the perspective of the configuration space) as it approaches obstacles and vanishing

when moving away from obstacles. Consequently, it biases the system toward curving

along isocontours of the distance field. See Fig. 11.3 for a demonstration of these terms in

isolation and in coordination with an obstacle repulsion potential.

451

CHAPTER 12

RMPFLOW WITH LEARNABLE LYAPUNOV FUNCTION RESHAPING

12.1 Introduction

Motion planning and control are core techniques to robotics (Correll et al., 2018; Johnson

et al., 2015; Urmson et al., 2008). Ideally a good algorithm must be both computationally

efficient and capable of navigating a robot safely and stably across a wide range of envi-

ronments. Several systems were recently proposed to address this challenge (Cheng et al.,

2018b; Kappler et al., 2018; Mukadam et al., 2017) through closely integrating planning

and control techniques. In particular, RMPflow in Chapter 12 (Cheng et al., 2018b) is de-

signed to combine reactive policies (Ijspeert et al., 2013; Khatib, 1987; Lo, Cheng, and

Huang, 2016; Nakanishi et al., 2008; Peters et al., 2008) and planning (Ratliff, Toussaint,

and Schaal, 2015b). Based on differential geometry, RMPflow offers a unified treatment

of the nonlinear geometries arising from a robot’s internal kinematics and task spaces (e.g.

environments with obstacles). Given user-provided subtask motion policies expressed in

the form of Riemannian Motion Policies (RMPs) (Ratliff, Issac, and Kappler, 2018) (i.e.

a second-order motion policy along with a matrix function that acts as a directional im-

portance weight), RMPflow can synthesize a global motion policy for the full task in an

efficient and geometrically consistent manner and has desirable properties such as stability

and being coordinate-free (Cheng et al., 2018b).

RMPflow has been successfully applied in many applications (Li et al., 2019a,b; Meng

et al., 2019; Paxton et al., 2019; Sutanto et al., 2019). But RMPflow is not perfect. Despite

its advancement, practical usage difficulties remain. For instance, the user must provide

RMPs with matrix functions that properly describe the characteristics of subtask motion

policies in order to build an effective RMPflow system. Otherwise, the final global policy

452

may have unsatisfactory performance, though still being geometrically consistent (with

respect to some meaningless geometric structure). This poses a challenge for practitioners

who are inexperienced in control systems, or for designing policies of tasks where the full

state is hard to describe.

In this chapter we introduce a hierarchical Lyapunov function reshaping scheme into

RMPflow to remedy the requirement of providing high-quality subtasks RMPs from the

user. The modified algorithm, called RMPfusion, adds a set of multiplicative weight func-

tions in the policy fusion step of RMPflow, which can be manually parametrized or mod-

eled by function approximators (like neural networks). In a high level, these weight func-

tions let RMPfusion adapt between multiple versions of RMPflow according to the robot’s

configuration and the environment. (RMPflow is RMPfusion with constant weights.) There-

fore, an immediate benefit of our new algorithm is the extra design flexibility added to

RMPflow. Compared with RMPflow, RMPfusion allows the user to start with simpler

subtask RMPs and gradually build up more complex behaviors through the use of weight

functions.

Interestingly, these weight functions in general do not just linearly combine outputs

of motion policies as in (Arkin, 2008; Slotine, 1991). Instead they hierarchically reshape

the inherent Lyapunov functions of the provided subtask policies, overall giving a nonlinear

effect on the global policy RMPfusion creates. We prove that RMPfusion produces a policy

that is Lyapunov-stable with respect to this reshaped Lyapunov function given by the weight

functions. Therefore, the overall the system is stable, as long as the weight functions are

non-negative and non-degenerate.

These properties suggest that we can treat RMPfusion as a structured policy class in re-

inforcement/imitation learning and optimize the weight functions to improve the combined

policy’s performance. Importantly, as RMPfusion remains stable under minor restriction

on weight functions, we arrive at a policy class that is guaranteed to be stable, even dur-

ing the immature phase of learning. Thus, RMPfusion is suitable for learning with safety

453

(a) A snapshot of the experiment.

q

a

d0

armp

ormp

qmi

qd

ee

ujl0 ljl0 ujl6
ljl6

cp0

cpn

jlrmp jlrmp
jlrmp

jlrmp

dn

ormp

wa wu0 wl0
wu6

wl6

wq

wd0

wdn

(b) The RMP-tree* used for the Franka
robot.

Figure 12.1: Franka robot navigating around an obstacle using RMPfusion with the RMP-tree*.
Gray nodes show task spaces, blue nodes show subtask RMPs, and weight functions are shown on
the respective edges where they are defined. See Section 12.4.2 for details.

constraints; for example, we can ensure that certain safe policies (like collision avoidance)

are the only ones activated when the robot is facing extreme conditions. These theoretical

properties of RMPfusion are verified in imitation learning tasks, in both simulations and on

a real-world robot (Figure 12.1). Not only did RMPfusion learn to mimic the expert policy,

but it also yielded stable policies throughout the learning. This chapter is partly based on

our paper published as (Mukadam et al., 2019).

12.2 Quick Recap of RMPflow

12.2.1 Computation

Inspired by geometric control theory (Bullo and Lewis, 2004), RMPflow provides a rigor-

ous framework for policy fusion with theoretical guarantees, such as stability and geometric

consistency. In implementation, RMPflow is realized by a data structure called RMP-tree,

and a set operations called RMP-algebra. Below we highlight major features of each com-

ponent.

RMP-tree An RMP-tree (e.g. Fig. 12.1b but without the weights w·) is a directed

tree, which expresses the task map ψ as a sequence of basic maps. The RMP-tree serves two

major purposes: (i) it provides a language for the user to specify the connections between

different subtasks, and (ii) it allows RMPflow to reuse those basic computations inside ψ

to achieve efficient policy fusion. In the RMP-tree, each node represents an RMP and

454

its state; and each edge represents a transformation between manifolds in the user given

decomposition of ψ. Particularly, the leaf nodes consist of the user-defined subtask RMPs,

and the root node maintains the RMP of the global policy π on C.

RMP-tree uses RMP (Ratliff, Issac, and Kappler, 2018) to describe motion policies on

manifolds. Consider anm-dimensional manifoldM with coordinate x ∈ Rm and a motion

policy a on M (i.e. ẍ = a(x, ẋ)). An RMP pairs the motion policy a with an abstract

inertia matrix M(x, ẋ) ∈ Rm×m
+ , a function of both x and ẋ that describes the directional

importance of a at the current state (x, ẋ) (see Chapter 11 for details). The RMP of a can be

written in the canonical form (a,M)M or in the natural form [f ,M]M, in which f = Ma is

called the force map. Note that f and M are not necessarily physical quantities, and that the

motion policy in an RMP is not necessarily in the form of a mass-spring-damper system.

RMP-algebra RMPflow uses the RMP-algebra to combine the subtask policies at

leaf nodes into a global policy on the configuration space at the root node. RMP-algebra

consists of three operators:

(i) pushforward propagates the state (x, ẋ) of a node in the RMP-tree to update

the states of its K child nodes. The state of its ith child node is computed as (yi, ẏi) =

(ψi(x),Ji(x)ẋ), where ψi is the transformation yi = ψi(x) and Ji = ∂xψi is the Jacobian

matrix.

(ii) pullback propagates the RMPs from the K child nodes to the parent node as

[f ,M]M with

f =
K∑

i=1

J>i (fi −MiJ̇iẋ) and M =
K∑

i=1

J>i MiJi (12.1)

where [fi,Mi]
Ni is the RMP of the ith child node in the natural form.

(iii) resolve maps an RMP from its natural form [f ,M]M to its canonical form

(a,M)M with a = M†f , where † denotes Moore-Penrose inverse.

To compute the global policy π at time t, RMPflow first performs a forward pass by

455

recursively calling pushforward. Then it performs a backward pass by recursively call-

ing pullback and computes [fr,Mr]C at the root. Finally, the global policy π = ar is

generated by using resolve. Loosely speaking, the global policy π can be viewed as

a weighted combination of the subtask policies. This can be seen by rewriting (12.1) as

a = Mf = (
∑K

i=1 J>i MiJi)
−1J>i (Miai −MiJ̇iẋ) (which is linear combination of child

policies ai plus some curvature correction due to J̇i).

12.2.2 Theoretical Properties of RMPflow and GDSs

In Chapter 11, RMPflow is proved to be Lyapunov stable and coordinate-free, when the

subtask policies belong to Geometric Dynamical Systems (GDSs) (Cheng et al., 2018b).

GDSs are a family of dynamical systems on manifolds that generalizes Simple Mechanical

Systems to have velocity-dependent inertias. LetM be an m-dimensional manifold with

coordinate x ∈ Rm. Let G : Rm × Rm → Rm×m
+ be a metric matrix, B : Rm × Rm →

Rm×m
+ be a damping matrix, and Φ : Rm → R be a potential function, which is lower

bounded. A dynamical system onM is said to be a GDS (M,G,B,Φ) if it follows

M(x, ẋ)ẍ + ξG(x, ẋ) = −∇xΦ(x)−B(x, ẋ)ẋ, (12.2)

in which M(x, ẋ) := G(x, ẋ) + ΞG(x, ẋ), ΞG(x, ẋ) := 1
2

∑m
i=1 ẋi∂ẋgi(x, ẋ), ξG(x, ẋ) :=

x

G(x, ẋ)ẋ − 1
2
∇x(ẋ>G(x, ẋ)ẋ), and

x

G(x, ẋ) := [∂xgi(x, ẋ)ẋ]mi=1. The term M is again

called the inertia matrix, despite being a function of both x and ẋ. The curvature terms

Ξ(x, ẋ) and ξ(x, ẋ) are generated from the dependency of G(x, ẋ) on x and ẋ; if G(x, ẋ) =

G(x), then G(x) = M(x) and ξG(x, ẋ) = C(x, ẋ)ẋ in (11.22). In view of this, a GDS

extends (11.22) to have general potentials and velocity-dependent metrics, which is useful

in modeling collision avoidance behaviors (Cheng et al., 2018b).

The behavior of a GDS (M,G,B,Φ) is characterized by the Lyapunov function

V (x, ẋ) =
1

2
ẋ>G(x, ẋ)ẋ + Φ(x). (12.3)

456

In Chapter 11, it is shown that the stability property of RMPflow is governed by a Lyapunov

function in a similar form (Cheng et al., 2018b), when the leaf-node policies are GDSs. An

RMP (a,M)M is a GDS if its motion policy is a = M(x, ẋ)−1(−∇xΦ(x) −B(x, ẋ)ẋ −

ξG(x, ẋ)).

Theorem 12.2.1. (Cheng et al., 2018b) Suppose an RMP-tree has K leaf nodes of GDSs

(Tk,Gk,Bk,Φk) with Lyapunov function Vk in (12.3), for k = 1, . . . , K. Let Vr =
∑K

k=1 Vk

be a Lyapunov candidate.

1. If Mr of the root-node RMP on C is positive definite, then V̇r = −∑K
k=1 ẋ>k Bkẋk ≤

0.

2. If further
∑K

k=1 J>k GkJk � 0 and
∑K

k=1 J>k BkJk � 0, the system converges for-

wardly to {(q, q̇) : ∇qΦr(q) = 0, q̇ = 0}, where Jk = ∂qxk and Φr(q) =
∑K

k=1 Φk(xk(q)).

12.3 RMPfusion

RMPflow provides a control-theoretic framework for combining subtask policies. How-

ever, certain limitations exist. Particularly, it requires the user to provide sensible inertia

matrices (cf. Chapter 11) to describe the subtask policies’ characteristics in the leaf-nodes

RMPs; failing to do so may result in a global policy with undesirable performance, albeit

still being geometrically consistent with the meaningless geometric structure induced by

the bad inertia matrices.

In this chapter, we propose a modified algorithm, RMPfusion, which adds extra flexibil-

ities into RMPflow to address this difficulty. The main idea is to introduce an additional set

of weight functions as gates to switch on and off the child-node policies in the RMP-tree,

based on the current state of the robot and the environment. These functions can either be

designed by hand, or be parameterized as function approximators (like neural networks)

which are then learned end-to-end from data (see Section 12.3.4). As a result, RMPfu-

457

sion can combine simpler/imperfect subtask RMPs into a better global policy, lessening

the burden on the user to directly provide high-quality subtasks RMPs.

RMPfusion modifies RMP-tree and RMP-algebra into RMP-tree* and RMP-algebra*,

respectively. RMP-tree* augments each node in RMP-tree with extra information and each

edge with a weight function; RMP-algebra* replaces pullback with pullback*. Below

we define these modifications. In addition, we show that RMPfusion retains the nice struc-

tural properties of RMPflow: under mild conditions on the weight functions, the global

policy of RMPfusion is Lyapunov stable. Later in Section 12.3.4, we will show how to

learn the weight functions in RMPfusion from data.

12.3.1 RMP-tree* and RMP-algebra*

Modified node In addition to the RMP and its state, each node in RMP-tree* also stores

the values of a scalar function L and the metric matrix G. When a leaf-node RMP is a

GDS, G is defined as (13.3) and L = 1
2
ẋ>Gẋ − Φ(x) (analogue of the Lagrangian in

mechanical systems).

Modified edge Each edge in an RMP-tree* has in addition a weight function. This

weight is a function of the parent-node configuration and some auxiliary state (which de-

scribes the task at hand, e.g., the location of the goal in a reaching task).

Modified pullback We modify pullback into pullback* to use the weight func-

tions on edges to combine child-node RMPs. For the parent and child nodes given in (12.1),

we set instead

f =

K∑

i=1

wiJ
>
i (fi −MiJ̇iẋ) + hi, M =

K∑

i=1

wiJ
>
i MiJi,

G =

K∑

i=1

wiJ
>
i GiJi, L =

K∑

i=1

wiLi (12.4)

where hi = Li∇xwi− (ẋ>∇xwi)J
>
i GiJiẋ. From (12.4), we see that pullback* does not

simply linearly combine child-node motion policies. It adds a correction term hi, which

458

is designed to anticipates the change of weighting wi so that the system remains stable.

When applied recursively in policy generation, it would hierarchically reshape the Lya-

punov functions (see Section 12.3.3).

12.3.2 Stability

We show RMPfusion is also Lyapunov stable like RMPflow. To state the stability property,

let us introduce additional notation to describe the functions in the RMP-tree*. We will

use (i; j) to denote the ith node in depth j of an RMP-tree* and we use C(i;j) to denote the

indices of its child nodes. For example, node (1; 0) denotes the root node (also denoted as

r). In addition, we will refer to the functions on the edges using the indices of the child

nodes, e.g., the Jacobian of the transformation to the ith node in depth j is denoted as J(i;j).

We show the stability property of RMPfusion when all the leaf nodes are of GDSs, like

Theorem 12.2.1. The proof is given in Section 12.A.

Theorem 12.3.1. Suppose an RMP-tree* has leaf-node policies as GDSs with Lyapunov

functions given as (12.3). Define V(i;j), B(i;j), and Φ(i;j) on the RMP-tree* through the

recursion

V(i;j) =
∑

k∈C(i;j)

w(k;j+1)V(k;j+1), B(i;j) =
∑

k∈C(i;j)

w(k;j+1)J
>
(k;j+1)B(k;j+1)J(k;j+1)

Φ(i;j) =
∑

k∈C(i;j)

w(k;j+1)Φ(k;j+1)

(12.5)

in which the boundary condition is given by the leaf-node GDSs. Let Vr be a Lyapunov

candidate.

1. If Mr � 0, then V̇r = −q̇>Brq̇ ≤ 0.

2. If further Gr,Br � 0, the system converges forwardly to {(q, q̇) : ∇qΦr(q) =

0, q̇ = 0}.

459

Theorem 12.3.1 shows that the system is Lyapunov stable with respect to Vr. To sat-

isfy the conditions required in Theorem 12.3.1, a sufficient condition is to select leaf-node

GDSs with certain monotone metrics (Cheng et al., 2018b, Theorem 2) and have positive

weight functions on edges. Therefore, in addition to the conditions needed by RMPflow,

RMPfusion only imposes mild constraints on the weight functions. This is a useful fea-

ture when the weight functions are learned from data, because Theorem 12.3.1 essentially

guarantees the output policy is always stable even in the premature stage of learning.

Note that it is straightforward to extend RMP-tree* to include, in (12.1), an extra time-

varying term that vanishes as t → ∞ (like the one used in DMPs (Ijspeert et al., 2013))

and to consider time-varying potentials (e.g. in tracking applications). We omit discussions

about these generalizations due to space limitation.

12.3.3 Advantages of RMPfusion over RMPflow

RMPfusion strictly generalizes RMPflow. When each weight is constant one, RMPfusion

becomes RMPflow (i.e. pullback* is the same as pullback and Theorem 12.3.1 reduces

to Theorem 12.2.1). More generally, RMPfusion allows mixing policies through reweight-

ing their Lyapunov functions, while retaining the nice structural properties of RMPflow, as

shown in Theorem 12.3.1.

In comparison, RMPfusion has a more flexible way to express policies and compose

the subtask Lyapunov functions into the Lyapunov candidate Vr in (12.6). Whereas Theo-

rem 12.2.1 uses the simple summation of subtask energies Vr =
∑K

i=1 Vi, Theorem 12.3.1

effectively uses the Lyapunov function

Vr =
∑

k1∈C(1;0)

w(k1;1)

∑

k2∈C(k1;1)

· · ·
∑

kD∈C(kD−1;D−1)

w(kD;D)V(kD;D) (12.6)

for a depth-D RMP-tree* (cf. (12.5)) and each weight w(i;j) can be a function of the con-

figuration and auxiliary state of the parent of node (i; j). Therefore, from (12.5) and (12.6),

460

c0
<latexit sha1_base64="RE9FJ0xkjFdd0+IR8SD3IDE/pTA=">AAADm3icfZJLb9NAEMe3MY9iXi0cEZIhQqo4RHYvcGulckAIRBGkrRRH0XizcVbdl3bXbSIrF+5c4fvwLbjxRZAYJxFi3cBIlv76zYxndmYKI7jzafpjqxNdu37j5vat+Padu/fu7+w+OHG6spT1qRbanhXgmOCK9T33gp0Zy0AWgp0W50eN//SCWce1+uTnhg0llIpPOAWP6CMdpaOdbtpLl5ZcFdladA9+fdc/CSHHo93O53ysaSWZ8lSAc4MsNX5Yg/WcCraI88oxA/QcSjZAqUAyN6yXvS6SZ0jGyURb/JRPlvTvjBqkc3NZYKQEP3VtXwM3+QaVn7wc1lyZyjNFV4UmlUi8TpqHJ2NuGfVijgKo5dhrQqdggXocT1AF8x22GrDSgplyOgspBdOMMYSuKjZyWQnPrb7cQHEKIdW4M8NpCK32uDVVtnrgPpx5jbkFBsqQgig1Pnv6L9yuhifWamoiNPgQFeHfBuMLbtx64bPVxuM4f8XwTix7hzt7b5gFr+3zOgdbSpgt8G7K/EneyP9FcvUnEmWMV5u1b/SqONnvZWkv+5B2D/fIyrbJI/KU7JGMvCCH5DU5Jn1CSUm+kK/kW/Q4OoreRG9XoZ2tdc5DEljU/w18QTrT</latexit><latexit sha1_base64="ROIvBGX+q9naUgfBJTWBteqh0gg=">AAADm3icfZLNihNBEMd7M36s48fu6kUQYTQIi4cw40VvLqwHEcUVze5CJoSaTmfSbH/R3bMmDLl496qv4HP4Fj6BTyFYkwSxZ6MFA39+VTVVXVWFEdz5NP2x1YkuXb5ydftafP3GzVs7u3u3j52uLGV9qoW2pwU4Jrhifc+9YKfGMpCFYCfF2WHjPzln1nGtPvi5YUMJpeITTsEjek9H6Wi3m/bSpSUXRbYW3ee/vuufd7/Jo9Fe51M+1rSSTHkqwLlBlho/rMF6TgVbxHnlmAF6BiUboFQgmRvWy14XySMk42SiLX7KJ0v6d0YN0rm5LDBSgp+6tq+Bm3yDyk+eDWuuTOWZoqtCk0okXifNw5Mxt4x6MUcB1HLsNaFTsEA9jieogvkOWw1YacFMOZ2FlIJpxhhCVxUbuayE51Z/3EBxCiHVuDPDaQit9rg1VbZ64D6ceY25BQbKkIIoNT57+i/croYn1mpqIjT4EBXh3wbjc27ceuGz1cbjOH/B8E4se4M7e2uYBa/t4zoHW0qYLfBuyvxB3sj/RXL1JxJljFebtW/0ojh+0svSXvYu7R7sk5Vtk3vkIdknGXlKDshLckT6hJKSfCZfyNfofnQYvYper0I7W+ucOySwqP8bIKI8Bw==</latexit><latexit sha1_base64="ROIvBGX+q9naUgfBJTWBteqh0gg=">AAADm3icfZLNihNBEMd7M36s48fu6kUQYTQIi4cw40VvLqwHEcUVze5CJoSaTmfSbH/R3bMmDLl496qv4HP4Fj6BTyFYkwSxZ6MFA39+VTVVXVWFEdz5NP2x1YkuXb5ydftafP3GzVs7u3u3j52uLGV9qoW2pwU4Jrhifc+9YKfGMpCFYCfF2WHjPzln1nGtPvi5YUMJpeITTsEjek9H6Wi3m/bSpSUXRbYW3ee/vuufd7/Jo9Fe51M+1rSSTHkqwLlBlho/rMF6TgVbxHnlmAF6BiUboFQgmRvWy14XySMk42SiLX7KJ0v6d0YN0rm5LDBSgp+6tq+Bm3yDyk+eDWuuTOWZoqtCk0okXifNw5Mxt4x6MUcB1HLsNaFTsEA9jieogvkOWw1YacFMOZ2FlIJpxhhCVxUbuayE51Z/3EBxCiHVuDPDaQit9rg1VbZ64D6ceY25BQbKkIIoNT57+i/croYn1mpqIjT4EBXh3wbjc27ceuGz1cbjOH/B8E4se4M7e2uYBa/t4zoHW0qYLfBuyvxB3sj/RXL1JxJljFebtW/0ojh+0svSXvYu7R7sk5Vtk3vkIdknGXlKDshLckT6hJKSfCZfyNfofnQYvYper0I7W+ucOySwqP8bIKI8Bw==</latexit><latexit sha1_base64="y8se+AOnSc0nWnYCdUijHmK+3F4=">AAADm3icfZJLb9NAEMe3MY8SXi0cEZIhQqo4RHYvcKzUHhACUQRpK8VRNN6snVX3pd11m8jKhTtX+Gx8G8aJhVg3MJKlv34z45mdmdwI7nyS/NrpRbdu37m7e69//8HDR4/39p+cOV1ZykZUC20vcnBMcMVGnnvBLoxlIHPBzvPL48Z/fsWs41p99UvDJhJKxQtOwSP6QqfJdG+QDJO1xTdF2ooBae10ut/7ls00rSRTngpwbpwmxk9qsJ5TwVb9rHLMAL2Eko1RKpDMTep1r6v4FZJZXGiLn/Lxmv6dUYN0bilzjJTg567ra+A237jyxdtJzZWpPFN0U6ioROx13Dw8nnHLqBdLFEAtx15jOgcL1ON4giqY77DVgJUWzJzTRUgpmGaMIXRVvpXLSnhu9fUWilMIqcadGU5DaLXHramy0wP34cxrzM0xUIYURKnx2fN/4W41PLFOU4XQ4EOUh38bz664ce3CF5uN9/vZCcM7sewj7uyTYRa8tq/rDGwpYbHCuymzF1kj/xfJ1Z9IlH282rR7ozfF2eEwTYbp52RwdNDe7y55Rl6SA5KSN+SIvCOnZEQoKcl38oP8jJ5Hx9H76MMmtLfT5jwlgUWj33EQN4Y=</latexit>

cj
<latexit sha1_base64="TVMBOl0kcWLo3QgnFz5OvNVnIIw=">AAADm3icfZJLb9NAEMe3MY/i8mjhiJAMFVLFIbK5wLGiHBACUQRpK8VRNN6snW33pd11SWTlwp0rfDa+Bp+AcRIh1g2MZOmv38x4ZmemMII7n6Y/t3rRtes3bm7findu37l7b3fv/onTtaVsQLXQ9qwAxwRXbOC5F+zMWAayEOy0uDhq/aeXzDqu1Wc/N2wkoVK85BQ8ok90fD7e3U/76dKSqyJbi/3DnV+vCNrxeK/3NZ9oWkumPBXg3DBLjR81YD2ngi3ivHbMAL2Aig1RKpDMjZplr4vkKZJJUmqLn/LJkv6d0YB0bi4LjJTgp67ra+Em37D25ctRw5WpPVN0VaisReJ10j48mXDLqBdzFEAtx14TOgUL1ON4giqY77DVgFUWzJTTWUgpmHaMIXR1sZHLWnhu9ZcNFKcQUo07M5yG0GqPW1NVpwfuw5k3mFtgoAwpiErjs6f/wt1qeGKdpkqhwYeoCP82nFxy49YLn602Hsf5a4Z3Ytl73NkHwyx4bZ81OdhKwmyBd1Plj/NW/i+Sqz+RKGO82qx7o1fFyfN+lvazj3i+B2Rl2+QheUIOSEZekEPyhhyTAaGkIt/Id/IjehQdRW+jd6vQ3tY65wEJLBr8BrkbOT8=</latexit><latexit sha1_base64="9x2YNqW4r9OTpulN6Brxzd3Z1u0=">AAADm3icfZJNb9NAEIa3MdDi8NHCESEZKqSKQ2RzgWNFOSAEogjSVoqjaLzZOEv3S7vrksjKhTNc4bfxNzhzYJxEiHUDI1l69cyMZ3ZmCiO482n6Y6sTXbl6bXvnety9cfPW7d29OydOV5ayPtVC27MCHBNcsb7nXrAzYxnIQrDT4vyo8Z9eMOu4Vh/83LChhFLxCafgEb2no4+j3f20ly4tuSyytdg/7P58vt398ut4tNf5nI81rSRTngpwbpClxg9rsJ5TwRZxXjlmgJ5DyQYoFUjmhvWy10XyCMk4mWiLn/LJkv6dUYN0bi4LjJTgp67ta+Am36Dyk2fDmitTeaboqtCkEonXSfPwZMwto17MUQC1HHtN6BQsUI/jCapgvsNWA1ZaMFNOZyGlYJoxhtBVxUYuK+G51Z82UJxCSDXuzHAaQqs9bk2VrR64D2deY26BgTKkIEqNz57+C7er4Ym1mpoIDT5ERfi3wfiCG7de+Gy18TjOXzC8E8ve4M7eGmbBa/u4zsGWEmYLvJsyf5A38n+RXP2JRBnj1WbtG70sTp70srSXvcPzPSAr2yH3yENyQDLylBySl+SY9AklJflKvpHv0f3oKHoVvV6FdrbWOXdJYFH/N5G5Otk=</latexit><latexit sha1_base64="9x2YNqW4r9OTpulN6Brxzd3Z1u0=">AAADm3icfZJNb9NAEIa3MdDi8NHCESEZKqSKQ2RzgWNFOSAEogjSVoqjaLzZOEv3S7vrksjKhTNc4bfxNzhzYJxEiHUDI1l69cyMZ3ZmCiO482n6Y6sTXbl6bXvnety9cfPW7d29OydOV5ayPtVC27MCHBNcsb7nXrAzYxnIQrDT4vyo8Z9eMOu4Vh/83LChhFLxCafgEb2no4+j3f20ly4tuSyytdg/7P58vt398ut4tNf5nI81rSRTngpwbpClxg9rsJ5TwRZxXjlmgJ5DyQYoFUjmhvWy10XyCMk4mWiLn/LJkv6dUYN0bi4LjJTgp67ta+Am36Dyk2fDmitTeaboqtCkEonXSfPwZMwto17MUQC1HHtN6BQsUI/jCapgvsNWA1ZaMFNOZyGlYJoxhtBVxUYuK+G51Z82UJxCSDXuzHAaQqs9bk2VrR64D2deY26BgTKkIEqNz57+C7er4Ym1mpoIDT5ERfi3wfiCG7de+Gy18TjOXzC8E8ve4M7eGmbBa/u4zsGWEmYLvJsyf5A38n+RXP2JRBnj1WbtG70sTp70srSXvcPzPSAr2yH3yENyQDLylBySl+SY9AklJflKvpHv0f3oKHoVvV6FdrbWOXdJYFH/N5G5Otk=</latexit><latexit sha1_base64="iokvyp8BATxD7CHzwyjmJXx7Zwk=">AAADm3icfZJLb9NAEMe3MY9iXi0cEZIhQqo4RDYXOFZqDwiBKIK0leIoGm82ztJ9aXfdJrJy4c4VPhvfhnFiIdYNjGTpr9/MeGZnpjCCO5+mv3Z60Y2bt27v3onv3rv/4OHe/qNTpytL2ZBqoe15AY4JrtjQcy/YubEMZCHYWXFx1PjPLpl1XKsvfmnYWEKp+IxT8Ig+08nXyV4/HaRrS66LrBV90trJZL/3LZ9qWkmmPBXg3ChLjR/XYD2ngq3ivHLMAL2Ako1QKpDMjet1r6vkBZJpMtMWP+WTNf07owbp3FIWGCnBz13X18BtvlHlZ2/GNVem8kzRTaFZJRKvk+bhyZRbRr1YogBqOfaa0DlYoB7HE1TBfIetBqy0YOacLkJKwTRjDKGriq1cVsJzq6+2UJxCSDXuzHAaQqs9bk2VnR64D2deY26BgTKkIEqNz57/C3er4Yl1mpoJDT5ERfi30fSSG9cufLHZeBznxwzvxLIPuLOPhlnw2r6sc7ClhMUK76bMn+WN/F8kV38iUcZ4tVn3Rq+L01eDLB1kn9L+4UF7v7vkCXlODkhGXpND8packCGhpCTfyQ/yM3oaHUXvoveb0N5Om/OYBBYNfwMrITfA</latexit>

i
<latexit sha1_base64="LzO0Yo1ifRQx/SDMApuEp0oovC8=">AAADmXicfZJLb9NAEMe3MY9iXi0cezFESBWHyOYCN4rgUCEhWiBtpTiqxpu1s+q+tLsuiaxcuHKFr8GZr8K3YZxEiHUDI1n66zczntmZKYzgzqfpr61edO36jZvbt+Lbd+7eu7+z++DE6dpSNqRaaHtWgGOCKzb03At2ZiwDWQh2Wly8bv2nl8w6rtUnPzdsLKFSvOQUPKJjfr7TTwfp0pKrIluL/ssfPz8QtKPz3d6XfKJpLZnyVIBzoyw1ftyA9ZwKtojz2jED9AIqNkKpQDI3bpadLpInSCZJqS1+yidL+ndGA9K5uSwwUoKfuq6vhZt8o9qXL8YNV6b2TNFVobIWiddJ++xkwi2jXsxRALUce03oFCxQj8MJqmC+w1YDVlkwU05nIaVg2iGG0NXFRi5r4bnVnzdQnEJINW7McBpCqz3uTFWdHrgPZ95gboGBMqQgKo3Pnv4Ld6vhgXWaKoUGH6Ii/NtocsmNWy98ttp4HOdvGN6JZe9wZ+8Ns+C1fdrkYCsJswXeTZU/ylv5v0iu/kSijPFqs+6NXhUnzwZZOsiO0/7BPlnZNtkjj8k+ychzckAOyREZEkoY+Uq+ke/RXvQqOozerkJ7W+uchySw6ONvZxU44A==</latexit><latexit sha1_base64="m/HE0ZgfFmB3fIRSTBG/PM33h08=">AAADmXicfZLNbtNAEMe3MR/FfLVwrIQMEVLFIbJ7gVuL4FAhIRpB2kpxVI03a2fV9e5qd90msnJB4sQVXoNzX4Vn4CUYJxFi3cBIlv76zYxndmYyLbh1cfxzoxPcuHnr9uad8O69+w8ebm0/OraqMpQNqBLKnGZgmeCSDRx3gp1qw6DMBDvJzt80/pMLZixX8pObaTYqoZA85xQcoj4/2+rGvXhh0XWRrER3/8dV/9eXJ1dHZ9udz+lY0apk0lEB1g6TWLtRDcZxKtg8TCvLNNBzKNgQpYSS2VG96HQePUcyjnJl8JMuWtC/M2oorZ2VGUaW4Ca27WvgOt+wcvmrUc2lrhyTdFkor0TkVNQ8Oxpzw6gTMxRADcdeIzoBA9ThcLwqmG+xVY8VBvSE06lPKehmiD60VbaWl5Vw3KjLNRSn4FOFG9Oc+tAohzuTRasH7vyZ15ibYWDpUxCFwmdP/oXb1fDAWk3lQoHzUeb/bTi+4NquFj5dbjwM07cM78Sw97izD5oZcMq8qFMwRQnTOd5NkT5NG/m/SC7/RKIM8WqT9o1eF8d7vSTuJf24e7BLlrZJdsgzsksS8pIckENyRAaEEka+km/ke7ATvA4Og3fL0M7GKucx8Sz4+BtIATsl</latexit><latexit sha1_base64="m/HE0ZgfFmB3fIRSTBG/PM33h08=">AAADmXicfZLNbtNAEMe3MR/FfLVwrIQMEVLFIbJ7gVuL4FAhIRpB2kpxVI03a2fV9e5qd90msnJB4sQVXoNzX4Vn4CUYJxFi3cBIlv76zYxndmYyLbh1cfxzoxPcuHnr9uad8O69+w8ebm0/OraqMpQNqBLKnGZgmeCSDRx3gp1qw6DMBDvJzt80/pMLZixX8pObaTYqoZA85xQcoj4/2+rGvXhh0XWRrER3/8dV/9eXJ1dHZ9udz+lY0apk0lEB1g6TWLtRDcZxKtg8TCvLNNBzKNgQpYSS2VG96HQePUcyjnJl8JMuWtC/M2oorZ2VGUaW4Ca27WvgOt+wcvmrUc2lrhyTdFkor0TkVNQ8Oxpzw6gTMxRADcdeIzoBA9ThcLwqmG+xVY8VBvSE06lPKehmiD60VbaWl5Vw3KjLNRSn4FOFG9Oc+tAohzuTRasH7vyZ15ibYWDpUxCFwmdP/oXb1fDAWk3lQoHzUeb/bTi+4NquFj5dbjwM07cM78Sw97izD5oZcMq8qFMwRQnTOd5NkT5NG/m/SC7/RKIM8WqT9o1eF8d7vSTuJf24e7BLlrZJdsgzsksS8pIckENyRAaEEka+km/ke7ATvA4Og3fL0M7GKucx8Sz4+BtIATsl</latexit><latexit sha1_base64="zXfoOoZZ1e512Ft1JklTdNk1yqA=">AAADmXicfZJLb9NAEMe3MY9iXi0cezFESBWHyOYCxyI4VEiIVpC2UhxV483aWXVf2l2XRFYuXLnCh+PbME4sxLqBkSz99ZsZz+zMFEZw59P0184gunX7zt3de/H9Bw8fPd7bf3LmdG0pG1MttL0owDHBFRt77gW7MJaBLAQ7L67etf7za2Yd1+qLXxo2lVApXnIKHtEpv9wbpqN0bclNkXViSDo7udwffMtnmtaSKU8FODfJUuOnDVjPqWCrOK8dM0CvoGITlAokc9Nm3ekqeYFklpTa4qd8sqZ/ZzQgnVvKAiMl+Lnr+1q4zTepfflm2nBlas8U3RQqa5F4nbTPTmbcMurFEgVQy7HXhM7BAvU4nKAK5jtsNWCVBTPndBFSCqYdYghdXWzlshaeW/11C8UphFTjxgynIbTa485U1euB+3DmDeYWGChDCqLS+Oz5v3C/Gh5Yr6lSaPAhKsK/TWbX3Lhu4YvNxuM4f8/wTiz7iDv7ZJgFr+3LJgdbSVis8G6q/Fneyv9FcvUnEmWMV5v1b/SmOHs1ytJRdpoOjw67+90lB+Q5OSQZeU2OyDE5IWNCCSPfyQ/yMzqI3kbH0YdN6GCny3lKAos+/wZrRDbp</latexit>

posi
<latexit sha1_base64="kinavyimfNRrshzvjtxdaao7+vU=">AAADnXicfZJLb9NAEMe3MY9iXi0cOWCoKlUcIrsXOFYCJA48ikSaSnEUjTdrZ9V9aXddElkREl+AK9z4WnwbxkmEWDcwkqW/fjPjmZ2ZwgjufJr+2ulF167fuLl7K7595+69+3v7D86cri1lA6qFtucFOCa4YgPPvWDnxjKQhWDD4uJl6x9eMuu4Vp/8wrCxhErxklPwiAZGuwmf7B2k/XRlyVWRbcTBSXT45Sch5HSy3/uaTzWtJVOeCnBulKXGjxuwnlPBlnFeO2aAXkDFRigVSObGzarbZXKIZJqU2uKnfLKif2c0IJ1byAIjJfiZ6/pauM03qn35YtxwZWrPFF0XKmuReJ20T0+m3DLqxQIFUMux14TOwAL1OKCgCuY7bDVglQUz43QeUgqmHWQIXV1s5bIWnlv9eQvFKYRU49YMpyG02uPeVNXpgftw5g3mFhgoQwqi0vjs2b9wtxoeWaepUmjwISrCv42ml9y4zcLn643Hcf6K4Z1Y9g539sEwC17bZ00OtpIwX+LdVPmTvJX/i+TqTyTKGK82697oVXF23M/SfvYRz/eIrG2XPCJPyRHJyHNyQt6QUzIglHDyjXwnP6LH0evobfR+Hdrb2eQ8JIFFw98b0TpJ</latexit><latexit sha1_base64="EhTsq+V4iqbvwffXDT+UFMHzLYA=">AAADnXicfZJLb9NAEMe3MdBiXi0cOWCoKlUcIpsLHCsVJA48ikSaSnEUjTcbZ9V9aXddElkREuLOlR75EnwXvg3jJEKsGxjJ0l+/mfHMzkxhBHc+TX9tdaJr129s79yMb92+c/fe7t79U6crS1mPaqHtWQGOCa5Yz3Mv2JmxDGQhWL84P278/QtmHdfqo58bNpRQKj7hFDyintFuxEe7+2k3XVpyVWRrsX8UHXz+efn1x8lor/MlH2taSaY8FeDcIEuNH9ZgPaeCLeK8cswAPYeSDVAqkMwN62W3i+QAyTiZaIuf8smS/p1Rg3RuLguMlOCnru1r4CbfoPKTF8OaK1N5puiq0KQSiddJ8/RkzC2jXsxRALUce03oFCxQjwMKqmC+w1YDVlowU05nIaVgmkGG0FXFRi4r4bnVnzZQnEJINW7NcBpCqz3uTZWtHrgPZ15jboGBMqQgSo3Pnv4Lt6vhkbWamggNPkRF+LfB+IIbt174bLXxOM5fMrwTy97izt4bZsFr+7TOwZYSZgu8mzJ/nDfyf5Fc/YlEGePVZu0bvSpOn3WztJt9wPM9JCvbIQ/JE3JIMvKcHJHX5IT0CCWcfCPfyWX0KHoVvYnerUI7W+ucBySwqP8bpQw8HQ==</latexit><latexit sha1_base64="EhTsq+V4iqbvwffXDT+UFMHzLYA=">AAADnXicfZJLb9NAEMe3MdBiXi0cOWCoKlUcIpsLHCsVJA48ikSaSnEUjTcbZ9V9aXddElkREuLOlR75EnwXvg3jJEKsGxjJ0l+/mfHMzkxhBHc+TX9tdaJr129s79yMb92+c/fe7t79U6crS1mPaqHtWQGOCa5Yz3Mv2JmxDGQhWL84P278/QtmHdfqo58bNpRQKj7hFDyintFuxEe7+2k3XVpyVWRrsX8UHXz+efn1x8lor/MlH2taSaY8FeDcIEuNH9ZgPaeCLeK8cswAPYeSDVAqkMwN62W3i+QAyTiZaIuf8smS/p1Rg3RuLguMlOCnru1r4CbfoPKTF8OaK1N5puiq0KQSiddJ8/RkzC2jXsxRALUce03oFCxQjwMKqmC+w1YDVlowU05nIaVgmkGG0FXFRi4r4bnVnzZQnEJINW7NcBpCqz3uTZWtHrgPZ15jboGBMqQgSo3Pnv4Lt6vhkbWamggNPkRF+LfB+IIbt174bLXxOM5fMrwTy97izt4bZsFr+7TOwZYSZgu8mzJ/nDfyf5Fc/YlEGePVZu0bvSpOn3WztJt9wPM9JCvbIQ/JE3JIMvKcHJHX5IT0CCWcfCPfyWX0KHoVvYnerUI7W+ucBySwqP8bpQw8HQ==</latexit><latexit sha1_base64="31aJiFOglJJRZ+aQR6PRc6vctSI=">AAADnXicfZJLb9NAEMe3MdBiXi0cOWCIkCoOkc0FjpUKEgceRSJNpTiKxpuNs+q+tLsuiaxc+AJc4aPxbRgnFmLdwEiW/vrNjGd2ZgojuPNp+muvF924eWv/4HZ85+69+w8Ojx6eO11ZyoZUC20vCnBMcMWGnnvBLoxlIAvBRsXlaeMfXTHruFZf/MqwiYRS8Tmn4BENjXZTPj3sp4N0Y8l1kbWiT1o7mx71vuUzTSvJlKcCnBtnqfGTGqznVLB1nFeOGaCXULIxSgWSuUm96XadPEcyS+ba4qd8sqF/Z9QgnVvJAiMl+IXr+hq4yzeu/Pz1pObKVJ4pui00r0TiddI8PZlxy6gXKxRALcdeE7oAC9TjgIIqmO+w1YCVFsyC02VIKZhmkCF0VbGTy0p4bvXXHRSnEFKNWzOchtBqj3tTZacH7sOZ15hbYKAMKYhS47MX/8LdanhknabmQoMPURH+bTy74sa1C19uNx7H+RuGd2LZB9zZJ8MseG1f1DnYUsJyjXdT5k/zRv4vkqs/kShjvNqse6PXxfnLQZYOss9p/+S4vd8D8pg8I8ckI6/ICXlHzsiQUMLJd/KD/IyeRG+j99HHbWhvr815RAKLRr8BdvU4wg==</latexit>

auxi
<latexit sha1_base64="9VK0JO8J4NLdRqXzCGf/Cb5E+Ps=">AAADnXicfZJLb9NAEMe3MY9iXi0cOWCIkCoOkc0FblQCJA48ikSaSnEUjTcbZ9V9aXddElm58AW4wtfpt+iNL4LEOIkQ6wZGsvTXb2Y8szNTGMGdT9OLnU505eq167s34pu3bt+5u7d/79jpylLWp1poe1KAY4Ir1vfcC3ZiLANZCDYoTl81/sEZs45r9dkvDBtJKBWfcgoeUR+q+ZiP97ppL11ZcllkG9F9+etc/ySEHI33O1/ziaaVZMpTAc4Ns9T4UQ3WcyrYMs4rxwzQUyjZEKUCydyoXnW7TJ4gmSRTbfFTPlnRvzNqkM4tZIGREvzMtX0N3OYbVn76YlRzZSrPFF0XmlYi8Tppnp5MuGXUiwUKoJZjrwmdgQXqcUBBFcx32GrASgtmxuk8pBRMM8gQuqrYymUlPLf6yxaKUwipxq0ZTkNotce9qbLVA/fhzGvMLTBQhhREqfHZs3/hdjU8slZTU6HBh6gI/zacnHHjNgufrzcex/lrhndi2Xvc2UfDLHhtn9Y52FLCfIl3U+aP8kb+L5KrP5EoY7zarH2jl8Xxs16W9rJPaffwgKxtlzwgj8kBychzckjekiPSJ5Rw8o18Jz+ih9Gb6F30YR3a2dnk3CeBRYPfdTI8Cw==</latexit><latexit sha1_base64="B2Sc0DKurREuWd4c4JMGLOEJGzU=">AAADnXicfZLNihNBEMd7M36s49euXgQPjgZh8RBmvOjNBRU8+LGC2SxkQqjpdCbN9hfdPWvCkIsv4FXfwOfwLXwCn0KwJgliz0YLBv78qmqquqoKI7jzafpjpxNduHjp8u6V+Oq16zdu7u3fOna6spT1qRbanhTgmOCK9T33gp0Yy0AWgg2K0+eNf3DGrONaffALw0YSSsWnnIJH1IdqPubjvW7aS1eWnBfZRnSf/fquf975Jo/G+51P+UTTSjLlqQDnhllq/KgG6zkVbBnnlWMG6CmUbIhSgWRuVK+6XSYPkUySqbb4KZ+s6N8ZNUjnFrLASAl+5tq+Bm7zDSs/fTqquTKVZ4quC00rkXidNE9PJtwy6sUCBVDLsdeEzsAC9TigoArmO2w1YKUFM+N0HlIKphlkCF1VbOWyEp5b/XELxSmEVOPWDKchtNrj3lTZ6oH7cOY15hYYKEMKotT47Nm/cLsaHlmrqanQ4ENUhH8bTs64cZuFz9cbj+P8BcM7sewN7uydYRa8to/qHGwpYb7Euynz+3kj/xfJ1Z9IlDFebda+0fPi+HEvS3vZ+7R7eEDWtkvukgfkgGTkCTkkr8gR6RNKOPlMvpCv0b3oZfQ6ersO7exscm6TwKLBbxmTPT8=</latexit><latexit sha1_base64="B2Sc0DKurREuWd4c4JMGLOEJGzU=">AAADnXicfZLNihNBEMd7M36s49euXgQPjgZh8RBmvOjNBRU8+LGC2SxkQqjpdCbN9hfdPWvCkIsv4FXfwOfwLXwCn0KwJgliz0YLBv78qmqquqoKI7jzafpjpxNduHjp8u6V+Oq16zdu7u3fOna6spT1qRbanhTgmOCK9T33gp0Yy0AWgg2K0+eNf3DGrONaffALw0YSSsWnnIJH1IdqPubjvW7aS1eWnBfZRnSf/fquf975Jo/G+51P+UTTSjLlqQDnhllq/KgG6zkVbBnnlWMG6CmUbIhSgWRuVK+6XSYPkUySqbb4KZ+s6N8ZNUjnFrLASAl+5tq+Bm7zDSs/fTqquTKVZ4quC00rkXidNE9PJtwy6sUCBVDLsdeEzsAC9TigoArmO2w1YKUFM+N0HlIKphlkCF1VbOWyEp5b/XELxSmEVOPWDKchtNrj3lTZ6oH7cOY15hYYKEMKotT47Nm/cLsaHlmrqanQ4ENUhH8bTs64cZuFz9cbj+P8BcM7sewN7uydYRa8to/qHGwpYb7Euynz+3kj/xfJ1Z9IlDFebda+0fPi+HEvS3vZ+7R7eEDWtkvukgfkgGTkCTkkr8gR6RNKOPlMvpCv0b3oZfQ6ersO7exscm6TwKLBbxmTPT8=</latexit><latexit sha1_base64="zFMgtZAvGRXuukBa28NusKBX6uQ=">AAADnXicfZJLb9NAEMe3MdBiXi0cOWCIkCoOkc0FjpUKEgceRSJNpTiKxpuNs+q+tLsuiaxc+AJc4aPxbRgnFmLdwEiW/vrNjGd2ZgojuPNp+muvF924eWv/4HZ85+69+w8Ojx6eO11ZyoZUC20vCnBMcMWGnnvBLoxlIAvBRsXlaeMfXTHruFZf/MqwiYRS8Tmn4BENoVpO+fSwnw7SjSXXRdaKPmntbHrU+5bPNK0kU54KcG6cpcZParCeU8HWcV45ZoBeQsnGKBVI5ib1ptt18hzJLJlri5/yyYb+nVGDdG4lC4yU4Beu62vgLt+48vPXk5orU3mm6LbQvBKJ10nz9GTGLaNerFAAtRx7TegCLFCPAwqqYL7DVgNWWjALTpchpWCaQYbQVcVOLivhudVfd1CcQkg1bs1wGkKrPe5NlZ0euA9nXmNugYEypCBKjc9e/At3q+GRdZqaCw0+REX4t/HsihvXLny53Xgc528Y3ollH3Bnnwyz4LV9UedgSwnLNd5NmT/NG/m/SK7+RKKM8Wqz7o1eF+cvB1k6yD6n/ZPj9n4PyGPyjByTjLwiJ+QdOSNDQgkn38kP8jN6Er2N3kcft6G9vTbnEQksGv0GagE4vg==</latexit>

pullback
<latexit sha1_base64="BKwipskNQUfjZ+fwarcCLRoPGBY=">AAADoHicfZJLaxsxEMcVbx/p9pW0x162CYHQg9ntpT0GkkMuJQnUianXhFlZuxbRC0mb2iym0I/Qa3vo1+q36axtSrVxKxD8+c2MZjQzhRHc+TT9tdWL7t1/8HD7Ufz4ydNnz3d2X1w6XVvKBlQLbYcFOCa4YgPPvWBDYxnIQrCr4ua4tV/dMuu4Vh/93LCxhErxklPwiIamFqIAenO9s5/20+VJ7opsLfaPooMvPwkh59e7va/5RNNaMuWpAOdGWWr8uAHrORVsEee1YwZfhoqNUCqQzI2bZcGL5ADJJCm1xat8sqR/RzQgnZvLAj0l+Knr2lq4yTaqffl+3HBlas8UXSUqa5F4nbS/TybcMurFHAVQy7HWhE7BAvXYoyALxjssNWCVBTPldBZSCqbtZQhdXWzkshaeW/15A8UuhFTj4AynIbTa4+hU1amB+7DnDcYW6ChDCqLS+O3pv3A3G+5Zp6hSaPAhKsLXRpNbbtx64LPVxOM4P2G4J5Z9wJmdGWbBa/umycFWEmYL3Jsqf5238n+eXP3xRBnj1mbdHb0rLt/2s7SfXeD6HpLV2SavyB45JBl5R47IKTknA0KJIN/Id/Ij2otOo7PoYuXa21rHvCTBiT79BnNBO5s=</latexit><latexit sha1_base64="CsbxI5+cx7TFzu/2DNA7EfHjJOQ=">AAADoHicfZLNahsxEMcVbz/S7VfSHnvZJgRCD2Y3l/YYSA+5lCRQJ6ZeE2Zl7VpEX0jaxGYxhdIn6K20l75E36Vv01nblMpxKxD8+c2MZjQzhRHc+TT9tdGJ7ty9d3/zQfzw0eMnT7e2n507XVvKelQLbfsFOCa4Yj3PvWB9YxnIQrCL4uqotV9cM+u4Vu/91LChhErxklPwiPqmFqIAenW5tZt20/lJbotsKXYPo72PP79+/nF6ud35lI80rSVTngpwbpClxg8bsJ5TwWZxXjtm8GWo2AClAsncsJkXPEv2kIySUlu8yidz+ndEA9K5qSzQU4Ifu1VbC9fZBrUv3wwbrkztmaKLRGUtEq+T9vfJiFtGvZiiAGo51prQMVigHnsUZMF4h6UGrLJgxpxOQkrBtL0MoauLtVzWwnOrb9ZQ7EJINQ7OcBpCqz2OTlUrNXAf9rzB2AIdZUhBVBq/Pf4XXs2Ge7ZSVCk0+BAV4WuD0TU3bjnwyWLicZy/Zbgnlr3DmZ0YZsFr+6rJwVYSJjPcmyp/mbfyf55c/fFEGePWZqs7elucH3SztJud4fruk8XZJC/IDtknGXlNDskxOSU9QokgX8g38j3aiY6jk+hs4drZWMY8J8GJPvwG/Hw9bw==</latexit><latexit sha1_base64="CsbxI5+cx7TFzu/2DNA7EfHjJOQ=">AAADoHicfZLNahsxEMcVbz/S7VfSHnvZJgRCD2Y3l/YYSA+5lCRQJ6ZeE2Zl7VpEX0jaxGYxhdIn6K20l75E36Vv01nblMpxKxD8+c2MZjQzhRHc+TT9tdGJ7ty9d3/zQfzw0eMnT7e2n507XVvKelQLbfsFOCa4Yj3PvWB9YxnIQrCL4uqotV9cM+u4Vu/91LChhErxklPwiPqmFqIAenW5tZt20/lJbotsKXYPo72PP79+/nF6ud35lI80rSVTngpwbpClxg8bsJ5TwWZxXjtm8GWo2AClAsncsJkXPEv2kIySUlu8yidz+ndEA9K5qSzQU4Ifu1VbC9fZBrUv3wwbrkztmaKLRGUtEq+T9vfJiFtGvZiiAGo51prQMVigHnsUZMF4h6UGrLJgxpxOQkrBtL0MoauLtVzWwnOrb9ZQ7EJINQ7OcBpCqz2OTlUrNXAf9rzB2AIdZUhBVBq/Pf4XXs2Ge7ZSVCk0+BAV4WuD0TU3bjnwyWLicZy/Zbgnlr3DmZ0YZsFr+6rJwVYSJjPcmyp/mbfyf55c/fFEGePWZqs7elucH3SztJud4fruk8XZJC/IDtknGXlNDskxOSU9QokgX8g38j3aiY6jk+hs4drZWMY8J8GJPvwG/Hw9bw==</latexit><latexit sha1_base64="/tHt1Z+FtFthp3l52r88Z/NpDZw=">AAADoHicfZJLbxMxEMfdLI+yvFo4clkaIVUcot1e4FipHHpBbSXSRmSjatbxbqz6JdvbJlrlwkfgCl+Mb8MkWSG8DViy9NdvZjzjmSmM4M6n6a+dXvTg4aPHu0/ip8+ev3i5t//q0unaUjakWmg7KsAxwRUbeu4FGxnLQBaCXRU3Jyv71S2zjmv1xS8Mm0ioFC85BY9oZGohCqA313v9dJCuT3JfZK3ok/acX+/3vuVTTWvJlKcCnBtnqfGTBqznVLBlnNeOGXwZKjZGqUAyN2nWBS+Td0imSaktXuWTNf07ogHp3EIW6CnBz1zXtoLbbOPalx8nDVem9kzRTaKyFonXyer3yZRbRr1YoABqOdaa0BlYoB57FGTBeIelBqyyYGaczkNKwax6GUJXF1u5rIXnVt9todiFkGocnOE0hFZ7HJ2qOjVwH/a8wdgCHWVIQVQavz37F+5mwz3rFFUKDT5ERfjaeHrLjWsHPt9MPI7zTwz3xLLPOLMzwyx4bd83OdhKwnyJe1Plb/OV/J8nV388Uca4tVl3R++Ly6NBlg6yi7R/fNju7y55Qw7IIcnIB3JMTsk5GRJKBPlOfpCf0UF0Gp1FFxvX3k4b85oEJ/r6G85lOhQ=</latexit>

wc0
<latexit sha1_base64="W3hSJtQZT7ger5q3IdG9uUq5P4o=">AAADn3icfZLNbtNAEMe3MR/BfLVw5OJSIVUcIpsLHCtRqVyAIJGmKI6i8WbtrLLrXe2u2wQrEuINuMJTceRtGCcRYt3ASJb++s2MZ3ZmMi24dXH8a68T3Lh563b3Tnj33v0HD/cPHp1bVRnKBlQJZS4ysEzwkg0cd4JdaMNAZoINs/nrxj+8ZMZyVX50S83GEoqS55yCQzS8mtR0Eq8m+0dxL15bdF0kW3F00v388wshpD856HxNp4pWkpWOCrB2lMTajWswjlPBVmFaWaaBzqFgI5QlSGbH9brfVfQMyTTKlcGvdNGa/p1Rg7R2KTOMlOBmtu1r4C7fqHL5q3HNS105VtJNobwSkVNR8/hoyg2jTixRADUce43oDAxQhyPyqmC+xVY9VhjQM04XPqWgm1H60FbZTi4r4bhRVzsoTsGnCvemOfWhUQ43VxatHrjzZ15jboaB0qcgCoXPnv0Lt6vhmbWayoUC56PM/9toesm13S58sdl4GKanDO/EsLe4s/eaGXDKPK9TMIWExQrvpkgP00b+L5KXfyJRhni1SftGr4vzF70k7iUf8HyPyca65Al5So5JQl6SE/KG9MmAUDIn38h38iM4DM6Cd0F/E9rZ2+Y8Jp4Fn34DK/Q7jw==</latexit><latexit sha1_base64="eK4nROcFNFM/IfHX2IYXAVyMuvw=">AAADn3icfZLNbtNAEMe3MR/BfLVw5OJSVao4RHYvcKzUSnABgkSaojiKxpuNs8qud7W7bhOsXLhz4AovBUcegndgnESIdQMjWfrrNzOe2ZnJtODWxfHPnVZw4+at2+074d179x883N17dG5VaSjrUSWUucjAMsEL1nPcCXahDQOZCdbPZqe1v3/JjOWqeO8Wmg0l5AWfcAoOUf9qVNFRvBztHsSdeGXRdZFsxMFJ++OPz4e/vndHe61P6VjRUrLCUQHWDpJYu2EFxnEq2DJMS8s00BnkbICyAMnssFr1u4wOkYyjiTL4FS5a0b8zKpDWLmSGkRLc1DZ9NdzmG5Ru8mJY8UKXjhV0XWhSisipqH58NOaGUScWKIAajr1GdAoGqMMReVUw32KrHssN6Cmnc59S0PUofWjLbCuXpXDcqKstFKfgU4V705z60CiHmyvyRg/c+TOvMDfDQOlTELnCZ0//hZvV8MwaTU2EAuejzP/bYHzJtd0sfL7eeBimZwzvxLDXuLO3mhlwyjyrUjC5hPkS7yZP99Na/i+SF38iUYZ4tUnzRq+L8+NOEneSd3i+R2RtbfKEPCVHJCHPyQl5RbqkRyiZkS/kK/kW7AcvgzdBdx3a2tnkPCaeBR9+AwZGPX4=</latexit><latexit sha1_base64="eK4nROcFNFM/IfHX2IYXAVyMuvw=">AAADn3icfZLNbtNAEMe3MR/BfLVw5OJSVao4RHYvcKzUSnABgkSaojiKxpuNs8qud7W7bhOsXLhz4AovBUcegndgnESIdQMjWfrrNzOe2ZnJtODWxfHPnVZw4+at2+074d179x883N17dG5VaSjrUSWUucjAMsEL1nPcCXahDQOZCdbPZqe1v3/JjOWqeO8Wmg0l5AWfcAoOUf9qVNFRvBztHsSdeGXRdZFsxMFJ++OPz4e/vndHe61P6VjRUrLCUQHWDpJYu2EFxnEq2DJMS8s00BnkbICyAMnssFr1u4wOkYyjiTL4FS5a0b8zKpDWLmSGkRLc1DZ9NdzmG5Ru8mJY8UKXjhV0XWhSisipqH58NOaGUScWKIAajr1GdAoGqMMReVUw32KrHssN6Cmnc59S0PUofWjLbCuXpXDcqKstFKfgU4V705z60CiHmyvyRg/c+TOvMDfDQOlTELnCZ0//hZvV8MwaTU2EAuejzP/bYHzJtd0sfL7eeBimZwzvxLDXuLO3mhlwyjyrUjC5hPkS7yZP99Na/i+SF38iUYZ4tUnzRq+L8+NOEneSd3i+R2RtbfKEPCVHJCHPyQl5RbqkRyiZkS/kK/kW7AcvgzdBdx3a2tnkPCaeBR9+AwZGPX4=</latexit><latexit sha1_base64="6SFxBYu8NBZFwmqsE9gSJHeOqW8=">AAADn3icfZLNbtNAEMe3MR/FfLVw5OISIVUcIrsXOFYCCS5AkEhTFEfReLN2Vtn1rnbXbSIrF96AKzwZb8M4sRDrBkay9NdvZjyzM5Npwa2L418HveDW7Tt3D++F9x88fPT46PjJhVWVoWxElVDmMgPLBC/ZyHEn2KU2DGQm2Dhbvmn84ytmLFflF7fWbCqhKHnOKThE4+tZTWfxZnbUjwfx1qKbImlFn7Q2nB33vqVzRSvJSkcFWDtJYu2mNRjHqWCbMK0s00CXULAJyhIks9N62+8meoFkHuXK4Fe6aEv/zqhBWruWGUZKcAvb9TVwn29Sufz1tOalrhwr6a5QXonIqah5fDTnhlEn1iiAGo69RnQBBqjDEXlVMN9iqx4rDOgFpyufUtDNKH1oq2wvl5Vw3KjrPRSn4FOFe9Oc+tAoh5sri04P3PkzrzE3w0DpUxCFwmcv/oW71fDMOk3lQoHzUeb/bTK/4tq2C1/tNh6G6VuGd2LYB9zZJ80MOGVe1imYQsJqg3dTpCdpI/8Xycs/kShDvNqke6M3xcXZIIkHyee4f37a3u8heUaek1OSkFfknLwnQzIilCzJd/KD/AxOgnfBx2C4C+0dtDlPiWfB19/dAzl8</latexit>

wcj
<latexit sha1_base64="wmCEWPrsiAQs+9tX/5c+B54eyME=">AAADn3icfZLNjtMwEMe9DR9L+GrhyCXLCmnFoUq4wHElkOACFIluFzVVNXGd1NSxLdvZbRX1whtwhQuvxRvwGEzaCuFsYaRIf/1mJjOemUwLbl0c/zzoBNeu37h5eCu8fefuvfvd3oMzqypD2ZAqocx5BpYJLtnQcSfYuTYMykywUbZ42fhHF8xYruRHt9JsUkIhec4pOESjy2lNp5/X0+5x3I83Fl0VyU4cn3Z/9X4QQgbTXudLOlO0Kpl0VIC14yTWblKDcZwKtg7TyjINdAEFG6OUUDI7qTf9rqMnSGZRrgx+0kUb+ndGDaW1qzLDyBLc3LZ9DdznG1cufzGpudSVY5JuC+WViJyKmsdHM24YdWKFAqjh2GtE52CAOhyRVwXzLbbqscKAnnO69CkF3YzSh7bK9vKyEo4bdbmH4hR8qnBvmlMfGuVwc7Jo9cCdP/MaczMMLH0KolD47Pm/cLsanlmrqVwocD7K/L+NZxdc293Cl9uNh2H6iuGdGPYWd/ZeMwNOmad1CqYoYbnGuynSo7SR/4vk8k8kyhCvNmnf6FVx9qyfxP3kA57vCdnaIXlEHpMTkpDn5JS8IQMyJJQsyFfyjXwPjoLXwbtgsA3tHOxyHhLPgk+/AWbqO58=</latexit><latexit sha1_base64="cfeHyWm2veozphVv32ydbm1FG8c=">AAADn3icfZLNihNBEMd7M36s8SvRo5dZF2FRCDNe9LigoBc1gtmsZEKo6fRMetM93XT37CYMAfENvOpT+Dj7Bj6GNUkQezZaMPDnV1VT1VWVasGti6LLvVZw7fqNm/u32rfv3L13v9N9cGJVaSgbUCWUOU3BMsELNnDcCXaqDQOZCjZM569q//CcGctV8cktNRtLyAuecQoO0fBiUtHJ2WrSOYx60drCqyLeisPjzq/uz8tnX/qTbutrMlW0lKxwVIC1ozjSblyBcZwKtmonpWUa6BxyNkJZgGR2XK37XYVPkEzDTBn8Cheu6d8ZFUhrlzLFSAluZpu+Gu7yjUqXvRxXvNClYwXdFMpKEToV1o8Pp9ww6sQSBVDDsdeQzsAAdTgirwrmW2zVY7kBPeN04VMKuh6lD22Z7uSyFI4bdbGD4hR8qnBvmlMfGuVwc0Xe6IE7f+YV5qYYKH0KIlf47Nm/cLManlmjqUwocD5K/b+Npudc2+3CF5uNt9vJa4Z3Ytg73NkHzQw4ZZ5WCZhcwmKFd5MnB0kt/xfJiz+RKNt4tXHzRq+Kk+e9OOrFH/F8j8jG9skj8pgckZi8IMfkLemTAaFkTr6R7+RHcBC8Cd4H/U1oa2+b85B4Fnz+DTHDPTQ=</latexit><latexit sha1_base64="cfeHyWm2veozphVv32ydbm1FG8c=">AAADn3icfZLNihNBEMd7M36s8SvRo5dZF2FRCDNe9LigoBc1gtmsZEKo6fRMetM93XT37CYMAfENvOpT+Dj7Bj6GNUkQezZaMPDnV1VT1VWVasGti6LLvVZw7fqNm/u32rfv3L13v9N9cGJVaSgbUCWUOU3BMsELNnDcCXaqDQOZCjZM569q//CcGctV8cktNRtLyAuecQoO0fBiUtHJ2WrSOYx60drCqyLeisPjzq/uz8tnX/qTbutrMlW0lKxwVIC1ozjSblyBcZwKtmonpWUa6BxyNkJZgGR2XK37XYVPkEzDTBn8Cheu6d8ZFUhrlzLFSAluZpu+Gu7yjUqXvRxXvNClYwXdFMpKEToV1o8Pp9ww6sQSBVDDsdeQzsAAdTgirwrmW2zVY7kBPeN04VMKuh6lD22Z7uSyFI4bdbGD4hR8qnBvmlMfGuVwc0Xe6IE7f+YV5qYYKH0KIlf47Nm/cLManlmjqUwocD5K/b+Npudc2+3CF5uNt9vJa4Z3Ytg73NkHzQw4ZZ5WCZhcwmKFd5MnB0kt/xfJiz+RKNt4tXHzRq+Kk+e9OOrFH/F8j8jG9skj8pgckZi8IMfkLemTAaFkTr6R7+RHcBC8Cd4H/U1oa2+b85B4Fnz+DTHDPTQ=</latexit><latexit sha1_base64="1NbDLISkh6/B4vx0tWkoW+lYoqU=">AAADn3icfZLNjtMwEMe9DR9L+NqFI5csFdKKQ5VwgeNKIMEFKBLdLmqqauI6qakdW7az2yrqhTfgCk/G2zBpI4SzhZEi/fWbmcx4ZjItuHVx/OugF9y4eev24Z3w7r37Dx4eHT86t6oylI2oEspcZGCZ4CUbOe4Eu9CGgcwEG2fL141/fMmM5ar87NaaTSUUJc85BYdofDWr6ezrZnbUjwfx1qLrImlFn7Q2nB33vqVzRSvJSkcFWDtJYu2mNRjHqWCbMK0s00CXULAJyhIks9N62+8meoZkHuXK4Fe6aEv/zqhBWruWGUZKcAvb9TVwn29SufzVtOalrhwr6a5QXonIqah5fDTnhlEn1iiAGo69RnQBBqjDEXlVMN9iqx4rDOgFpyufUtDNKH1oq2wvl5Vw3KirPRSn4FOFe9Oc+tAoh5sri04P3PkzrzE3w0DpUxCFwmcv/oW71fDMOk3lQoHzUeb/bTK/5Nq2C1/tNh6G6RuGd2LYe9zZR80MOGWe1ymYQsJqg3dTpCdpI/8Xycs/kShDvNqke6PXxfmLQRIPkk9x/+y0vd9D8oQ8JackIS/JGXlHhmREKFmS7+QH+RmcBG+DD8FwF9o7aHMeE8+CL78Bl045tg==</latexit>

c0
<latexit sha1_base64="RE9FJ0xkjFdd0+IR8SD3IDE/pTA=">AAADm3icfZJLb9NAEMe3MY9iXi0cEZIhQqo4RHYvcGulckAIRBGkrRRH0XizcVbdl3bXbSIrF+5c4fvwLbjxRZAYJxFi3cBIlv76zYxndmYKI7jzafpjqxNdu37j5vat+Padu/fu7+w+OHG6spT1qRbanhXgmOCK9T33gp0Zy0AWgp0W50eN//SCWce1+uTnhg0llIpPOAWP6CMdpaOdbtpLl5ZcFdladA9+fdc/CSHHo93O53ysaSWZ8lSAc4MsNX5Yg/WcCraI88oxA/QcSjZAqUAyN6yXvS6SZ0jGyURb/JRPlvTvjBqkc3NZYKQEP3VtXwM3+QaVn7wc1lyZyjNFV4UmlUi8TpqHJ2NuGfVijgKo5dhrQqdggXocT1AF8x22GrDSgplyOgspBdOMMYSuKjZyWQnPrb7cQHEKIdW4M8NpCK32uDVVtnrgPpx5jbkFBsqQgig1Pnv6L9yuhifWamoiNPgQFeHfBuMLbtx64bPVxuM4f8XwTix7hzt7b5gFr+3zOgdbSpgt8G7K/EneyP9FcvUnEmWMV5u1b/SqONnvZWkv+5B2D/fIyrbJI/KU7JGMvCCH5DU5Jn1CSUm+kK/kW/Q4OoreRG9XoZ2tdc5DEljU/w18QTrT</latexit><latexit sha1_base64="ROIvBGX+q9naUgfBJTWBteqh0gg=">AAADm3icfZLNihNBEMd7M36s48fu6kUQYTQIi4cw40VvLqwHEcUVze5CJoSaTmfSbH/R3bMmDLl496qv4HP4Fj6BTyFYkwSxZ6MFA39+VTVVXVWFEdz5NP2x1YkuXb5ydftafP3GzVs7u3u3j52uLGV9qoW2pwU4Jrhifc+9YKfGMpCFYCfF2WHjPzln1nGtPvi5YUMJpeITTsEjek9H6Wi3m/bSpSUXRbYW3ee/vuufd7/Jo9Fe51M+1rSSTHkqwLlBlho/rMF6TgVbxHnlmAF6BiUboFQgmRvWy14XySMk42SiLX7KJ0v6d0YN0rm5LDBSgp+6tq+Bm3yDyk+eDWuuTOWZoqtCk0okXifNw5Mxt4x6MUcB1HLsNaFTsEA9jieogvkOWw1YacFMOZ2FlIJpxhhCVxUbuayE51Z/3EBxCiHVuDPDaQit9rg1VbZ64D6ceY25BQbKkIIoNT57+i/croYn1mpqIjT4EBXh3wbjc27ceuGz1cbjOH/B8E4se4M7e2uYBa/t4zoHW0qYLfBuyvxB3sj/RXL1JxJljFebtW/0ojh+0svSXvYu7R7sk5Vtk3vkIdknGXlKDshLckT6hJKSfCZfyNfofnQYvYper0I7W+ucOySwqP8bIKI8Bw==</latexit><latexit sha1_base64="ROIvBGX+q9naUgfBJTWBteqh0gg=">AAADm3icfZLNihNBEMd7M36s48fu6kUQYTQIi4cw40VvLqwHEcUVze5CJoSaTmfSbH/R3bMmDLl496qv4HP4Fj6BTyFYkwSxZ6MFA39+VTVVXVWFEdz5NP2x1YkuXb5ydftafP3GzVs7u3u3j52uLGV9qoW2pwU4Jrhifc+9YKfGMpCFYCfF2WHjPzln1nGtPvi5YUMJpeITTsEjek9H6Wi3m/bSpSUXRbYW3ee/vuufd7/Jo9Fe51M+1rSSTHkqwLlBlho/rMF6TgVbxHnlmAF6BiUboFQgmRvWy14XySMk42SiLX7KJ0v6d0YN0rm5LDBSgp+6tq+Bm3yDyk+eDWuuTOWZoqtCk0okXifNw5Mxt4x6MUcB1HLsNaFTsEA9jieogvkOWw1YacFMOZ2FlIJpxhhCVxUbuayE51Z/3EBxCiHVuDPDaQit9rg1VbZ64D6ceY25BQbKkIIoNT57+i/croYn1mpqIjT4EBXh3wbjc27ceuGz1cbjOH/B8E4se4M7e2uYBa/t4zoHW0qYLfBuyvxB3sj/RXL1JxJljFebtW/0ojh+0svSXvYu7R7sk5Vtk3vkIdknGXlKDshLckT6hJKSfCZfyNfofnQYvYper0I7W+ucOySwqP8bIKI8Bw==</latexit><latexit sha1_base64="y8se+AOnSc0nWnYCdUijHmK+3F4=">AAADm3icfZJLb9NAEMe3MY8SXi0cEZIhQqo4RHYvcKzUHhACUQRpK8VRNN6snVX3pd11m8jKhTtX+Gx8G8aJhVg3MJKlv34z45mdmdwI7nyS/NrpRbdu37m7e69//8HDR4/39p+cOV1ZykZUC20vcnBMcMVGnnvBLoxlIHPBzvPL48Z/fsWs41p99UvDJhJKxQtOwSP6QqfJdG+QDJO1xTdF2ooBae10ut/7ls00rSRTngpwbpwmxk9qsJ5TwVb9rHLMAL2Eko1RKpDMTep1r6v4FZJZXGiLn/Lxmv6dUYN0bilzjJTg567ra+A237jyxdtJzZWpPFN0U6ioROx13Dw8nnHLqBdLFEAtx15jOgcL1ON4giqY77DVgJUWzJzTRUgpmGaMIXRVvpXLSnhu9fUWilMIqcadGU5DaLXHramy0wP34cxrzM0xUIYURKnx2fN/4W41PLFOU4XQ4EOUh38bz664ce3CF5uN9/vZCcM7sewj7uyTYRa8tq/rDGwpYbHCuymzF1kj/xfJ1Z9IlH282rR7ozfF2eEwTYbp52RwdNDe7y55Rl6SA5KSN+SIvCOnZEQoKcl38oP8jJ5Hx9H76MMmtLfT5jwlgUWj33EQN4Y=</latexit>

cj
<latexit sha1_base64="TVMBOl0kcWLo3QgnFz5OvNVnIIw=">AAADm3icfZJLb9NAEMe3MY/i8mjhiJAMFVLFIbK5wLGiHBACUQRpK8VRNN6snW33pd11SWTlwp0rfDa+Bp+AcRIh1g2MZOmv38x4ZmemMII7n6Y/t3rRtes3bm7findu37l7b3fv/onTtaVsQLXQ9qwAxwRXbOC5F+zMWAayEOy0uDhq/aeXzDqu1Wc/N2wkoVK85BQ8ok90fD7e3U/76dKSqyJbi/3DnV+vCNrxeK/3NZ9oWkumPBXg3DBLjR81YD2ngi3ivHbMAL2Aig1RKpDMjZplr4vkKZJJUmqLn/LJkv6d0YB0bi4LjJTgp67ra+Em37D25ctRw5WpPVN0VaisReJ10j48mXDLqBdzFEAtx14TOgUL1ON4giqY77DVgFUWzJTTWUgpmHaMIXR1sZHLWnhu9ZcNFKcQUo07M5yG0GqPW1NVpwfuw5k3mFtgoAwpiErjs6f/wt1qeGKdpkqhwYeoCP82nFxy49YLn602Hsf5a4Z3Ytl73NkHwyx4bZ81OdhKwmyBd1Plj/NW/i+Sqz+RKGO82qx7o1fFyfN+lvazj3i+B2Rl2+QheUIOSEZekEPyhhyTAaGkIt/Id/IjehQdRW+jd6vQ3tY65wEJLBr8BrkbOT8=</latexit><latexit sha1_base64="9x2YNqW4r9OTpulN6Brxzd3Z1u0=">AAADm3icfZJNb9NAEIa3MdDi8NHCESEZKqSKQ2RzgWNFOSAEogjSVoqjaLzZOEv3S7vrksjKhTNc4bfxNzhzYJxEiHUDI1l69cyMZ3ZmCiO482n6Y6sTXbl6bXvnety9cfPW7d29OydOV5ayPtVC27MCHBNcsb7nXrAzYxnIQrDT4vyo8Z9eMOu4Vh/83LChhFLxCafgEb2no4+j3f20ly4tuSyytdg/7P58vt398ut4tNf5nI81rSRTngpwbpClxg9rsJ5TwRZxXjlmgJ5DyQYoFUjmhvWy10XyCMk4mWiLn/LJkv6dUYN0bi4LjJTgp67ta+Am36Dyk2fDmitTeaboqtCkEonXSfPwZMwto17MUQC1HHtN6BQsUI/jCapgvsNWA1ZaMFNOZyGlYJoxhtBVxUYuK+G51Z82UJxCSDXuzHAaQqs9bk2VrR64D2deY26BgTKkIEqNz57+C7er4Ym1mpoIDT5ERfi3wfiCG7de+Gy18TjOXzC8E8ve4M7eGmbBa/u4zsGWEmYLvJsyf5A38n+RXP2JRBnj1WbtG70sTp70srSXvcPzPSAr2yH3yENyQDLylBySl+SY9AklJflKvpHv0f3oKHoVvV6FdrbWOXdJYFH/N5G5Otk=</latexit><latexit sha1_base64="9x2YNqW4r9OTpulN6Brxzd3Z1u0=">AAADm3icfZJNb9NAEIa3MdDi8NHCESEZKqSKQ2RzgWNFOSAEogjSVoqjaLzZOEv3S7vrksjKhTNc4bfxNzhzYJxEiHUDI1l69cyMZ3ZmCiO482n6Y6sTXbl6bXvnety9cfPW7d29OydOV5ayPtVC27MCHBNcsb7nXrAzYxnIQrDT4vyo8Z9eMOu4Vh/83LChhFLxCafgEb2no4+j3f20ly4tuSyytdg/7P58vt398ut4tNf5nI81rSRTngpwbpClxg9rsJ5TwRZxXjlmgJ5DyQYoFUjmhvWy10XyCMk4mWiLn/LJkv6dUYN0bi4LjJTgp67ta+Am36Dyk2fDmitTeaboqtCkEonXSfPwZMwto17MUQC1HHtN6BQsUI/jCapgvsNWA1ZaMFNOZyGlYJoxhtBVxUYuK+G51Z82UJxCSDXuzHAaQqs9bk2VrR64D2deY26BgTKkIEqNz57+C7er4Ym1mpoIDT5ERfi3wfiCG7de+Gy18TjOXzC8E8ve4M7eGmbBa/u4zsGWEmYLvJsyf5A38n+RXP2JRBnj1WbtG70sTp70srSXvcPzPSAr2yH3yENyQDLylBySl+SY9AklJflKvpHv0f3oKHoVvV6FdrbWOXdJYFH/N5G5Otk=</latexit><latexit sha1_base64="iokvyp8BATxD7CHzwyjmJXx7Zwk=">AAADm3icfZJLb9NAEMe3MY9iXi0cEZIhQqo4RDYXOFZqDwiBKIK0leIoGm82ztJ9aXfdJrJy4c4VPhvfhnFiIdYNjGTpr9/MeGZnpjCCO5+mv3Z60Y2bt27v3onv3rv/4OHe/qNTpytL2ZBqoe15AY4JrtjQcy/YubEMZCHYWXFx1PjPLpl1XKsvfmnYWEKp+IxT8Ig+08nXyV4/HaRrS66LrBV90trJZL/3LZ9qWkmmPBXg3ChLjR/XYD2ngq3ivHLMAL2Ako1QKpDMjet1r6vkBZJpMtMWP+WTNf07owbp3FIWGCnBz13X18BtvlHlZ2/GNVem8kzRTaFZJRKvk+bhyZRbRr1YogBqOfaa0DlYoB7HE1TBfIetBqy0YOacLkJKwTRjDKGriq1cVsJzq6+2UJxCSDXuzHAaQqs9bk2VnR64D2deY26BgTKkIEqNz57/C3er4Yl1mpoJDT5ERfi30fSSG9cufLHZeBznxwzvxLIPuLOPhlnw2r6sc7ClhMUK76bMn+WN/F8kV38iUcZ4tVn3Rq+L01eDLB1kn9L+4UF7v7vkCXlODkhGXpND8packCGhpCTfyQ/yM3oaHUXvoveb0N5Om/OYBBYNfwMrITfA</latexit>

i
<latexit sha1_base64="LzO0Yo1ifRQx/SDMApuEp0oovC8=">AAADmXicfZJLb9NAEMe3MY9iXi0cezFESBWHyOYCN4rgUCEhWiBtpTiqxpu1s+q+tLsuiaxcuHKFr8GZr8K3YZxEiHUDI1n66zczntmZKYzgzqfpr61edO36jZvbt+Lbd+7eu7+z++DE6dpSNqRaaHtWgGOCKzb03At2ZiwDWQh2Wly8bv2nl8w6rtUnPzdsLKFSvOQUPKJjfr7TTwfp0pKrIluL/ssfPz8QtKPz3d6XfKJpLZnyVIBzoyw1ftyA9ZwKtojz2jED9AIqNkKpQDI3bpadLpInSCZJqS1+yidL+ndGA9K5uSwwUoKfuq6vhZt8o9qXL8YNV6b2TNFVobIWiddJ++xkwi2jXsxRALUce03oFCxQj8MJqmC+w1YDVlkwU05nIaVg2iGG0NXFRi5r4bnVnzdQnEJINW7McBpCqz3uTFWdHrgPZ95gboGBMqQgKo3Pnv4Ld6vhgXWaKoUGH6Ii/NtocsmNWy98ttp4HOdvGN6JZe9wZ+8Ns+C1fdrkYCsJswXeTZU/ylv5v0iu/kSijPFqs+6NXhUnzwZZOsiO0/7BPlnZNtkjj8k+ychzckAOyREZEkoY+Uq+ke/RXvQqOozerkJ7W+uchySw6ONvZxU44A==</latexit><latexit sha1_base64="m/HE0ZgfFmB3fIRSTBG/PM33h08=">AAADmXicfZLNbtNAEMe3MR/FfLVwrIQMEVLFIbJ7gVuL4FAhIRpB2kpxVI03a2fV9e5qd90msnJB4sQVXoNzX4Vn4CUYJxFi3cBIlv76zYxndmYyLbh1cfxzoxPcuHnr9uad8O69+w8ebm0/OraqMpQNqBLKnGZgmeCSDRx3gp1qw6DMBDvJzt80/pMLZixX8pObaTYqoZA85xQcoj4/2+rGvXhh0XWRrER3/8dV/9eXJ1dHZ9udz+lY0apk0lEB1g6TWLtRDcZxKtg8TCvLNNBzKNgQpYSS2VG96HQePUcyjnJl8JMuWtC/M2oorZ2VGUaW4Ca27WvgOt+wcvmrUc2lrhyTdFkor0TkVNQ8Oxpzw6gTMxRADcdeIzoBA9ThcLwqmG+xVY8VBvSE06lPKehmiD60VbaWl5Vw3KjLNRSn4FOFG9Oc+tAohzuTRasH7vyZ15ibYWDpUxCFwmdP/oXb1fDAWk3lQoHzUeb/bTi+4NquFj5dbjwM07cM78Sw97izD5oZcMq8qFMwRQnTOd5NkT5NG/m/SC7/RKIM8WqT9o1eF8d7vSTuJf24e7BLlrZJdsgzsksS8pIckENyRAaEEka+km/ke7ATvA4Og3fL0M7GKucx8Sz4+BtIATsl</latexit><latexit sha1_base64="m/HE0ZgfFmB3fIRSTBG/PM33h08=">AAADmXicfZLNbtNAEMe3MR/FfLVwrIQMEVLFIbJ7gVuL4FAhIRpB2kpxVI03a2fV9e5qd90msnJB4sQVXoNzX4Vn4CUYJxFi3cBIlv76zYxndmYyLbh1cfxzoxPcuHnr9uad8O69+w8ebm0/OraqMpQNqBLKnGZgmeCSDRx3gp1qw6DMBDvJzt80/pMLZixX8pObaTYqoZA85xQcoj4/2+rGvXhh0XWRrER3/8dV/9eXJ1dHZ9udz+lY0apk0lEB1g6TWLtRDcZxKtg8TCvLNNBzKNgQpYSS2VG96HQePUcyjnJl8JMuWtC/M2oorZ2VGUaW4Ca27WvgOt+wcvmrUc2lrhyTdFkor0TkVNQ8Oxpzw6gTMxRADcdeIzoBA9ThcLwqmG+xVY8VBvSE06lPKehmiD60VbaWl5Vw3KjLNRSn4FOFG9Oc+tAohzuTRasH7vyZ15ibYWDpUxCFwmdP/oXb1fDAWk3lQoHzUeb/bTi+4NquFj5dbjwM07cM78Sw97izD5oZcMq8qFMwRQnTOd5NkT5NG/m/SC7/RKIM8WqT9o1eF8d7vSTuJf24e7BLlrZJdsgzsksS8pIckENyRAaEEka+km/ke7ATvA4Og3fL0M7GKucx8Sz4+BtIATsl</latexit><latexit sha1_base64="zXfoOoZZ1e512Ft1JklTdNk1yqA=">AAADmXicfZJLb9NAEMe3MY9iXi0cezFESBWHyOYCxyI4VEiIVpC2UhxV483aWXVf2l2XRFYuXLnCh+PbME4sxLqBkSz99ZsZz+zMFEZw59P0184gunX7zt3de/H9Bw8fPd7bf3LmdG0pG1MttL0owDHBFRt77gW7MJaBLAQ7L67etf7za2Yd1+qLXxo2lVApXnIKHtEpv9wbpqN0bclNkXViSDo7udwffMtnmtaSKU8FODfJUuOnDVjPqWCrOK8dM0CvoGITlAokc9Nm3ekqeYFklpTa4qd8sqZ/ZzQgnVvKAiMl+Lnr+1q4zTepfflm2nBlas8U3RQqa5F4nbTPTmbcMurFEgVQy7HXhM7BAvU4nKAK5jtsNWCVBTPndBFSCqYdYghdXWzlshaeW/11C8UphFTjxgynIbTa485U1euB+3DmDeYWGChDCqLS+Oz5v3C/Gh5Yr6lSaPAhKsK/TWbX3Lhu4YvNxuM4f8/wTiz7iDv7ZJgFr+3LJgdbSVis8G6q/Fneyv9FcvUnEmWMV5v1b/SmOHs1ytJRdpoOjw67+90lB+Q5OSQZeU2OyDE5IWNCCSPfyQ/yMzqI3kbH0YdN6GCny3lKAos+/wZrRDbp</latexit>

|{z}
W

<latexit sha1_base64="RqYq82SkdUPnYVMs7kTI3ygBjPc=">AAADqXicfZLNbtNAEMe3MR/FfDSFIxdDhVSBFNlc4FipHLggWok0EXEUjddrZ9X17mp33SaycuE1OAIPxJG3YZxEiHUDI1n66zczO+OZybTg1sXxr71ecOv2nbv798L7Dx4+OugfPr6wqjaUDakSyowzsExwyYaOO8HG2jCoMsFG2eVp6x9dMWO5kp/cUrNpBaXkBafgEM36B2ktc2YyA5Q1q9lo1j+KB/Haopsi2Yqjk+Tbz4gQcjY77H1Jc0XriklHBVg7SWLtpg0Yx6lgqzCtLdNAL6FkE5QSKmanzbrzVfQCSR4VyuAnXbSmf2c0UFm7rDKMrMDNbdfXwl2+Se2Kt9OGS107JummUFGLyKmoHUOUc8OoE0sUQA3HXiM6B5yCw2F5VTDfYqseKw3oOacLn1LQ7VB9aOtsJ69q4bhR1zsoTsGnCjeoOfWhUQ53KMtOD9z5M28wN8PAyqcgSoW/Pf8X7lbDg+s0VQgFzkeZ/9okv+Labhe+2Gw8DNN3DO/EsA+4s4+aGXDKvGxSMGUFixXeTZk+S1v5v0gu/0SiDPFqk+6N3hQXrwdJPEjO8XyPycb2yVPynByThLwhJ+Q9OSNDQklNvpLv5EfwKjgPxsHnTWhvb5vzhHgW0N/pvj9n</latexit><latexit sha1_base64="YYAxomaKytTQNT7ZA1ZgaTXQI8g=">AAADqXicfZLNbtNAEMe3MR/FfDSFIxdDi1SBFNm90GMlOCAkRCuRJiKOovFm7ay63l3trttEVi68BkfggTjyNoyTCLFuYCRLf/1mZmc8M5kW3Lo4/rXTCW7dvnN39154/8HDR3vd/ccXVlWGsj5VQplhBpYJLlnfcSfYUBsGZSbYILt80/gHV8xYruQnt9BsXEIhec4pOEST7l5aySkzmQHK6uVkMOkexL14ZdFNkWzEwWny7efh++zwbLLf+ZJOFa1KJh0VYO0oibUb12Acp4Itw7SyTAO9hIKNUEoomR3Xq86X0Qsk0yhXBj/pohX9O6OG0tpFmWFkCW5m274GbvONKpefjGsudeWYpOtCeSUip6JmDNGUG0adWKAAajj2GtEZ4BQcDsurgvkWW/VYYUDPOJ37lIJuhupDW2VbeVkJx4263kJxCj5VuEHNqQ+NcrhDWbR64M6feY25GQaWPgVRKPzt2b9wuxoeXKupXChwPsr810bTK67tZuHz9cbDMH3L8E4M+4A7+6iZAafMyzoFU5QwX+LdFOmztJH/i+TyTyTKEK82ad/oTXFx3EviXnKO53tE1rZLnpLn5Igk5DU5Je/IGekTSirylXwnP4JXwXkwDD6vQzs7m5wnxLOA/gZr5UA7</latexit><latexit sha1_base64="YYAxomaKytTQNT7ZA1ZgaTXQI8g=">AAADqXicfZLNbtNAEMe3MR/FfDSFIxdDi1SBFNm90GMlOCAkRCuRJiKOovFm7ay63l3trttEVi68BkfggTjyNoyTCLFuYCRLf/1mZmc8M5kW3Lo4/rXTCW7dvnN39154/8HDR3vd/ccXVlWGsj5VQplhBpYJLlnfcSfYUBsGZSbYILt80/gHV8xYruQnt9BsXEIhec4pOEST7l5aySkzmQHK6uVkMOkexL14ZdFNkWzEwWny7efh++zwbLLf+ZJOFa1KJh0VYO0oibUb12Acp4Itw7SyTAO9hIKNUEoomR3Xq86X0Qsk0yhXBj/pohX9O6OG0tpFmWFkCW5m274GbvONKpefjGsudeWYpOtCeSUip6JmDNGUG0adWKAAajj2GtEZ4BQcDsurgvkWW/VYYUDPOJ37lIJuhupDW2VbeVkJx4263kJxCj5VuEHNqQ+NcrhDWbR64M6feY25GQaWPgVRKPzt2b9wuxoeXKupXChwPsr810bTK67tZuHz9cbDMH3L8E4M+4A7+6iZAafMyzoFU5QwX+LdFOmztJH/i+TyTyTKEK82ad/oTXFx3EviXnKO53tE1rZLnpLn5Igk5DU5Je/IGekTSirylXwnP4JXwXkwDD6vQzs7m5wnxLOA/gZr5UA7</latexit><latexit sha1_base64="Nf96OVGq+UgsHPY2WniIh0QFvzo=">AAADqXicfZLNbtNAEMe3MR/FfDSFIxdDhFSBFNlc4FipHLggWok0EXEUjdcbZ9X17mp33SaycuE1uMJD8TaMEwuxbmAkS3/9ZmZnPDOZFty6OP510Avu3L13//BB+PDR4ydH/eOnl1ZVhrIRVUKZSQaWCS7ZyHEn2EQbBmUm2Di7Omv842tmLFfyi1trNiuhkHzBKThE8/5RWsmcmcwAZfVmPp73B/Ew3lp0WyStGJDWzufHvW9prmhVMumoAGunSazdrAbjOBVsE6aVZRroFRRsilJCyeys3na+iV4hyaOFMvhJF23p3xk1lNauywwjS3BL2/U1cJ9vWrnF+1nNpa4ck3RXaFGJyKmoGUOUc8OoE2sUQA3HXiO6BJyCw2F5VTDfYqseKwzoJacrn1LQzVB9aKtsLy8r4bhRN3soTsGnCjeoOfWhUQ53KItOD9z5M68xN8PA0qcgCoW/vfwX7lbDg+s0tRAKnI8y/7Vpfs21bRe+2m08DNMPDO/EsE+4s8+aGXDKvK5TMEUJqw3eTZG+SBv5v0gu/0SiDPFqk+6N3haXb4dJPEwu4sHpSXu/h+Q5eUlOSELekVPykZyTEaGkIt/JD/IzeBNcBJPg6y60d9DmPCOeBfQ3xI09Yg==</latexit>

..................| {z }
FC + ReLU

<latexit sha1_base64="JkKsPPWLNC/ScGv1AnjepmlXnc4=">AAAD2XicfZJNbxMxEIbdLh8lfDSFIxdDhVSBFO32AjcqFSEOIAoibaVsFHmdycaq17Zsb5totQc4Ia78BMSv4YQEB/4Ns0mEcBIYaaVXj2fs2XknM1I4H8e/NjajS5evXN261rp+4+at7fbO7WOnS8uhy7XU9jRjDqRQ0PXCSzg1FliRSTjJzg6b85NzsE5o9c5PDfQLlisxEpx5RIP207RUQ7CZZRyqdHZfdTEWHurOStSDKvUw8dXzQ/qIvoWX3boetHfjTjwLuiqShdg92P/ynRJCjgY7mx/SoeZlAcpzyZzrJbHx/YpZL7iEupWWDgzjZyyHHkrFCnD9atZZTR8gGdKRtvgpT2f074qKFc5NiwwzC+bHbvmsgevOeqUfPelXQpnSg+Lzh0alpF7TZmx0KCxwL6coGLcCe6V8zHBqHocbvIL1DlsNWG6ZGQs+CSlnpjEhhK7M1vKilF5YfbGG4hRCqtFxI3gIrfboucqXemisDgjWZphYhJTJXONvj/+Fl1/DBV1qaiQ18yHKwtt6w3Nh3MLwydzxVit9BrgnFl6hZ68NWOa1fVilzOYFm9S4N3l6L23k/zKF+pOJsoVbmyzv6Ko43u8kcSd5g+u7R+axRe6S+2SPJOQxOSAvyBHpEk6+km/kB/kZ9aL30cfo0zx1c2NRc4cEEX3+DVlhUB4=</latexit><latexit sha1_base64="5pgRkHZH+L6t/rArYKzBway9JQ0=">AAAD2XicfZJNixNBEIZ7M36s8SurRy+ju8KiEGb2ojcXVkREcRWzu5AJoadTM2m2p7vp7tlNGOagJ/HqTxB/jSdBD/4ba5IgdhItGHh5uqq7pt5KteDWRdGvjVZw4eKly5tX2levXb9xs7N168iq0jDoMSWUOUmpBcEl9Bx3Ak60AVqkAo7T04Pm/PgMjOVKvnNTDYOC5pJnnFGHaNh5kpRyBCY1lEGVzO6rzsfcQd1diXpYJQ4mrnp2ED4M38LLXl0PO9tRN5pFuCrihdje3/vyfedFunM43Gp9SEaKlQVIxwS1th9H2g0qahxnAup2UlrQlJ3SHPooJS3ADqpZZ3V4H8kozJTBT7pwRv+uqGhh7bRIMbOgbmyXzxq47qxfuuzxoOJSlw4kmz+UlSJ0KmzGFo64AebEFAVlhmOvIRtTnJrD4XqvYL3FVj2WG6rHnE18yqhuTPChLdO1vCiF40adr6E4BZ8qdFxz5kOjHHou86UeGqs9grUpJhY+pSJX+Nvjf+Hl13BBl5rKhKLOR6l/W390xrVdGD6ZO95uJ08B98TAK/TstQZDnTIPqoSavKCTGvcmT+4mjfxfJpd/MlG2cWvj5R1dFUd73Tjqxm9wfXfJPDbJHXKP7JKYPCL75Dk5JD3CyFfyjfwgP4N+8D74GHyap7Y2FjW3iRfB59/beVDy</latexit><latexit sha1_base64="5pgRkHZH+L6t/rArYKzBway9JQ0=">AAAD2XicfZJNixNBEIZ7M36s8SurRy+ju8KiEGb2ojcXVkREcRWzu5AJoadTM2m2p7vp7tlNGOagJ/HqTxB/jSdBD/4ba5IgdhItGHh5uqq7pt5KteDWRdGvjVZw4eKly5tX2levXb9xs7N168iq0jDoMSWUOUmpBcEl9Bx3Ak60AVqkAo7T04Pm/PgMjOVKvnNTDYOC5pJnnFGHaNh5kpRyBCY1lEGVzO6rzsfcQd1diXpYJQ4mrnp2ED4M38LLXl0PO9tRN5pFuCrihdje3/vyfedFunM43Gp9SEaKlQVIxwS1th9H2g0qahxnAup2UlrQlJ3SHPooJS3ADqpZZ3V4H8kozJTBT7pwRv+uqGhh7bRIMbOgbmyXzxq47qxfuuzxoOJSlw4kmz+UlSJ0KmzGFo64AebEFAVlhmOvIRtTnJrD4XqvYL3FVj2WG6rHnE18yqhuTPChLdO1vCiF40adr6E4BZ8qdFxz5kOjHHou86UeGqs9grUpJhY+pSJX+Nvjf+Hl13BBl5rKhKLOR6l/W390xrVdGD6ZO95uJ08B98TAK/TstQZDnTIPqoSavKCTGvcmT+4mjfxfJpd/MlG2cWvj5R1dFUd73Tjqxm9wfXfJPDbJHXKP7JKYPCL75Dk5JD3CyFfyjfwgP4N+8D74GHyap7Y2FjW3iRfB59/beVDy</latexit><latexit sha1_base64="YlAMV6JUSWZkLmES/jm9Zt4Rtg8=">AAAD2XicfZJNixNBEIZ7M36s8SurRy+jQVgUwowXvbmwIh4UVzG7C5kQejqVSbM93U13zW7CMAc9iVd/g7/Gqx78N9YkQZwkWjDw8nRVd029lVolPUbRr51WcOnylau719rXb9y8dbuzd+fYm8IJ6AujjDtNuQclNfRRooJT64DnqYKT9OywPj85B+el0R9wbmGY80zLiRQcCY06z5NCj8Gljgsok8V95cVUIlS9jahGZYIww/LlYfg4fA+v+1U16nSjXrSIcFPEK9Flqzga7bU+JWMjihw0CsW9H8SRxWHJHUqhoGonhQfLxRnPYEBS8xz8sFx0VoUPiYzDiXH0aQwX9O+Kkufez/OUMnOOU79+VsNtZ4MCJ8+GpdS2QNBi+dCkUCGasB5bOJYOBKo5CS6cpF5DMeU0NaThNl6hek+tNljmuJ1KMWtSwW1tQhP6It3K80KhdOZiC6UpNKkhx60UTegMkuc6W+uhtrpBqDalxLxJucoM/fb0X3j9NVrQtaYmynBsorR522B8Lq1fGT5bOt5uJy+A9sTBG/LsrQXH0bhHZcJdlvNZRXuTJfeTWv4vU+o/mSTbtLXx+o5uiuMnvTjqxe+i7sH+an932T32gO2zmD1lB+wVO2J9Jtg39p39YD+DQfAx+Bx8Waa2dlY1d1kjgq+/ATEkThg=</latexit>

..................| {z }
FC + ReLU

<latexit sha1_base64="JkKsPPWLNC/ScGv1AnjepmlXnc4=">AAAD2XicfZJNbxMxEIbdLh8lfDSFIxdDhVSBFO32AjcqFSEOIAoibaVsFHmdycaq17Zsb5totQc4Ia78BMSv4YQEB/4Ns0mEcBIYaaVXj2fs2XknM1I4H8e/NjajS5evXN261rp+4+at7fbO7WOnS8uhy7XU9jRjDqRQ0PXCSzg1FliRSTjJzg6b85NzsE5o9c5PDfQLlisxEpx5RIP207RUQ7CZZRyqdHZfdTEWHurOStSDKvUw8dXzQ/qIvoWX3boetHfjTjwLuiqShdg92P/ynRJCjgY7mx/SoeZlAcpzyZzrJbHx/YpZL7iEupWWDgzjZyyHHkrFCnD9atZZTR8gGdKRtvgpT2f074qKFc5NiwwzC+bHbvmsgevOeqUfPelXQpnSg+Lzh0alpF7TZmx0KCxwL6coGLcCe6V8zHBqHocbvIL1DlsNWG6ZGQs+CSlnpjEhhK7M1vKilF5YfbGG4hRCqtFxI3gIrfboucqXemisDgjWZphYhJTJXONvj/+Fl1/DBV1qaiQ18yHKwtt6w3Nh3MLwydzxVit9BrgnFl6hZ68NWOa1fVilzOYFm9S4N3l6L23k/zKF+pOJsoVbmyzv6Ko43u8kcSd5g+u7R+axRe6S+2SPJOQxOSAvyBHpEk6+km/kB/kZ9aL30cfo0zx1c2NRc4cEEX3+DVlhUB4=</latexit><latexit sha1_base64="5pgRkHZH+L6t/rArYKzBway9JQ0=">AAAD2XicfZJNixNBEIZ7M36s8SurRy+ju8KiEGb2ojcXVkREcRWzu5AJoadTM2m2p7vp7tlNGOagJ/HqTxB/jSdBD/4ba5IgdhItGHh5uqq7pt5KteDWRdGvjVZw4eKly5tX2levXb9xs7N168iq0jDoMSWUOUmpBcEl9Bx3Ak60AVqkAo7T04Pm/PgMjOVKvnNTDYOC5pJnnFGHaNh5kpRyBCY1lEGVzO6rzsfcQd1diXpYJQ4mrnp2ED4M38LLXl0PO9tRN5pFuCrihdje3/vyfedFunM43Gp9SEaKlQVIxwS1th9H2g0qahxnAup2UlrQlJ3SHPooJS3ADqpZZ3V4H8kozJTBT7pwRv+uqGhh7bRIMbOgbmyXzxq47qxfuuzxoOJSlw4kmz+UlSJ0KmzGFo64AebEFAVlhmOvIRtTnJrD4XqvYL3FVj2WG6rHnE18yqhuTPChLdO1vCiF40adr6E4BZ8qdFxz5kOjHHou86UeGqs9grUpJhY+pSJX+Nvjf+Hl13BBl5rKhKLOR6l/W390xrVdGD6ZO95uJ08B98TAK/TstQZDnTIPqoSavKCTGvcmT+4mjfxfJpd/MlG2cWvj5R1dFUd73Tjqxm9wfXfJPDbJHXKP7JKYPCL75Dk5JD3CyFfyjfwgP4N+8D74GHyap7Y2FjW3iRfB59/beVDy</latexit><latexit sha1_base64="5pgRkHZH+L6t/rArYKzBway9JQ0=">AAAD2XicfZJNixNBEIZ7M36s8SurRy+ju8KiEGb2ojcXVkREcRWzu5AJoadTM2m2p7vp7tlNGOagJ/HqTxB/jSdBD/4ba5IgdhItGHh5uqq7pt5KteDWRdGvjVZw4eKly5tX2levXb9xs7N168iq0jDoMSWUOUmpBcEl9Bx3Ak60AVqkAo7T04Pm/PgMjOVKvnNTDYOC5pJnnFGHaNh5kpRyBCY1lEGVzO6rzsfcQd1diXpYJQ4mrnp2ED4M38LLXl0PO9tRN5pFuCrihdje3/vyfedFunM43Gp9SEaKlQVIxwS1th9H2g0qahxnAup2UlrQlJ3SHPooJS3ADqpZZ3V4H8kozJTBT7pwRv+uqGhh7bRIMbOgbmyXzxq47qxfuuzxoOJSlw4kmz+UlSJ0KmzGFo64AebEFAVlhmOvIRtTnJrD4XqvYL3FVj2WG6rHnE18yqhuTPChLdO1vCiF40adr6E4BZ8qdFxz5kOjHHou86UeGqs9grUpJhY+pSJX+Nvjf+Hl13BBl5rKhKLOR6l/W390xrVdGD6ZO95uJ08B98TAK/TstQZDnTIPqoSavKCTGvcmT+4mjfxfJpd/MlG2cWvj5R1dFUd73Tjqxm9wfXfJPDbJHXKP7JKYPCL75Dk5JD3CyFfyjfwgP4N+8D74GHyap7Y2FjW3iRfB59/beVDy</latexit><latexit sha1_base64="YlAMV6JUSWZkLmES/jm9Zt4Rtg8=">AAAD2XicfZJNixNBEIZ7M36s8SurRy+jQVgUwowXvbmwIh4UVzG7C5kQejqVSbM93U13zW7CMAc9iVd/g7/Gqx78N9YkQZwkWjDw8nRVd029lVolPUbRr51WcOnylau719rXb9y8dbuzd+fYm8IJ6AujjDtNuQclNfRRooJT64DnqYKT9OywPj85B+el0R9wbmGY80zLiRQcCY06z5NCj8Gljgsok8V95cVUIlS9jahGZYIww/LlYfg4fA+v+1U16nSjXrSIcFPEK9Flqzga7bU+JWMjihw0CsW9H8SRxWHJHUqhoGonhQfLxRnPYEBS8xz8sFx0VoUPiYzDiXH0aQwX9O+Kkufez/OUMnOOU79+VsNtZ4MCJ8+GpdS2QNBi+dCkUCGasB5bOJYOBKo5CS6cpF5DMeU0NaThNl6hek+tNljmuJ1KMWtSwW1tQhP6It3K80KhdOZiC6UpNKkhx60UTegMkuc6W+uhtrpBqDalxLxJucoM/fb0X3j9NVrQtaYmynBsorR522B8Lq1fGT5bOt5uJy+A9sTBG/LsrQXH0bhHZcJdlvNZRXuTJfeTWv4vU+o/mSTbtLXx+o5uiuMnvTjqxe+i7sH+an932T32gO2zmD1lB+wVO2J9Jtg39p39YD+DQfAx+Bx8Waa2dlY1d1kjgq+/ATEkThg=</latexit>

rposiW
<latexit sha1_base64="tfHGArqqdltzUbvF5atyTD6Xdns=">AAADqnicfZLNjtMwEMe9DbBL+OrCkUtgQUIIVQkXOFaCAxwQC6LbRU1VTRwntdaxLdspraJeeA6u8E7ceRAmbYVwtjBSpL9+M+OZzEymBbcujn8e9IIrV68dHl0Pb9y8dftO//jumVW1oWxElVDmPAPLBJds5LgT7FwbBlUm2Di7eNX6xwtmLFfyk1tpNq2glLzgFByiWb+fSsgEzBqt7Iyvo/GsfxIP4o1Fl0WyEyfDw7e/hoSQ09lx72uaK1pXTDoqwNpJEms3bcA4TgVbh2ltmQZ6ASWboJRQMTttNq2vo8dI8qhQBj/pog39O6OBytpVlWFkBW5uu74W7vNNale8nDZc6toxSbeFilpETkXtHKKcG0adWKEAajj2GtE5GKAOp+VVwXyLrXqsNKDnnC59SkG3U/WhrbO9vKqF40Z92UNxCj5VuELNqQ+NcrhEWXZ64M6feYO5GQZWPgVRKvzt+b9wtxpeXKepQihwPsr81yb5gmu7W/hyu/EwTF8zvBPD3uHO3mtmwCnztEnBlBUs13g3ZfogbeX/Irn8E4kyxKtNujd6WZw9HyTxIPmA5/uIbO2I3CcPyROSkBdkSN6QUzIilCzIN/Kd/AieBR+Dz8FkG9o72OXcI54F+W96hT85</latexit><latexit sha1_base64="fyPzGVMNKJG+LaNuzFr1zHxMxvE=">AAADqnicfZJLb9NAEMe3MdASXikcuRgKEkIosrnAsVJ7gANqi0hTZEfWeLNxVt2XdtdpIisXPgcHLvCduPNBmDyE2DQwkqW/fjOzM56Z0gjufJL83GlFN27e2t273b5z9979B539h+dO15ayHtVC24sSHBNcsZ7nXrALYxnIUrB+eXm08PcnzDqu1Sc/M2wgoVJ8xCl4REWnkysoBRSN0a7g87hfdA6SbrK0+LpI1+LgcPf9r5NvZ8enxX7rSz7UtJZMeSrAuSxNjB80YD2ngs3bee2YAXoJFctQKpDMDZpl6/P4OZJhPNIWP+XjJf07owHp3EyWGCnBj92mbwG3+bLaj94OGq5M7Zmiq0KjWsRex4s5xENuGfVihgKo5dhrTMdggXqcVlAF8x22GrDKghlzOg0pBbOYaghdXW7lshaeW321heIUQqpxhYbTEFrtcYmq2uiB+3DmDeaWGChDCqLS+Nvjf+HNanhxG02NhAYfojJ8LRtOuHHrhU9XG2+382OGd2LZB9zZiWEWvLYvmxxsJWE6x7up8if5Qv4vkqs/kSjbeLXp5o1eF+evu2nSTc/wfJ+Rle2Rx+QpeUFS8oYcknfklPQIJRPylXwnP6JX0cfoc5StQls765xHJLBo+BtQF0B9</latexit><latexit sha1_base64="fyPzGVMNKJG+LaNuzFr1zHxMxvE=">AAADqnicfZJLb9NAEMe3MdASXikcuRgKEkIosrnAsVJ7gANqi0hTZEfWeLNxVt2XdtdpIisXPgcHLvCduPNBmDyE2DQwkqW/fjOzM56Z0gjufJL83GlFN27e2t273b5z9979B539h+dO15ayHtVC24sSHBNcsZ7nXrALYxnIUrB+eXm08PcnzDqu1Sc/M2wgoVJ8xCl4REWnkysoBRSN0a7g87hfdA6SbrK0+LpI1+LgcPf9r5NvZ8enxX7rSz7UtJZMeSrAuSxNjB80YD2ngs3bee2YAXoJFctQKpDMDZpl6/P4OZJhPNIWP+XjJf07owHp3EyWGCnBj92mbwG3+bLaj94OGq5M7Zmiq0KjWsRex4s5xENuGfVihgKo5dhrTMdggXqcVlAF8x22GrDKghlzOg0pBbOYaghdXW7lshaeW321heIUQqpxhYbTEFrtcYmq2uiB+3DmDeaWGChDCqLS+Nvjf+HNanhxG02NhAYfojJ8LRtOuHHrhU9XG2+382OGd2LZB9zZiWEWvLYvmxxsJWE6x7up8if5Qv4vkqs/kSjbeLXp5o1eF+evu2nSTc/wfJ+Rle2Rx+QpeUFS8oYcknfklPQIJRPylXwnP6JX0cfoc5StQls765xHJLBo+BtQF0B9</latexit><latexit sha1_base64="kX9p7bwjsHpKm0GFZjee1D+gRTU=">AAADqnicfZLNbtNAEMe3MdBiPprCkYshICGEIpsLPVaCAxdEQaQpsqNovNk4q+6XdtchkZULz8EV3om3YZJYiE0DI1n66zczO+OZKY3gzqfpr4NOdOPmrcOj2/Gdu/fuH3dPHlw4XVvKBlQLbS9LcExwxQaee8EujWUgS8GG5dWbtX84Z9ZxrT77pWEjCZXiU07BIxp3u4WCUsC4MdqN+SoZjru9tJ9uLLkuslb0SGvn45POt2KiaS2Z8lSAc3mWGj9qwHpOBVvFRe2YAXoFFctRKpDMjZpN66vkGZJJMtUWP+WTDf07owHp3FKWGCnBz9yubw33+fLaT09HDVem9kzRbaFpLRKvk/Uckgm3jHqxRAHUcuw1oTOwQD1OK6iC+Q5bDVhlwcw4XYSUgllPNYSuLvdyWQvPrf66h+IUQqpxhYbTEFrtcYmq2umB+3DmDeaWGChDCqLS+Nuzf+HdanhxO01NhQYfojJ8LZ/MuXHtwhfbjcdx8ZbhnVj2Hnf2wTALXtsXTQG2krBY4d1UxeNiLf8XydWfSJQxXm22e6PXxcWrfpb2s49p7+xpe79H5BF5Qp6TjLwmZ+QdOScDQsmcfCc/yM/oZfQp+hLl29DOQZvzkAQWTX4DTFs9hQ==</latexit>

(a)

armp ormp

q
wa wo

(b)

q

armp o

ormp
2

ormp
1

wa wo

wo2wo1

(c)

Figure 12.2: (a) Shows the network used for learning with RMPfusion, specifically for any node
i on the RMP-tree*, with children c0, . . . , cj . If i is a leaf node, then it is evaluated from the
designed RMP policy. The global policy is obtained by applying resolve on the root node RMP.
RMP-tree* used in experiments for (b) 2d1level and (c) 2d2level.

RMPfusion can be viewed as a form of hierarchical Lyapunov function reshaping scheme

along the hierarchy structure induced by the RMP-tree*. Consequently, the recursive for-

mulation of RMPfusion allows the user only to provide basic subtask policies and gradually

increase their expressiveness by the weight functions. In contrast, using RMPflow requires

directly specifying subtask policies with complicated behaviors. We include a concrete

example to illustrate the benefit of this extra flexibility in Section 12.B.

12.3.4 Learning RMPfusion

We presented a new computational graph, RMPfusion, which supplements RMPflow with

a set of multiplicative weight functions to achieve extra flexibility in policy fusion. In Sec-

tion 12.C, we show these weight functions can be learned by back-propagation, and there-

fore RMPfusion can be treated as a parameterized policy class in policy optimization by

using computational graph libraries like tensorflow (Abadi et al., 2016) or pytorch (Paszke

et al., 2017). Finally, it is important to note that we do not have to learn all the weight func-

tions in a RMP-tree*. If we know that certain leaf-node RMPs have to be turned on, we

can adopt a semi-parametric scheme of weight functions. For example, we can design pa-

rameterization of the weight functions such that only collision avoidance RMPs are turned

on, when the robot is extremely close to an obstacle. This property is due to the structure

of RMP-tree*, which is interpretable, unlike policies purely based on general function ap-

proximators. Interpretability allows for prior knowledge (like constraints and preferences)

to be easily incorporated into the policy structure. This feature is particularly valuable for

461

policy learning with safety constraints (Garcıa and Fernández, 2015).

12.4 Experiments

We validate our approach with experiments of imitation learning. The goal is to show that

RMPfusion with an RMP-tree* that is parametrized by randomly initialized neural net-

works (as in Figure 12.2) is able to mimic the expert policy’s behavior by observing expert

demonstrations. This setup simulates the situation where the user of RMPfusion only pro-

vides imperfect subtask policies. We also use these experiments to validate the stability

properties of RMPfusion by studying if the Lyapunov function of the policies generated by

RMPfusion (even the premature ones obtained before learning converges) decay monoton-

ically over time. We perform these experiments with a 2D particle robot and with a Franka

Panda 7-DOF robot (video of experiments is available at https://youtu.be/McSrpW-mIq4).

As our aim it not to invent a new imitation learning algorithm, we adopt the most basic

approach, behavior cloning (Pomerleau, 1989), in which the demonstrations are purely gen-

erated by running the expert policy alone without any active intervention from the learner.

The objective of these experiments is to study how well RMPfusion can recover the be-

haviors of an expert that is within its effective policy class, and therefore we use a known

RMP-tree* with fixed weights as the expert policy. We choose this setting to rule out bias

due to mismatches between policy classes, because properly handling policy class biases

in imitation learning is a non-trivial research question on its own right (Cheng and Boots,

2018; Cheng et al., 2018a; Ross and Bagnell, 2014; Ross, Gordon, and Bagnell, 2011).

Note that any policy optimization technique can be used to train RMPfusion, including

online imitation learning and policy gradient methods, etc.

12.4.1 2D Robot

We first validate our approach on two problems where a 2D robot is tasked with reaching a

goal while avoiding one obstacle (2d1level) or two obstacles (2d2level). The RMP-

462

https://youtu.be/McSrpW-mIq4

tree* for these problems are shown in Figure 12.2b-12.2c and are detailed in Section 12.D.

The tree structure here is heuristically chosen based on the problem domain, as in RMPflow

and typically follows the robots kinematic chain and then extends into the workspace and

abstract task spaces. In the 2d1level problem, the aim is to show near-perfect recovery

of the weights given that the problem is convex in the weight functions. The 2d2level

problem adds extra complexity to the learning process. It introduces multiplication between

weights so the weights cannot be uniquely identified. The aim here is to show that close-

to-expert behavior can still be achieved.

Data For each problem, the expert policy is generated by the respective RMP-tree*

with some fixed assigned weights, which are unknown to the learner. The training data

consist of 20 randomly selected environments with varying placements and sizes of obsta-

cles. In each environment, the expert is run to generate 50 trajectories from unique initial

states, and 60 temporally equidistant data points on each trajectory are recorded. Each data

point is a pair of input and output: the input consists of the state (position and velocity) of

the 2D particle and the auxiliary state (obstacle location and dimension, goal location) i.e.

the meta information about the environment; the output consists of the action (acceleration)

as specified by the expert given the input state visited by running the expert policy. Test

data are collected by repeating this process with 5 new environments with 10 trajectories

in each environment.

Unstructured network For 2d2levelwe also compare our RMPfusion learner-rmp

with an unstructured neural network learner-un. This is a fully connected feed forward

network with similar number of learnable parameters compared to learner-rmp. This

network takes robot state and auxiliary state as the inputs, and outputs the acceleration.

Our aim with this comparison is to show that an unstructured approach cannot offer any

stability or safety guarantees, and with the same amount of data and training underperforms

compared to the structured approach.

Training We use the mean squared error between the action generated by any learner

463

Expert

Learner

(a) 2d1level

Expert

Learner

(b) 2d2level

0 20 40 60
Time (s)

0.25

0.50

0.75

1.00

L
y
a
p
u
n
o
v
 f

u
n
c
ti

o
n

(c)

0 5000 10000 15000 20000
Training steps

10−4

10−3

10−2

10−1

100

Lo
ss

(d)

Expert

Learner

(e) 2d2level

Figure 12.3: Trajectories generated in by (a)-(b) learner-rmp and (e) learner-un, com-
pared to the expert are shown. Initial state is a black circle for position and black arrow for velocity.
The environment has obstacles (red and blue) and goal (orange square). (c) shows the corresponding
Lyapunov function for learner-rmp trajectories in (b) while (d) shows its learning curve.

Expert

Learner

0 20 40 60
Time (s)

0

10

20

30

L
y
a
p
u
n
o
v
 f

u
n
c
ti

o
n

0 20 40 60
Time (s)

2.5

5.0

7.5

10.0

L
y
a
p
u
n
o
v
 f

u
n
c
ti

o
n

0 20 40 60
Time (s)

1

2

3

L
y
a
p
u
n
o
v
 f

u
n
c
ti

o
n

0 20 40 60
Time (s)

0.5

1.0

1.5

L
y
a
p
u
n
o
v
 f

u
n
c
ti

o
n

0 20 40 60
Time (s)

0.25

0.50

0.75

1.00

L
y
a
p
u
n
o
v
 f

u
n
c
ti

o
n

Figure 12.4: Improvement of the behavior produced by learner-rmp at various stages during
training for 2d2level. The top row shows the trajectories and the bottom row shows the corre-
sponding Lyapunov function. From left to right these plots correspond to the red dots from left to
right on the training curve in Figure 12.3d.

and the action specified by the expert as the loss function for imitation learning. All learners

are trained using RMSprop (Tieleman and Hinton, 2012) with a minibatch size of 200

for 20,000 iterations. The number of iterations were chosen such that learning roughly

converged and over-fitting had not happened.

Results We report two types of test loss: the batch-loss is the average loss on the

entire test dataset generated by the expert policy, and the online-loss is the average loss

at every time step (1 second interval) on the trajectories generated by the learner’s policy

starting from the initial states in the test dataset. In 2d1level, the batch-loss is 5.42 ×

10−5 and the online-loss is 5.82×10−5. In 2d1level, for learner-rmp the batch-loss

is 2.45 × 10−4 and the online-loss is 2.78 × 10−4, while for learner-un the batch-loss

is 0.111 and the online-loss is 12.203. The higher batch-loss for learner-un indicates

that with the same amount of data and training the network is unable to learn the policy

from the expert, while the much worse online-loss indicates that it cannot generalize well

464

and succumbs to covariate shift problems.

Figures 12.3a, 12.3b and 12.3e show the evaluation of the trained networks on an exam-

ple test environment. These results show that RMPfusion can perfectly match the behavior

of the expert in the convex case (2d1level), while achieving near-expert performance

in the non-identifiable case (2d12evel). From the overall results we also observe that

learner-un is never able to reach the goal and also has a collision rate of 28% (e.g. Fig-

ure 12.3e), whereas learner-rmp successfully finishes the task 100% of the time. We

also tried a unstructured network with 5.8 times the number of learnable parameters. While

the loss values improved with a small drop in collision rate, it was still never able to com-

plete the task (please see Section 12.D for more details). Figure 12.4 shows the improving

progression of learner-rmp during training, in which each snapshot corresponds to an

associated point on the training curve in Figure 12.3d. This verifies that with training we

can progressively improve the behavior of the learner. In addition, we verify that the sta-

bility properties of RMPfusion in the associated Lyapunov functions in Figure 12.3c and

Figure 12.4. We see that, regardless of the setting, the Lyapunov functions always decays

monotonically as indicated by Theorem 12.3.1. This suggests RMPfusion produces a sta-

ble policy even when the learned weight functions are premature before the learning has

converged (Figure 12.4). On the other hand, learner-un does not always avoid collision

or provide any stability during or after training (see Figure 12.7 in Section 12.D).

12.4.2 Franka Robot

We also validate our approach in a more realistic setup with a Franka Panda 7-DOF robot

arm. In these experiments, the task is to reach a goal while navigating around an obstacle.

The RMP-tree* used is shown in Figure 12.1b, where the configuration space of the robot

is the root node, and weights functions are shown on the edges where they are defined.

Please see Section 12.D for details.

Data and training The expert policy is given by the RMP-tree* with some fixed but

unknown weights, while the learner’s policy is defined by the RMP-tree* with neural net-

465

(a)

time conf length end eff length

0

2

4

goal distance

1

5

10

15

20
Expert

Learner-0

Learner-300

Learner-1200

(b)

Figure 12.5: (a) An example from the training dataset (left) and the test dataset (right). The robot
is shown in its start configuration with an obstacle (cylinder) and a goal (sphere). (b) Learner’s
performance with respect to the expert on the test dataset for the experiments with the Franka robot.

work weight functions that will be learned through behavior cloning. For training data we

place an obstacle in a fixed location near the robot and sample different start configurations

and goal locations that are in a region in front of the obstacle from the robot’s perspective,

so that the robot is forced to interact with the obstacle while trying to reach the goal. We

run the expert to generate 110 unique trajectories for the training data. The trajectories are

5-10 seconds long and data is collected every 0.1 seconds; a data point consists of the state

(configuration position and velocity of the robot), the auxiliary state (distances to goal and

obstacle), and the expert action (acceleration). In a new environment with a different place-

ment of the obstacle, this process is repeated to gather the test dataset where the expert is

used to generate 20 unique trajectories. An example from the training and test dataset is

shown in Figure 12.5a. The loss function is the same as in the experiments with the 2D

robot and we train the policy using ADAM (Kingma and Ba, 2014) with a minibatch size

of 200 for 1500 iterations. The number of iterations were chosen such that learning roughly

converged and over-fitting had not happened.

Results We compare the performance of the learner, against the expert, at various

stages of training: learner-0 at no training (the neural network is initialized with ran-

dom weights), learner-300 at 300 iterations, and learner-1200 at 1200 iterations

when the learning converges. We record the following metrics on the test dataset for the ex-

pert and all the learners: (i) time: the time to reach within a precision of 0.05m of the goal;

we time-out the execution at 10 seconds, (ii) conf length: the distance traveled in configu-

ration space, (iii) end eff length: the distance traveled by the end effector in workspace, and

466

(iv) goal distance: the distance to the goal from the end effector at the end of an execution.

Figure 12.5b shows the performance of the learners relative to the expert on the test

dataset (it plots the mean and the standard deviation of the ratios of the learner’s metric and

the expert’s metric across trajectories; the expert is shown as the dotted horizontal base-

line). From these results we see that, when the learner is not trained, the robot does not

move much and incurs a high goal distance before timing out. With more training, the goal

error reduces as the robot start traveling towards the goal but it still often times out. As

the learning converges so does the performance of the learner towards the expert’s perfor-

mance. In all the trajectories across all the learners there are no collision, which verifies

that constraints like safety can be incorporated through the structured learning approach

that RMPfusion allows. We do a qualitative comparison on an example execution with the

expert and the learners and also verify the stability properties of RMPfusion (even dur-

ing learning) with the monotonically decreasing Lyapunov functions on these executions.

Please see Section 12.D and Figure 12.9 therein for details.

12.5 Conclusion

We introduce extra parametrization flexibility into RMPflow and propose a new algorithm

called RMPfusion. RMPfusion features a set of learnable weight functions that specifies

the importance of subtask policies based on the robot’s configuration and the environment.

Consequently, RMPfusion can combine imperfect subtask policies into a global policy with

good performance, where the original RMPflow fails. We demonstrate the ability of RMP-

fusion to learn weight functions for policy fusion in experiments, and further theoretically

prove that RMPfusion inherits the Lyapunov-type stability from RMPflow with only mild

conditions on the weight functions. These structural properties and encouraging experi-

mental results of RMPfusion suggest that RMPfusion can be treated as a class of structural

policies suitable for policy learning with safety and interpretability requirements. Impor-

tant future work includes designing more expressive policies based on RMPfusion, e.g., we

467

can modify RMPfusion slightly to also learn part of the subtask policies and extra pertur-

bations.

12.A Proof of Theorem 12.3.1

We provide the proof of Theorem 12.3.1 for completeness. We use (Cheng et al., 2018b,

Thoerem 1) as the main lemma in our proof.

12.A.1 Background

We first recall the definition of structured GDS (Cheng et al., 2018b), which augments a

GDS with the information on how the metric matrix G factorizes, in order to state (Cheng

et al., 2018b, Thoerem 1).

Definition 12.A.1. (Cheng et al., 2018b) Suppose G has a structure S that factorizes

G(x, ẋ) = J(x)>H(z, ż)J(x), where z : x 7→ z(x) ∈ Rn and H : Rn × Rn → Rn×n
+ , and

J(x) = ∂xz. The tuple (M,G,B,Φ)S is a structured GDS, if

M(x, ẋ)ẍ + ηG;S(x, ẋ) = −∇xΦ(x)−B(x, ẋ)ẋ (12.7)

where ηG;S(x, ẋ) := J(x)>(ξH(z, ż) + (H(z, ż) + ΞH(z, ż))J̇(x, ẋ)ẋ). Given two struc-

tures, Sa is said to preserve Sb if Sa has the factorization (of H) made by Sb.

As noted in (Cheng et al., 2018b), GDSs are structured GDSs with a trivial structure (i.e.

z = x), and structured GDSs reduce to GDSs if G(x, ẋ) = G(x), or if the manifold is

one-dimensional.

Lemma 12.A.1. (Cheng et al., 2018b, Thoerem 1) Suppose the ith child node follows

(Ni,Gi,Bi,Φi)Si and has coordinate yi. Let ai = (Gi + ΞGi
)†(−ηGi;Si − ∇yiΦi −

Biẏi) and Mi = Gi + ΞGi
. Suppose a of the parent node is given by pullback with

{(ai,Mi)
Ni
C }Ki=1. Then a follows the pullback structured GDS (M,G,B,Φ)S , where G =

468

∑K
i=1 J>i GiJi, B =

∑K
i=1 J>i BiJi, Φ =

∑K
i=1 Φi ◦ yk, S preserves Si, and Ji = ∂xyi.

That is, the parent node is (a,M)MC such that M =
∑K

i=1 J>i (Gi + ΞGi
)Ji and a =

(G + ΞG)† (−ηG;S −∇xΦ−Bẋ).

Lemma 12.A.1 shows that the original pullback operator preserves structured GDSs.

Consequently, when all the leaf nodes are GDSs, the root node is a structured GDS, which

implies the type of Lyapunov stability in Theorem 12.2.1.

12.A.2 Proof of Theorem 12.3.1

We prove the stability of RMPfusion using similar techniques as (Cheng et al., 2018b).

Using the recursive property, it is sufficient to show that pullback* preserves a family

of structured GDSs, which are specified by the weight functions. Then the statement of

Theorem 12.3.1 follows directly as in (Cheng et al., 2018b).

We proceed by first decoupling the pullback* into two steps. Let u be a parent node

on manifoldM and {vk}Kk=1 be its K child nodes on manifold {Nk}Kk=1 in an RMP-tree*.

Between u and each vk, we add an extra node ṽk on manifoldM to create a new graph. In

this new graph, u has K child nodes {ṽk}Kk=1 with identity transformation and the original

weight function wk, and ṽk has a single child which is vk with the original transformation

from u to vk and an identity weight function. Under this construction, the pullback*

operator in the original graph can then be realized in the new graph as

1. a pullback* operator from vk to ṽk for each k

2. a pullback* operator from {ṽk}Kk=1 to u.

469

To verify this we rewrite (12.4) as

f =
K∑

i=1

wiJ
>
i (fi −MiJ̇iẋ) + hi =:

K∑

i=1

wif̃i + h̃i

M =
K∑

i=1

wiJ
>
i MiJi =:

K∑

i=1

wiM̃i

G =
K∑

i=1

wiJ
>
i GiJi =:

K∑

i=1

wiG̃i

L =
K∑

i=1

wiLi =:
K∑

i=1

wiL̃i

where we also has hi = h̃i = L̃i∇xwi − (ẋ>∇xwi)G̃iẋ. That is, node ṽk has the RMP

(f̃i, M̃i)
M
C , the metric matrix G̃i, and the Lagrangian L̃i. From the equalities above, we

verify the two-step decomposition of pullback* is valid.

Next we show that each step in the two-step decomposition yields a structured GDS

like Lemma 12.A.1, which is sufficient condition we need to prove Theorem 12.3.1. In

the first step from vi to ṽi, because the weight is constant identity, pullback* is the same

as pullback. We apply Lemma 12.A.1 and conclude that ṽi follows (M, G̃i, B̃i, Φ̃i)S̃i ,

where S̃i preserves Si.

Then we show the second step from {ṽi}Ki=1 to u has similar properties. This is summa-

rized as Lemma 12.A.2 below.

Lemma 12.A.2. If ṽi follows (M, G̃i, B̃i, Φ̃i)S̃i , then u follows (M,G,B,Φ)S , where S

preserves S̃i, G =
∑K

i=1 wiG̃i, B =
∑K

i=1 wiB̃i, and Φ =
∑K

i=1wiΦ̃i.

Proof of Lemma 12.A.2. This can be shown by algebraically comparing the dynamics of

(M,G,B,Φ)S and the result of (12.4). Let x be a coordinate ofM and, without loss of

generality, let us consider wk to be a function of only x (we ignore the dependency on the

auxiliary state). By Definition 12.A.1, the dynamics of (M,G,B,Φ)S satisfies

M(x, ẋ)ẍ + ηG;S(x, ẋ) = −∇xΦ(x)−B(x, ẋ)ẋ (12.8)

470

We first show the recursion of f of pullback* satisfies (12.8). To this end, we rewrite

ηG;S by Definition 12.A.1 as

ηG;S(x, ẋ) =
K∑

i=1

ξwiG̃i
(x, ẋ)

=
K∑

i=1

wi(x)ηG̃i
(x, ẋ) + (ẋ>∇xwi(x))G̃i(x, ẋ)ẋ− 1

2
∇xwi(x)ẋ>G̃i(x, ẋ)ẋ

where in the first equality we use the trick we made that the transformation from u to ṽk is

identity and we use the fact S̃i preserves Si, so the structure S that preserves S̃i has a clean

structure

G =

[
I . . . I

]

w1G̃1

. . .

wKG̃K

I

...

I

Similarly, we rewrite ∇xΦ(x) =
∑K

i=1 wi(x)∇xΦ̃i(x) + Φ̃i∇xwi(x). Substituting these

two equalities into (12.8), we can write (with input dependency omitted)

Mẍ = −∇xΦ−Bẋ− ηG;S

=
K∑

i=1

−wi∇xΦ̃i − Φ̃i∇xwi − wiBiẋ +
K∑

i=1

−wiηG̃i
− (ẋ>∇xwi)G̃iẋ +

1

2
∇xwiẋ

>G̃iẋ

=
K∑

i=1

wif̃i +
1

2
∇xwiẋ

>G̃iẋ− Φ̃i∇xwi − (ẋ>∇xwi)G̃iẋ

=
K∑

i=1

wif̃i + hi

where we use the fact that f̃i = −∇xΦ̃i−B̃iẋ−ηG̃i;S̃i as ṽi follows (M, G̃i, B̃i, Φ̃i)S̃i with

S̃i preserving Si. This is exactly the recursion of f when pullback* is applied between ṽi

and u, i.e. f = Mẍ =
∑K

i=1wif̃i + hi.

To establish the equivalence of the other recursions, we next rewrite M by definition

471

in (13.3) as

M(x, ẋ) = G(x, ẋ) + ΞG(x, ẋ)

=
K∑

i=1

wi(x)
(
G̃i(x, ẋ) + ΞG̃i

(x, ẋ)
)

=
K∑

i=1

wi(x)M̃i(x, ẋ)

where we use the fact that wi does not on the velocity ẋ. The recursion for G and L can be

derived similarly, so we omit them here. �

So far we have shown that pullback* of RMPfusion retains the closure of structured

GDSs as pullback in RMPflow. In addition, we show that the structured GDS created by

pullback* has a linearly weighted metric matrix, damping matrix, and potential function

(cf. Lemma 12.A.2). By recursively applying the two-step decomposition above, from the

leaf nodes to the root node, we conclude that the root node policy will be a structured GDS

with a Lyapunov function given by the recursion in (12.5). The rest of the statement of

Theorem 12.3.1 follows from the properties of structured GDSs as shown in (Cheng et al.,

2018b).

12.B Benefits due to the Extra Flexibility of RMPfusion

We use an example to illustrate the extra flexibility offered by RMPfusion. Consider a

simple Y-shape RMP-tree* with a root node and two child nodes with weight functions

w1 and w2. For the child nodes, suppose they are GDS (Ni,Gi,Bi,Φi) and have co-

ordinate yi, for i = 1, 2. For simplicity, let us assume Gi only depends on the con-

figuration yi. From Theorem 12.3.1, we see that the root node has an energy function

Vr = 1
2
q̇>Grq̇ + Φr, where Gr(q) = w1(q)G1(y1(q)) + w2(q)G2(y2(q)) and Φr(q) =

w1(q)Φ1(y1(q)) +w2(q)Φ2(y2(q)) Because wi is a function of q not yi and the Lyapunov

function of RMPflow only allows summing child-node functions, this example root node

472

policy does not admit a tree structure decomposition in the original RMP-tree and can only

be implemented as a single large node. Conversely, because of the weight function on the

edges, RMP-tree* can further exploits potential sparsity inside the policy representation

so that building complicated global polices with only basic elementary policies becomes

possible.

We note that the example above does not imply that RMPfusion can generate more ex-

pressive policies than RMPflow. More precisely, RMP-tree* allows representing the same

global policy using more basic leaf-node policies. This property has two implications: it

suggests (i) RMPfusion can be more efficient to compute and (ii) RMPfusion can offload

the difficulties of designing leaf-nodes policies into the weight functions, which are learn-

able.

12.C Learning RMPfusion

To show the weights are learnable, it is sufficient to check if we can differentiate through

the output of the final policy π = ar with respect to the parameters that specify the weight

functions. As the computation of ar is accomplished recursively in the backward pass

using pullback*, we will only illustrate that pullback* is differentiable. This can be

seen by treating pullback* as a computation graph, as illustrated in Figure 12.2. Take

the nodes in (12.4) as an example. pullback* receives fi, Mi, Gi, Bi, Ji, J̇i, Li from

the edges to the child nodes, the current state (x, ẋ) and the auxiliary state to define the

weight function wi and the correction term hi. As these inputs values do not depend on the

weight functions {wi} at the current node (i.e. they do not form a loop), the derivative of

ar with respect to the weight functions in the RMP-tree* can be computed recursively by

back-propagating the derivatives through each pullback* operator.

473

12.D Experimental Details

12.D.1 2D Robot

2d1level consists of a 2D particle that aims to reach a goal while avoiding an obsta-

cle. The RMP-tree* for 2d1level is of depth one (see Figure 12.2b), where the root

node q (configuration space of the robot) has one child obstacle RMP node (ormp) and one

child attractor RMP node (armp). 2d2level consists of a 2D particle that aims to reach

a goal while avoiding two obstacles. The RMP-tree* for 2d2level is of depth two (see

Fig 12.2c), where the root node (q) has one child attractor RMP node (armp) and one all-

obstacle RMP (o) that is meant to combine two child obstacle RMPs (ormp, one for each

obstacle). The respective weight functions are shown on the edges of both these trees. The

tree structures here are heuristically chosen based on the problem domain, as in RMPflow

and typically follow the robots kinematic chain and then extend into the workspace and

abstract task spaces.

Figure 12.7 shows the progression of learner-un during training, in which each

snapshot corresponds to an associated point on the training curve in Figure 12.6a. We see

that learner-un is never able to reach the goal and often ends up in collision during and

after training. We also compared with a unstructured network, learner-un-large,

that has 5.8 times more learnable parameters compared to learner-un. We see im-

provement over loss values where the batch-loss is 0.065 and the online-loss is 0.393, and

the collision rate decreases to 16%. However, it is still never able to complete the task (e.g.

see Figure 12.6b). Figure 12.8 shows the progression of learner-un-large during

training, in which each snapshot corresponds to an associated point on the training curve

in Figure 12.6c.

474

0 5000 10000 15000 20000
Training steps

10−1

2 × 10−1

3 × 10−1

4 × 10−1

Lo
ss

(a)

Expert

Learner

(b)

0 5000 10000 15000 20000
Training steps

10−1

6 × 10−2

2 × 10−1

Lo
ss

(c)

Figure 12.6: (b) Trajectories generated in 2d2level by learner-rmp-large compared
to the expert is shown. Initial state is a black circle for position and black arrow for velocity.
The environment has obstacles (red and blue) and goal (orange square). Learning curves for (a)
learner-rmp and (c) learner-rmp-large on 2d2level is also shown.

Expert

Learner

Figure 12.7: Trajectories produced by learner-un at various stages during training for
2d2level. From left to right these plots correspond to the red dots from left to right on the
training curve in Figure 12.6a.

Expert

Learner

Figure 12.8: Trajectories produced by learner-un-large at various stages during training
for 2d2level. From left to right these plots correspond to the red dots from left to right on the
training curve in Figure 12.6c.

12.D.2 Franka Robot

From the root node we have various task spaces, like the end-effector position (ee) on which

the attractor space (a) is defined by a change of coordinates such that the goal position is

at the origin. The attractor RMP (armp) is then defined on the attractor space for a goal

reaching subtask. Each joint of the robot is mapped to a one dimensional upper (ujli)

and lower (ljli) joint limit space where a joint limit RMP (jlrmp) is defined for joint limit

avoidance subtasks. The root node is also mapped to a pre-specified number of control

points on the robot (cpi) such that they collectively approximate the robot’s body and can

475

be used for collision avoidance. On any control point space we add a distance space to the

obstacle (di) where the obstacle RMP (ormp) is defined. Note that when multiple obstacles

are present we can add distance spaces and the obstacle RMPs for each obstacle on every

control point. Now, since the tree structure can change with the number of obstacles, in

practice, shared weights can be specified across all obstacles on a given control point, such

that training can be performed with only one obstacle to learn the weight function and then

can be applied to arbitrary number of obstacles during execution. Finally, there are also

native RMPs defined on the root node like a constant damper RMP (qd) and an RMP which

is just an identity metric (qmi) with no learnable weight function to ensure the resolve

operator is numerically stable.

Figure 12.9 shows a qualitative comparison on an example execution with the expert

and the learners. We verify the stability properties of RMPfusion (even during learning)

with the monotonically decreasing Lyapunov function plots on these executions. Note that

the scale on the plot for learner-0 is very small and the tiny kink on the plot is due to

numerical issues with Euler integration.

12.D.3 Discussion

The experiments shown here were designed to study if RMPfusion can combine imperfect

subtask RMPs, whose inertia weight functions are incorrectly specified while motion poli-

cies are sensibly designed with domain knowledge. While this setup does not emulate the

full generality where everything is unknown, we think that it captures a representative and

important scenario that often happens in practice. Weve had extensive literature in design-

ing motion policies, whereas designing the associated metrics/inertias for these policies is

a fairly new and nontrivial concept, which is a major user burden imposed by RMPflow.

We address this issue by learning the weight functions, and show in the experiments

that imperfect subtask RMPs with poorly designed metrics can still be compensated by our

framework. Importantly, we emphasize that RMPfusion is designed for generality and does

476

not assume the knowledge that only the inertias are wrongly specified. Therefore, though

not tested in the current experiments, we do believe RMPfusion can be used in more general

setups, so long as the user provides sufficiently rich subtask RMPs such that there exists a

fusion that can generate the desired behavior. However, how to choose the subtask RMPs

to start with is a domain specific problem, similar to specifying the size and structure of a

neural network in general. Therefore, we consider it beyond the scope of the current paper,

because our main focus here is to study and validate the theoretical benefits of RMPfusion

(like stability during immature learning).

Generally, an RMPfusion policy with constant weights (not a function of the parent

state, etc.) can be reduced into an RMPflow policy with the same tree structure. This can

be seen from (12.4); when the weights are constant, we can effectively push all the weights

of an RMP-tree* to the leaf-nodes to define modified inertia matrices on an RMP-tree (the

motion policy doesn’t change). In other words, in the experiments, the expert can be viewed

as an RMPflow policy with some unknown inertia matrices and therefore RMPflow wasn’t

directly compared.

Using neural networks to parameterize the weight functions maybe is an overkill in

our experiments. The reason for using general function approximators here is to show that

our framework is practically feasible and can support situations where this will become

necessary. For example, this allows for learning general differentiable representation for

the weight functions, e.g., using images for auxiliary states. However, one should note also

that while using expressive function approximators would add representation to the whole

policy it could also potentially make learning more difficult.

477

(a) expert

(b) learner-0

(c) learner-300

(d) learner-1200

0 5 10

Time (s)

0.025

0.03

0.035

0.04

L
y
a

p
u

n
o

v
 f

u
n

c
ti
o

n

0 5 10

Time (s)

2

4

6

L
y
a

p
u

n
o

v
 f

u
n

c
ti
o

n

0 5 10

Time (s)

2

4

6

L
y
a

p
u

n
o

v
 f

u
n

c
ti
o

n

(e)

Figure 12.9: (a)-(d) An example execution (left to right) from the test dataset, comparing (a)
the expert with (b) learner-0, (c) learner-300, and (d) learner-1200. (e) The respec-
tive Lyapunov function of the learners’ trajectories (learner-0 (left), learner-300 (middle),
learner-1200 (right)).

478

CHAPTER 13

RMPFLOW WITH CONTROL LYAPUNOV FUNCTION

13.1 Introduction

Multi-objective tasks are often involved in the control of robotic systems (Morris, Powell,

and Ames, 2013; Peters et al., 2008; Ratliff, Issac, and Kappler, 2018; Wang, Ames, and

Egerstedt, 2016). For example, a group of robots may be tasked with achieving a certain

formation, moving toward a goal region, while avoiding collisions with each other and

obstacles (Wang, Ames, and Egerstedt, 2016). These types of problems call for algorithms

that can systematically generate a stable controller capable of fulfilling multiple control

specifications simultaneously.

A classic strategy is to first design a controller for each individual control specification,

and then provide a high-level rule to switch among them. This idea has been frequently

exploited in robotics (Arkin, 1998). For example, it is common practice to switch to a col-

lision avoidance controller when the robot risks colliding with obstacles (Arkin, 1998). The

stability of switching systems has been thoroughly investigated, e.g. by finding a common

or switched Lyapunov function for the systems among all designed controllers (Daafouz,

Riedinger, and Iung, 2002; Liberzon, Hespanha, and Morse, 1999; Narendra and Balakr-

ishnan, 1994; Vu and Liberzon, 2005). However, a fundamental limitation shared by these

switching approaches is that only a single controller is active at a time and hence only a

subset of the control specifications is considered. If not designed properly, some controllers

for secondary tasks might take over the operation for most of the time. For example, when a

robot navigates in a cluttered environment, the collision avoidance controller can dominate

other controllers and the primary tasks may never be considered (Wang, Ames, and Egerst-

edt, 2016). Therefore, it may be more desirable to blend controllers rather than impose a

479

hard switch between them, so that all tasks can be considered simultaneously.

In robotics, the strategy of weighting controllers for different tasks has been explored

in potential field methods (Arkin, 1998; Khatib, 1985). While easy to implement such

schemes, it can be difficult to provide formal stability guarantees for the overall “blended”

system, especially when the weights are state-dependent. In some cases, the stability of

the overall system has been shown through a common Lyapunov function (Narendra and

Balakrishnan, 1994; Vu and Liberzon, 2005), but the existence of a common Lyapunov

function is not guaranteed. Finding a common Lyapunov function can be particularly chal-

lenging for robotics applications because the tasks can potentially conflict, e.g. the robot

may need to move through a cluttered environment to go to the goal.

The framework of null-space or hierarchical control handles this problem by assigning

priorities to the tasks, and hence to the controllers (Escande, Mansard, and Wieber, 2014;

Peters et al., 2008). The performance of the high-priority tasks can be guaranteed by forcing

the lower-priority controllers to act on the null space of high-priority tasks. However,

several problems surface as the number of tasks increases. One problem is the algorithmic

singularities introduced by the usage of multiple levels of projections (Escande, Mansard,

and Wieber, 2014; Peters et al., 2008). Most algorithms are designed under the assumption

of singular-free conditions. But this assumption is unlikely to hold in practice, especially

when there are a large number of tasks, and the system can easily become unstable if the

algorithmic singularities occur. In addition, similar to the switching scheme, it is possible

that secondary controllers, e.g. collision avoidance controllers, become the ones with high-

priorities and the primary task can not be achieved. While several heuristics (Dietrich,

Albu-Schäffer, and Hirzinger, 2012; Lee, Mansard, and Park, 2012) have been proposed to

shift the control priorities dynamically, whether such systems can be globally stabilized in

presence of the algorithmic singularities is still an open question (Dietrich, Ott, and Park,

2018).

Control Lyapunov functions (CLFs) and control barrier functions (CBFs) constitute

480

another class of methods to encode multiple control specifications (Ames, Grizzle, and

Tabuada, 2014; Morris, Powell, and Ames, 2013; Wang, Ames, and Egerstedt, 2016). In

the CLF and CBF frameworks, the control specifications are encoded as constraints on the

time derivatives of Lyapunov or barrier function candidates, and a control input that sat-

isfies all the constraints is solved through a constrained optimization problem. However,

in the case of conflicting specifications, the CLF and CBF frameworks suffer from fea-

sibility problems (Squires, Pierpaoli, and Egerstedt, 2018), i.e. there does not exist any

controller that satisfies all the control specifications. Although the CLF constraints can be

relaxed through slack variables (Ames, Grizzle, and Tabuada, 2014), they also add a new

set of hyperparameters to trade off the importance of different specifications; care must be

taken in tuning these hyperparameters in order to achieve desired performance properties

and maintain stability. Finally, it can be hard to encode certain high-dimensional control

specifications, such as damping behaviors, as CLF or CBF constraints.

In this chapter, we focus on weighting individual controllers. We aim to address two

interrelated questions:

• How can controllers be composed while guaranteeing system stability?

• How should individual controllers be designed so that they can be easily combined?

Although ensuring stability is challenging for arbitrary blending schemes, we design a

systematic process to combine controllers so that the stability of the overall system is guar-

anteed. Our framework considers all control specifications simultaneously, while provid-

ing the flexibility to vary the importance of different controllers based on the robot state.

Moreover, instead of considering specifications in the configuration space, we allow for

controllers defined directly on different spaces or manifolds1 for different specifications.

This separation can largely simplify the design and computation of each individual

controller, because it only concerns a possibly lower-dimensional manifold that is directly
1Specifications defined on non-Euclidean manifolds are common in robotics; for example, in obstacle

avoidance, obstacles become holes in the space and the geodesics flow around them (Ratliff, Issac, and
Kappler, 2018).

481

relevant to a particular control specification. For example, controllers for different links

of a robot manipulator can be designed in their corresponding (possibly non-Euclidan)

workspaces. We leverage a recent approach to controller synthesis in robotics, the Rie-

mannian Motion Policies (RMPs) (Ratliff, Issac, and Kappler, 2018) and RMPflow (Cheng

et al., 2018b) introduced in Chapter 11, which have been successfully deployed on robot

manipulators (Cheng et al., 2018b; Ratliff, Issac, and Kappler, 2018) and multi-robot sys-

tems (Li et al., 2019a). An RMP is a mathematical object that is designed to describe a

controller on a manifold, and RMPflow is a computational framework for combining RMPs

designed on different task manifolds into a controller for the entire system. A particular

feature of RMPflow is the use of state-dependent importance weightings of controllers

based on the properties of the corresponding manifolds. It is show in (Cheng et al., 2018b)

that when RMPs are generated from Geometric Dynamical Systems (GDSs), the combined

controller is Lyapunov-stable.

In Chapter 11, we studied RMPs and RMPflow in terms of the geometric structure of

second-order differential equations (Cheng et al., 2018b), where Riemannian metrics on

manifolds (of GDSs) naturally provide a geometrically-consistent notion of task impor-

tance and hence a mechanism to combine controllers (i.e. RMPflow). While differential

geometry provides a mathematical interpretation of RMPflow, in practice, the restriction to

GDSs for control specifications could limit performance and make controller design diffi-

cult.

To overcome this limitation, here we revisit RMPflow with a rigorous CLF treatment

and show that the existing computational framework of RMPflow actually ensures stability

for a larger class of systems than GDSs. This discovery is made possible by an alter-

native stability analysis of RMPflow and an induction lemma that characterizes how the

stability of individual controllers is propagated to the combined controller in terms of CLF

constraints. Hence, we can reuse RMPflow to stably combine a range of controllers, not

limited to the ones consistent with GDSs. To demonstrate, we introduce a computational

482

framework called RMPflow–CLF, where we augment RMPflow with CLF constraints to

generate a stable controller given user-specified nominal controllers for each of the con-

trol specifications. This allows users to incorporate additional design knowledge given by,

e.g. heuristics, motion planners, and human demonstrations, without worrying about the

geometric properties of the associated manifolds. RMPflow–CLF can be viewed as a soft

version of the QP–CLF framework (Morris, Powell, and Ames, 2013) that guarantees the

stability of the overall system, while ensuring feasibility even when control specifications

are conflicting. This chapter is partly based on our paper published as (Li et al., 2019b).

13.2 Background

For convenience of reading, we first shortly review RMPflow (Cheng et al., 2018b; Ratliff,

Issac, and Kappler, 2018) and CLFs (Ames, Grizzle, and Tabuada, 2014; Morris, Powell,

and Ames, 2013), which are different ways to combine control specifications.

13.2.1 Riemannian Motion Policies (RMPs) and RMPflow

Consider a robot with configuration space C which is a smooth d-dimensional manifold.

We assume that C admits a global generalized coordinate q : C → Rd and follow the

assumption in (Cheng et al., 2018b) that the system can be feedback linearized in such

a way that it can be controlled directly through the generalized acceleration2, i.e. q̈ =

u(q, q̇). We call u a control policy or a controller, and (q, q̇) the state.

The task is often defined on a different manifold from C called the task space, denoted

T . A task may admit further structure as a composition of subtasks (e.g. reaching a goal,

avoiding collision with obstacles, etc.). In this case, we can treat the task space as a collec-

tion of multiple lower-dimensional subtask spaces, each of which is a manifold. In other

words, each subtask space is associated with a control specification and together the task

space T describes the overall multi-objective control problem.

2This setup can be extended to torque controls as in (Peters et al., 2008).

483

Root Node

Leaf Node

Other Node

Figure 13.1: An example of an RMP-tree. See text for details.

Ratliff et al. (Ratliff, Issac, and Kappler, 2018) propose Riemannian Motion Policies

(RMPs) to represent control policies on manifolds. Consider an m-dimensional manifold

M with a global coordinate x ∈ Rm. An RMP onM can be represented by two forms, its

canonical form (a,M)M and its natural form [f ,M]M, where a : (x, ẋ) 7→ a(x, ẋ) is the

desired acceleration, M : (x, ẋ) 7→ M(x, ẋ) ∈ Rm×m
+ is the inertial matrix, and f = Ma

is the desired force. It is important to note that M and f do not necessarily correspond

to physical quantities; M defines the importance of an RMP when combined with other

RMPs, and f is proposed for computational efficiency.

RMPflow (Cheng et al., 2018b) is a recursive algorithm to generate control policies

on the configuration space given the RMPs of subtasks. It introduces: 1) a data structure,

the RMP-tree, for computational efficiency; and 2) a set of operators, the RMP-algebra, to

propagate information across the RMP-tree.

An RMP-tree is a directed tree, which encodes the computational structure of the task

map from C to T (see Fig. 13.1). In the RMP-tree, a node is associated with the state and

the RMP on a manifold, and an edge is augmented with a smooth map from a parent-node

manifold to a child-node manifold. In particular, the root node r is associated with the state

of the robot (q, q̇) and its control policy on the configuration space (ar,Mr)
C , and each

leaf node lk is associated with the RMP (alk ,Mlk)
Tk for a subtask, where Tk is a subtask

manifold. Recall the collection {Tk}Kk=1 is the task space T , where K is the number of

484

tasks.

To illustrate how the RMP-algebra operates, consider a node u with N child nodes

{vj}Nj=1. Let ej denote the edge from u to vj and let ψej be the associated smooth map.

Suppose that u is associated with an RMP [fu,Mu]
M on a manifoldM with coordinate x,

and vj is associated with an RMP [fvj ,Mvj]
Nj on a manifoldNj with coordinate yj . (Note

that here we represent the RMPs in their natural form.) The RMP-algebra consists of the

following three operators:

1. pushforward is the operator to forward propagate the state from the parent node

u to its child nodes {vj}Nj=1. Given the state (x, ẋ) from u, it computes (yj, ẏj) =

(ψej(x),Jej(x) ẋ) for each child node vj , where Jej = ∂xψej is the Jacobian matrix

of ψej .

2. pullback is the operator to backward propagate the RMPs from the child nodes to

the parent node. Given {[fvj ,Mvj]
Nj}Nj=1 from the child nodes, the RMP [fu,Mu]

M

for the parent node u is computed as,

fu =
N∑

j=1

J>ej(fvj −Mvj J̇ej ẋ), Mu =
N∑

j=1

J>ejMvjJej .

3. resolvemaps an RMP from its natural form to its canonical form. Given [fu,Mu]
M,

it outputs (au,Mu)
M with au = M† fu, where † denotes Moore-Penrose inverse.

RMPflow performs control policy generation through running the RMP-algebra on the

RMP-tree. It first performs a forward pass, by recursively calling pushforward from

the root node to the leaf nodes to update the state associated with each node on the RMP-

tree. Second, every leaf node lk evaluates its natural form RMP {(flk ,Mlk)
Tlk}Kk=1 given

its associated state. Then, RMPflow performs a backward pass, by recursively calling

pullback from the leaf nodes to the root node to back propagate the RMPs in the natural

form. Finally, resolve is applied to the root node to transform the RMP [fr,Mr]
C into

its canonical form (ar,Mr)
C and set the control policy as u = ar.

485

RMPflow was originally analyzed based on a differential geometric interpretation. Cheng

et al. (Cheng et al., 2018b) consider the inertial matrix M generated by a Riemannian metric

on the tangent bundle of the manifoldM (denoted as TM). Let G : (x, ẋ) 7→ G(x, ẋ) ∈

Rm×m
+ be a (projected) Riemannian metric and define the curvature terms

ΞG(x, ẋ) :=
1

2

m∑

i=1

ẋi ∂ẋ gi(x, ẋ),

ξG(x, ẋ) :=
x

G(x, ẋ) ẋ− 1

2
∇x (ẋ>G(x, ẋ) ẋ),

(13.1)

where
x

G(x, ẋ) := [∂x gi(x, ẋ) ẋ]mi=1, gi(x, ẋ) is the ith column of G(x, ẋ), and xi is the

ith component of x. The inertial matrix M(x, ẋ) is then related to G(x, ẋ) through,

M(x, ẋ) = G(x, ẋ) + ΞG(x, ẋ). (13.2)

Under this geometric interpretation, RMPs on a manifoldM can be (but not necessar-

ily) generated from a class of systems called Geometric Dynamical Systems (GDSs) (Cheng

et al., 2018b), whose dynamics are on the form of

M(x, ẋ) ẍ + ξG(x, ẋ) = −∇xΦ(x)−B(x, ẋ) ẋ, (13.3)

where B : Rm × Rm → Rm×m
+ is the damping matrix, and Φ : Rm → R is the po-

tential function. When G(x, ẋ) = G(x), the GDSs reduce to the widely studied Simple

Mechanical Systems (Bullo and Lewis, 2004).

The stability properties of RMPflow is analyzed in (Cheng et al., 2018b) under the

assumption that every leaf-node RMP is specified as a GDS (13.3). Before stating the

stability theorem, let us define the metric, damping matrix, and potential function for every

node in the RMP-tree: For a leaf node, its metric, damping matrix, and potential are defined

naturally by its underlying GDS. For a non-leaf node u with N children {vj}Nj=1, these

486

terms are defined recursively by the relationship,

Gu =

N∑

j=1

J>ejGvjJej , Bu =

N∑

j=1

J>ejBvjJej , Φu =

N∑

j=1

Φvj ◦ ψej , (13.4)

where Gvj , Bvj and Φvj are the metric, damping matrix, and potential function for the jth

child. The stability results for RMPflow are stated below.

Theorem 13.2.1. (Cheng et al., 2018b) Let Gr, Br, and Φr be the metric, damping matrix,

and potential function of the root node defined in (13.4). If each leaf node is given by

a GDS, Gr,Br � 0, and Mr is non-singular, then the system converges to a forward

invariant set C∞ := {(q, q̇) : ∇qΦr = 0, q̇ = 0}.

13.2.2 Control Lyapunov Functions (CLFs)

Control Lyapunov Function (CLF) methods (Ames, Grizzle, and Tabuada, 2014; Morris,

Powell, and Ames, 2013; Sontag, 1983) encode control specifications as Lyapunov function

candidates. In these methods, controllers are designed to satisfy the inequality constraints

on the time derivative of the Lyapunov function candidates.

Consider a dynamical system in control-affine form,

η̇ = f(η) + g(η) u, (13.5)

where η ∈ Rn and u ∈ Rm are the state and control input for the system. We assume that

f and g are locally Lipschitz continuous, and the system (13.5) is forward complete, i.e.

η(t) is defined for all t ≥ 0. For second-order systems considered by RMPflow, we have

η = [x> ẋ>]>,

f(η) ≡

0 I

0 0

 , g(η) ≡

0

I

 . (13.6)

Suppose that a Lypapunov function candidate V (η) is designed for a control specifi-

cation. The control input is then required to satisfy a CLF constraint, e.g. V̇ ≤ −α(V),

where α : R+ → R+ is a locally Lipschitz class K function (Khalil, 1996) (i.e. α is strictly

487

increasing and α(0) = 0). In the case of control-affine system, the CLF constraint becomes

a linear inequality constraint on control input u given state η,

LgV (η) u ≤ −LfV (η)− α(V (η)), (13.7)

where LfV and LgV are the Lie derivatives of V along f and g, respectively.

When there are multiple control specifications, one can design Lyapunov function can-

didates {Vk}Kk=1 separately. Then the controller synthesis problem becomes finding a con-

troller that satisfies all the linear inequalities given by the Lyapunov function candidates.

Morris et al. (Morris, Powell, and Ames, 2013) propose a computational framework, QP–

CLF, that solves for the controller through a Quadratic programming (QP) problem that

augments the constraints with a quadratic objective:

min
u

1

2
u>H(η) u + F (η)> u

s.t. LgVk(η) u ≤ −LfVk(η)− αk(Vk(η)),

∀ k ∈ {1, . . . , K}.

(13.8)

However, when the specifications are conflicting, it may not be possible to enforce the

CLF constraints for all {Vk}Kk=1 since the optimization problem (13.8) can become infeasi-

ble (Morris, Powell, and Ames, 2013). In (Ames, Grizzle, and Tabuada, 2014), Ames et al.

introduce slack variables {δk}Kk=1 so that the optimization problem is always feasible. Let

ū = [u> δ1 . . . δK]> denote all decision variables. Then the relaxed optimization problem

becomes,

min
ū

1

2
ū> H̄(η) ū + F̄ (η)> ū

s.t. LgVk(η) u ≤ −LfVk(η)− α(Vk(η)) + δk,

∀ k ∈ {1, . . . , K},

(13.9)

where H̄(η) and F̄ (η) encode how the original objective function and the CLF constraints

are balanced. However, care must be taken in tuning H̄(η) and F̄ (η) to achieve desired

488

performance properties and maintain stability.

13.3 The CLF Interpretation of RMPflow

The goal of this chapter is to combine control policies specified for subtask manifolds into

a control policy for the robot with stability guarantees. RMPflow provides a favorable

computational framework but its original analysis is limited to subtask control policies

generated by GDSs. This assumption is rather unsatisfying, as the users need to encode

the control specifications as GDS behaviors. Further, this restriction can potentially limit

the performance of the subtasks and result in unnecessary energy consumption by the sys-

tem. Although empirically RMPflow has been shown to work with non-GDS leaf poli-

cies (Cheng et al., 2018b), it is unclear if the overall system is still stable.

In this section, we show that the RMP-algebra actually preserves the stability of a wider

range of leaf-node control policies than GDSs. We relax the original GDS assumption

in Chapter 11 to a more general CLF constraint on each leaf node, and provide a novel

stability analysis of RMPflow. These results allow us to reuse RMPflow for combining a

more general class of control policies, which we will demonstrate by combining controllers

based on CLF constraints.

13.3.1 An Induction Lemma

In order to establish CLF constraints on leaf nodes that guarantee stability, we first need to

understand how the RMP-algebra, especially the pullback operator, connects the stabil-

ity results of the child nodes to the parent node.

Again, let us consider a node u with N child nodes {vj}Nj=1, in which u is associated

with a manifoldM with coordinate x, and v is associated with a manifoldNj with coordi-

nate yj . In addition, let ψej : x 7→ yj be the smooth map between manifoldsM and Nj .

We furthur assume that ψej is surjective, i.e., Nj = ψej(M).

Let us associate each child node vj with a proper, continuously differentiable and lower-

489

bounded potential Φvj on its manifoldNj along with a continuously differentiable Rieman-

nian metric Gvj on its tangent bundle T Nj . Then, for node vj , there is a natural Lyapunov

function candidate,

Vvj(yj, ẏj) =
1

2
ẏ>j Gvj(yj, ẏj) ẏj + Φvj(yj), (13.10)

and an associated natural-formed RMP [fvj ,Mvj]
Nj , where fvj is the force policy, and Mvj

is defined by Gvj as in (13.2). We shall further assume that Mvj is locally Lipschitz con-

tinuous for the ease of later analysis. By construction of the RMP-algebra, these Lyapunov

function candidates and RMPs of the child nodes {vj}Nj=1 define, for the parent node u, a

Lyapunov function candidate

Vu(x, ẋ) =
1

2
x>Gu(x, ẋ) ẋ + Φu(x). (13.11)

where Gu and Φu are given in (13.4).

The following lemma states how the decay-rate of Vu is connected to the decay-rates of

{Vvj}Nj=1 via pullback.

Lemma 13.3.1. For each child node vj , assume that fvj = Mvj ÿj renders V̇vj(yj, ẏj) =

−Uvj(yj, ẏj) for Vvj in (13.10). If the parent node u follows dynamics fu = Mu(x, ẋ) ẍ,

where fu and Mu are given by pullback, then V̇u(x, ẋ) = −∑N
j=1 Uvj(yj, ẏj) for Vu

in (13.11).

Proof. For notational convenience, we suppress the arguments of functions. First, note

that,

Vu =
1

2

N∑

j=1

x> J>ej Gvj Jej ẋ +

N∑

j=1

Φvj =

N∑

j=1

Vvj . (13.12)

As Gvj is a function in both y and ẏ, following a similar derivation as in (Cheng et al.,

490

2018b), we can show

V̇u =
N∑

j=1

ẏ>j Mvj ÿj +
1

2
ẏ>j

yj

Gvj ẏj + ẏ>j ∇yjΦvj , (13.13)

where Mvj and
yj

Gvj are the inertial matrix and the curvature term defined in Section 13.2.1.

Note that ÿj = Jej ẍ + J̇ej ẋ, where ẍ is given by the RMP [fu,Mu]
M. Hence, the first

term can be rewritten as

N∑

j=1

ẏ>j Mvj ÿj = ẋ>

N∑

j=1

J>ej Mvj

(
Jej ẍ + J̇ej ẋ

)

= ẋ> fu + ẋ>

N∑

j=1

J>ej Mvj J̇ej ẋ

= ẋ>

N∑

j=1

J>ej (fvj −Mvj J̇ej ẋ)

+ ẋ>

N∑

j=1

J>ej Mvj J̇ej ẋ

= ẋ>

N∑

j=1

J>ej fvj

 =

N∑

j=1

ẏ>j fvj .

The time-derivative of Vu can then be simplified as

V̇u =
N∑

j=1

ẏ>j fvj +
1

2
ẏ>j

yj

Gvj ẏj + ẏ>j ∇yjΦvj . (13.14)

By assumption on vj , we also have

ẏ>j fvj +
1

2
ẏ>j

yj

Gvj ẏj + ẏ>j ∇yjΦvj = −Uvj (yj , ẏj). (13.15)

The statement follows then from the two equalities. �

We can use Lemma 13.3.1 to infer the overall stability of RMPflow. For an RMP-tree

with K leaf nodes, let leaf node lk be defined on task space Tk with coordinates zk and has

a natural Lyapunov function candidate

Vlk(zk, żk) =
1

2
ż>k Glk(zk, żk) żk + Φlk(zk). (13.16)

for some potential function Φlk and positive-definite Riemannian metric Glk defined as

491

above. By Lemma 13.3.1, if each leaf node lk satisfies a CLF constraint,

V̇lk(zk, żk) = −Ulk (zk, żk), (13.17)

then a similar constraint is satisfied by the root node. This observation is summarized below

without proof.

Proposition 13.3.1. For each leaf node lk, assume that flk = Mlk z̈k renders (13.17)

for (13.16). Consider the Lyapunov function candidate at the root node Vr(q, q̇) defined

through (13.11). Then, for the root node control policy of RMPflow, it holds V̇r(q, q̇) =

−∑K
k=1 Ulk (ψr→lk(q),Jr→lk q̇), where ψr→lk is the map from C to Tk, which can be ob-

tained through composing maps from the root node r to the leaf node lk on the RMP-tree,

and Jr→lk = ∂qψr→lk .

Note that Proposition 13.3.1 provides an alternative way to show the stability results of

RMPflow.

Corollary 13.3.1. For each leaf node lk, assume that flk is given by a GDS (Tk,Glk ,Blk ,Φlk).

Consider the Lyapunov function candidate at the root node Vr(q, q̇) defined recursively

through (13.11). Then we have, V̇r(q, q̇) = −q̇>Br(q, q̇) q̇ under the resulting control

policies from RMPflow, where Br is defined recursively through (13.4).

With Corollary 13.3.1, we then can show Theorem 13.2.1 by invoking LaSalle’s invariance

principle (Khalil, 1996).

13.3.2 Global Stability Properties

More importantly, by Proposition 13.3.1, we can find how CLF constraints are propagated

from the leaf nodes to the root node through pullback.

Proposition 13.3.2. For each leaf node lk, assume that flk = Mlk z̈lk renders, for Vlk in

(13.16),

V̇lk(zk, żk) ≤ −αk (‖żk‖), (13.18)

492

where αk is a locally Lipschitz continuous class K functions (Khalil, 1996). Consider the

Lyapunov function candidate at the root node Vr(q, q̇) defined recursively through (13.11).

Then

V̇r(q, q̇) ≤ −
K∑

k=1

αk (‖Jr→lk q̇‖) (13.19)

under the resulting control policies from RMPflow.

With this insight, we state a new stability theorem of RMPflow by applying LaSalle’s

invariance principle. We assume that the inertia matrix at the root node Mr is nonsin-

gular for simplicity, so that the actual control input can be solved through the resolve

operation; a sufficient condition for Mr being nonsingular is provided in Chapter 11.

Theorem 13.3.1. For each leaf node lk, assume that flk = Mlk z̈lk renders (13.18). Sup-

pose that Mr is nonsingular, and the task space T is an immersion of the configuration

space C. Then the control policy generated by RMPflow renders the system converging to

the forward invariant set

C∞ :=

{
(q, q̇) : q̇ = 0,

K∑

j=1

J>r→lk
flk = 0

}
. (13.20)

Further if, for all leaf nodes, flk = −∇zkΦlk(zk) when żk = 0, the system converges to the

forward invariant set

CΦ
∞ := {(q, q̇) : ∇qΦr(q) = 0, q̇ = 0}, (13.21)

where Φr is the potential in Vr defined recursively in (13.4).

Proof. By assumption, Vr is proper, continuously differentiable and lower bounded. Hence,

the system converges to the largest invariant set in {(q, q̇) : V̇r(q, q̇) = 0} by LaSalle’s

invariance principle (Khalil, 1996). By (13.19) in Proposition 13.3.2, V̇r = 0 if and only if

Jr→lk q̇ = 0 for all k = 1, . . . , K. Since C is immersed in T , we have q̇ = 0. Hence, the

493

system converges to a forward invariant set C∞ := {(q, q̇) : q̇ = 0}. Any forward invariant

set in C∞ must have q̈ = 0, which implies that fr = 0 as Mr is nonsingular. Note that fr is

given by the pullback operation recursively, hence,

0 = fr =
K∑

k=1

J>r→lk
(flk −Mlk J̇r→lk q̇) =

K∑

k=1

J>r→lk
flk

where the last equality follows from q̇ = 0. Thus, the system converges to the forward

invariant set in (13.20).

Now, assume that flk = −∇zkΦlk(zk) when żk = 0 (which is implied by q̇ = 0).

Notice that by the definition of Φr in (13.4), Φr(q) =
∑K

k=1 Φlk(zk). By the chain rule,

∇qΦr(q) =
K∑

k=1

J>r→lk
∇zkΦlk(zk) = −

K∑

k=1

J>r→lk
flk .

Hence
∑K

k=1 J>r→lk
flk = 0 implies ∇qΦr(q) = 0. Thus, the system converges forwardly

to (13.21). �

Theorem 13.3.1 implies that subtask controllers satisfying CLF constraints (13.18) can

be stably combined by RMPflow.

13.4 A Computational Framework for RMPflow with CLF Constraints

We introduce a computational framework for controller synthesis based on the stability

results presented in Section 13.3. The main idea is to leverage Proposition 13.3.2, which

says that RMPflow is capable of preserving CLF constraints in certain form. Recall that

for leaf node vj , the constraint on the time-derivative of the Lyapunov function in Proposi-

tion 13.3.2 is V̇lk(zk, żk) ≤ −αk (‖żk‖). Combined with the particular choice of leaf-node

Lyapunov function candidate in (13.16), this yields a CLF constraint3

ż>k flk ≤ −ż>k
(
∇zkΦlk + ξGlk

)
− αk(‖żk‖), (13.22)

3This a linear constraint with respect to flk . When żk = 0, the constraint (13.22) holds trivially because
both sides equal 0.

494

where ξGlk
is defined in (13.1). Proposition 13.3.2 shows that, when the leaf-node control

policies satisfy (13.22), RMPflow will yield a stable controller under suitable conditions.

This provides a constructive principle to synthesize controllers.

13.4.1 Algorithm Details

Assume that some nominal controller udlk is provided by the specification of subtask k. We

design the leaf-node controller as a minimally invasive controller that modifies the nominal

controller as little as possible while satisfying the CLF constraint (13.22):

f∗lk = arg min
flk

‖flk −Mlk udlk‖
2
Plk

(13.23)

s.t. ż>k flk ≤ −ż>k
(
∇zkΦlk + ξGlk

)
− αk(‖żk‖)

where Plk � 0 and Mlk is given by Glk through (13.2). Possible choices of Plk include

the identity matrix I and the inverse of the inertial matrix M−1
lk

. In particular, Plk = M−1
lk

yields an objective function equivalent to ‖alk − udlk‖2
Mlk

, where alk is the acceleration

policy of the node.

We combine this minimally invasive controller design with RMPflow as a new com-

putational framework for controller synthesis, called RMPflow–CLF. RMPflow–CLF fol-

lows the same procedure as the original RMPflow in Chapter 11 as is discussed in Sec-

tion 13.2.1. The difference is that the leaf nodes solve for the RMPs based on the op-

timization problem (13.23) during the evaluation step. Note that (13.23) is a QP prob-

lem with a single linear constraint, so it can be solved analytically by projecting Mlku
d
lk

onto the half-plane given by the constraint.

13.4.2 Stability Properties

The form of (13.23) together with Theorem 13.3.1 and the results of (Morris, Powell, and

Ames, 2013) yields the following theorem:

495

Theorem 13.4.1. Under the assumptions in Theorem 13.3.1, if {udlk}Kk=1, {Mlk}Kk=1, all

edge Jacobians and their derivatives are locally Lipschitz continuous, then the control

policy generated by RMPflow–CLF is locally Lipschitz continuous and renders the system

converging forwardly to (13.20).

Proof. By Theorem 13.3.1, the system converges to (13.20). By (Morris, Powell, and

Ames, 2013), for all k ∈ {1, . . . , K}, flk is locally Lipschitz. Since under the assumption

pullback and resolve preserves Lipschitz continuity; the statement follows. �

Note that RMPflow can be interpreted as a soft version of the QP–CLF formulation

(Morris, Powell, and Ames, 2013) that enforces the decay-rates of all Lyapunov function

candidates (13.8). Meanwhile, compared with the QP–CLF framework with slack vari-

ables (Ames, Grizzle, and Tabuada, 2014) that requires the users to design the objective

function trade off between control specifications, RMPflow provides a structured way to

implicitly generate such an objective function so that the system is always stable.

It should be noted that the system can also be stabilized by directly enforcing a single

constraint on the time derivative of the combined Lyapunov function candidate (13.19) at

the root node, rather than enforcing the CLF constraint at every leaf node (13.18). How-

ever, this can be less desirable: although the stability can be guaranteed for the resulting

controller, the behavior of each individual subtask is no longer explicitly regulated. By

contrast, the approach with leaf-node CLF constraints allows the users to design and test

the controllers from (13.23) independently. This allows for designing controllers that can

be applied to robots with different kinematic structures, which is a significant feature of

RMPflow (Cheng et al., 2018b).

13.5 Experimental Results

In this section, we compare the proposed RMPflow–CLF framework with the original

RMPflow framework in Chapter 11 (Cheng et al., 2018b). A video of the experimental

496

results can be found at https://youtu.be/eU_x8Yklv-4. The original RMPflow

framework (Cheng et al., 2018b) is referred to as RMPflow–GDS to differentiate it from

RMPflow–CLF.

13.5.1 Simulation Results

We present two simulated examples, a 2-dimensional goal reaching task and a multi-robot

goal reaching example.

2D Goal Reaching

We first consider the 2D goal reaching task presented in Chapter 11 (Cheng et al., 2018b).

In this example, a planar robot with double-integrator dynamics is expected to move to a

goal position without colliding into a circular obstacle. As is in (Cheng et al., 2018b), the

RMP-tree has a collision avoidance leaf-node RMP and a goal attractor leaf-node RMP.

For the RMPflow–CLF framework, we use the collision avoidance RMP in (Cheng et al.,

2018b) and keep the choice of metrics and potential functions for the goal attractor RMP

consistent with (Cheng et al., 2018b). For the goal attractor RMP, we present several nom-

inal controllers: (i) a pure potential-based nominal controller fdpt = Mudpt = −∇Φ; (ii) a

spiral nominal controller fdsp = −∇Φ + ‖ż‖v, where v is the potential-based controller

rotated by π/2, i.e. v = −R(π/2)∇Φ with R(·) being the rotation matrix; and (iii) a

sinusoidal controller fdsn = −∇Φ + sin(t/4) ‖ż‖v. For the minimally invasive controller,

we use P = I to minimize the Euclidean distance between the nominal controller and the

solution to the optimization problem (13.23). We implement the RMPflow–GDS frame-

work with the same choice of parameters as (Cheng et al., 2018b). The trajectories under

different nominal controllers are shown in Fig. 13.2. Although it is possible that similar be-

haviors can be realized with the RMPflow–GDS framework with a careful redesign of the

metric and potential function, the RMPflow–CLF framework can produce a rich class of

behaviors without being concerned with the geometric properties of the subtask manifold.

497

https://youtu.be/eU_x8Yklv-4

Potent ial

Spiral

Sinusoidal

GDS

Goal

Start

(a) RMPflow–CLF (b) RMPflow–GDS

Figure 13.2: 2D goal reaching task with a circular obstacle (grey). (a) RMPflow–CLF
with three choices of nominal controllers, resulting in different goal reaching behaviors.
(b) RMPflow–GDS with the goal attractor given by a GDS. The behavior is limited by the
choice of the metric and the potential function.

Multi-Robot Goal Reaching

RMPflow–CLF guarantees system stability even when the nominal controllers are not in-

herently stable or asymptotically stable. Therefore, the user can incorporate design knowl-

edge given by, e.g. motion planners, human demonstrations or even heuristics, into the

nominal controllers. To illustrate this, we consider a multi-robot goal reaching task, where

the robots are tasked with moving to the opposite side of the arena without colliding. If the

robots move in straight lines, their trajectories would intersect near the center of the arena.

Due to the symmetric configuration, the system can easily deadlock with robots moving

very slowly or stopping near the center to avoid collisions. This problem can be fixed if

the symmetry is broken. One possible solution is to design nominal controllers for the goal

attractors so that the robots move along curves.

We compare the spiral goal attractor RMP with the GDS goal attractor RMP presented

in (Li et al., 2019a). In both cases, an RMP-tree structure similar to the centralized RMP-

tree structure in (Li et al., 2019a) is used. We define collision avoidance for pairs of robots

in the RMP-tree with the same choice of parameters. The trajectories of the robots under the

spiral nominal controllers are shown in Fig. 13.3a. The spiral controllers produce smooth

498

Trajectories

Goal

Start

(a) RMPflow–CLF
(b) RMPflow–GDS (Cheng et al.,
2018b)

Figure 13.3: Multi-robot goal reaching task. (a) RMPflow–CLF with spiral nominal con-
trollers. The robots move to their goal smoothly. (b) RMPflow–GDS with the goal attrac-
tor given by a GDS. Due to the symmetry of the configuration, the system suffers from
deadlock when the robots are near the center: the robots oscillate around the deadlock
configuration.

motion, whereas the GDS goal attractors produce jerky motion when the robots are near

the center due to deadlock caused by the symmetric configuration (Fig. 13.3b).

13.5.2 Robotic Implementation

We present an experiment conducted on the Robotarium (Pickem et al., 2017), a remotely

accessible swarm robotics platform. In the experiment, five robots are tasked with pre-

serving a regular pentagon formation while the leader has an additional task of reaching a

goal. We use the same RMP-tree structure and parameters for most leaf-node RMPs as de-

scribed in the formation preservation experiment in (Li et al., 2019a). The only difference

is that we replace the GDS goal attractor in (Li et al., 2019a) with the spiral nominal con-

troller augmented with the CLF condition (13.23). Fig. 13.4 presents the snapshots from

the formation preservation experiment. In Fig. 13.4a–Fig. 13.4c, we see that the leader

approaches the goal with a spiral trajectory specified by the nominal controller, while other

subtask controllers preserve distances and avoid collision. This shows the efficacy of our

controller synthesis framework. By contrast, the robot moves in straight lines under the

goal attractor given by the GDS (see Fig. 13.4d-Fig. 13.4f). Although it could be possible

to redesign the subtask manifold such that there exists a GDS that produces similar be-

haviors, the RMPflow–CLF framework provides the user additional flexibility to shape the

499

(a) Spiral CLF controller: t =
0s

(b) Spiral CLF controller: t =
18s

(c) Spiral CLF controller: t =
38s

(d) GDS controller: t = 0s (e) GDS controller: t = 8s (f) GDS controller: t = 19s

Figure 13.4: Multi-robot formation preservation task. The robots are tasked with preserving
a regular pentagon formation while the leader has an additional task of reaching a goal
position. (a) RMPflow–CLF with a spiral nominal controller. (b) RMPflow–GDS. The
goal (red star) and the trajectories (blue curves) of the leader robot are projected onto
the environment through an overhead projector. RMPflow–CLF shapes the goal-reaching
behavior through a spiral nominal controller.

behaviors without worrying about the geometric properties of the subtask manifolds.

13.6 Conclusions

We consider robot control with multiple control specifications by adopting Riemannian

Motion Policies (RMPs), a recent concept in robotics for describing control policies on

manifolds, and RMPflow, the computational structure to combine these controllers. The

stability results of RMPflow is re-established and extended through a rigorous CLF treat-

ment. This new analysis suggests that any subtask controllers satisfying certain CLF con-

straints can be stably combined by RMPflow, while the original analysis given in (Cheng et

al., 2018b) only provides stability guarantees for a limited type of controller. Based on this

analysis, we propose a new computational framework, RMPflow–CLF, to stably combine

individually designed subtask controllers. This formulation provides users the flexibility of

shaping behaviors of subtasks through nominal subtask controllers given by, e.g. heuristics,

500

human demonstrations, and motion planners. The proposed RMPflow–CLF framework is

validated through numerical simulation and deployment on real robots.

501

CHAPTER 14

EPILOGUE

We have demonstrated through the previous chapters how better theoretical formulations

of fundamental problems can address practical needs and impact the direction of algorithm

design. From Chapter 3 to 5, we illustrate how imitation learning (IL) can be used as an

interface to take advantage of prior knowledge in speeding up policy optimization. Driven

by these exciting results, we refine theoretical analyses of IL in Chapter 6 and 7. These new

insights then lead to the development of new online learning theory and algorithms (from

Chapter 8 to 10) that advance the state-of-the-art techniques for a large set of learning

problems faced in practice, including reinforcement learning (RL). In parallel, we present

a foundational framework for policy fusion and structural policy design, called RMPflow,

in Chapter 11. The development of RMPflow is motivated by the need of computationally

efficient, stable controllers that are capable of generating flexible behaviors and working

consistently across various robots. Rather than tweaking existing designs, we deeply in-

vestigate the source of deficiency in current designs and build a new theoretical framework

bottom-up. Consequently, RMPflow can systematically address these practical needs as we

showcase in Chapter 11 and 13. We also show in Chapter 12 that RMPflow can be used

as a stable policy class in policy optimization, so that the statistical learning techniques

developed in this thesis can be safely applied to robots.

Besides policy optimization and structural policy fusion, we have also used the same

principle to design structured kernels for learning robot dynamics (Cheng and Huang, 2016;

Cheng et al., 2016), linear-time algorithms for learning large-scale Gaussian process mod-

els (Cheng and Boots, 2016, 2017; Salimbeni et al., 2018), a fast bi-level optimization

algorithm using truncating back-propagation (Shaban et al., 2019), a family of MPC algo-

rithms based on dynamic mirror descent (Wagener et al., 2019), and trajectory-wise control

502

variates for variance reduction in policy gradient methods (Cheng, Yan, and Boots, 2019).

All these research outcomes highlight the significance of having a good theoretical per-

spective in designing practical algorithms.

Maintaining a reciprocal relationship between theory and practice thus is a key to clos-

ing the reality gap. I believe that theoreticians can play an important role in this endeavor:

the abstract way of mathematical thinking is invaluable to understanding the underlying

phenomena in real-world problems, asking the right research questions, and then provid-

ing systematic, constructive solutions. While my research so far has successfully taken

steps toward a more principled approach to efficient learning and algorithm design, it also

opens the door to many other interesting research directions. For example, systematically

balancing sample and computation budgets in real-world policy optimization is an impor-

tant topic, and determining how to do this correctly would naturally unify on-policy and

off-policy learning. The PICCOLO framework in Chapter 10, which combines model-free

and model-based learning by decoupling sample and optimization complexities, is a pre-

liminary attempt at achieving this goal. On the other hand, parallelizing the computation

of RMPflow can have significant practical impacts, especially in building larger-scale sys-

tems, such as humanoids and multi-agent systems. The identification between RMPflow

and sparse linear solvers in Chapter 11 can be an important step to solving this problem.

I am interested in building complex sequential-decision-making agents that can learn

to adapt and work robustly in real-world situations with minimal engineering and human

intervention. Solving this long-standing problem inevitably requires a holistic integration

of techniques developed in various disciplines. To amortize this explosion of design com-

plexity, new theories that thoroughly outline their interactions are imperative. I hope that,

at this very end, you are also convinced of the importance of developing theories alongside

real-world applications. May the research here encourage future endeavors toward this

direction. Congratulations on finishing reading the thesis!

503

REFERENCES

Abadi, Martı́n, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. (2016). “Ten-
sorflow: a system for large-scale machine learning”. In: 12th {USENIX} Symposium on
Operating Systems Design and Implementation. Vol. 16, pp. 265–283.

Abbeel, Pieter and Andrew Y Ng (2005). “Exploration and apprenticeship learning in rein-
forcement learning”. In: International Conference on Machine learning. ACM, pp. 1–
8.

Abernethy, Jacob, Peter L Bartlett, and Elad Hazan (2011). “Blackwell approachability and
no-regret learning are equivalent”. In: Annual Conference on Learning Theory, pp. 27–
46.

Albu-Schaffer, Alin and Gerd Hirzinger (2002). “Cartesian impedance control techniques
for torque controlled light-weight robots”. In: IEEE International Conference on Robotics
and Automation. Vol. 1, pp. 657–663.

Alexander, Stephanie, Richard Bishop, and Robert Ghrist (2006). “Pursuit and Evasion in
Non-convex Domains of Arbitrary Dimensions”. In: Robotics: Science and Systems,
pp. 277–310.

Amari, Shun-Ichi (1998). “Natural gradient works efficiently in learning”. In: Neural Com-
putation 10.2, pp. 251–276.

Ames, Aaron D, Jessy W Grizzle, and Paulo Tabuada (2014). “Control barrier function
based quadratic programs with application to adaptive cruise control”. In: IEEE Con-
ference on Decision and Control. IEEE, pp. 6271–6278.

Amos, Brandon, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter (2018). “Dif-
ferentiable MPC for End-to-end Planning and Control”. In: Advances in Neural Infor-
mation Processing Systems, pp. 8299–8310.

Anthony, Thomas, Zheng Tian, and David Barber (2017). “Thinking fast and slow with
deep learning and tree search”. In: Advances in Neural Information Processing Systems,
pp. 5360–5370.

Antsaklis, Panos J and Anthony N Michel (2007). A linear systems primer. Vol. 1. Birkhäuser
Boston.

504

Argall, Brenna D, Sonia Chernova, Manuela Veloso, and Brett Browning (2009). “A survey
of robot learning from demonstration”. In: Robotics and Autonomous Systems 57.5,
pp. 469–483.

Arkin, Ronald C (2008). “Governing lethal behavior: embedding ethics in a hybrid deliber-
ative/reactive robot architecture”. In: ACM/IEEE International Conference on Human
Robot Interaction. ACM, pp. 121–128.

Arkin, Ronald C et al. (1998). Behavior-based robotics. MIT press.

Beck, Amir and Marc Teboulle (2003). “Mirror descent and nonlinear projected subgradi-
ent methods for convex optimization”. In: Operations Research Letters 31.3, pp. 167–
175.

Bellman, Richard (1954). “The theory of dynamic programming”. In: Bulletin of the Amer-
ican Mathematical Society 60.6, pp. 503–515.

Bertsekas, Dimitri P, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas
(1995). Dynamic programming and optimal control. Vol. 1. 2. Athena scientific Bel-
mont, MA.

Besbes, Omar, Yonatan Gur, and Assaf Zeevi (2015). “Non-stationary stochastic optimiza-
tion”. In: Operations research 63.5, pp. 1227–1244.

Bianchi, M and S Schaible (1996). “Generalized monotone bifunctions and equilibrium
problems”. In: Journal of Optimization Theory and Applications 90.1, pp. 31–43.

Blum, Eugen (1994). “From optimization and variational inequalities to equilibrium prob-
lems”. In: Math. student 63, pp. 123–145.

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, and Jiakai Zhang
(2016). “End to end learning for self-driving cars”. In: arXiv preprint arXiv:1604.07316.

Bojarski, Mariusz, Philip Yeres, Anna Choromanska, Krzysztof Choromanski, Bernhard
Firner, Lawrence Jackel, and Urs Muller (2017). “Explaining How a Deep Neural Net-
work Trained with End-to-End Learning Steers a Car”. In: arXiv preprint arXiv:1704.07911.

Borrelli, Francesco, Paolo Falcone, Tamas Keviczky, Jahan Asgari, and Davor Hrovat (2005).
“MPC-based approach to active steering for autonomous vehicle systems”. In: Interna-
tional Journal of Vehicle Autonomous Systems 3.2, pp. 265–291.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex optimization. Cambridge univer-
sity press.

505

Bregman, Lev M (1967). “The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming”. In: USSR
Computational Mathematics and Mathematical Physics 7.3, pp. 200–217.

Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba (2016). “OpenAI Gym”. In: arXiv preprint arXiv:1606.01540.

Bullo, Francesco and Andrew D Lewis (2004). Geometric control of mechanical systems:
modeling, analysis, and design for simple mechanical control systems. Vol. 49. Springer
Science & Business Media.

Burachik, Regina S and R Dı́az Millán (2019). “A projection algorithm for non-monotone
variational inequalities”. In: Set-Valued and Variational Analysis.

Cesa-Bianchi, Nicolo, Alex Conconi, and Claudio Gentile (2004). “On the generalization
ability of on-line learning algorithms”. In: IEEE Transactions on Information Theory
50.9, pp. 2050–2057.

Cesa-Bianchi, Nicolo and Gabor Lugosi (2006). Prediction, learning, and games. Cam-
bridge university press.

Chang, Kai-Wei, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume III, and John Lang-
ford (2015). “Learning to search better than your teacher”. In: International Conference
on Machine Learning.

Chebotar, Yevgen, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, and
Sergey Levine (2017). “Combining model-based and model-free updates for trajectory-
centric reinforcement learning”. In: International Conference on Machine Learning-
Volume 70, pp. 703–711.

Chen, Yichen, Lihong Li, and Mengdi Wang (2018). “Scalable Bilinear π Learning Using
State and Action Features”. In: arXiv preprint arXiv:1804.10328.

Chen, Yichen and Mengdi Wang (2016). “Stochastic primal-dual methods and sample com-
plexity of reinforcement learning”. In: arXiv preprint arXiv:1612.02516.

Cheng, Ching-An (2018). “Policy Optimization as Predictable Online Learning Problems:
Imitation Learning and Beyond”. Microsoft Research Talks.

Cheng, Ching-An and Byron Boots (2016). “Incremental Variational Sparse Gaussian Pro-
cess Regression”. In: Advances in Neural Information Processing Systems, pp. 4410–
4418.

— (2017). “Variational Inference for Gaussian Process Models with Linear Complexity”.
In: Advances in Neural Information Processing Systems, pp. 5184–5194.

506

Cheng, Ching-An and Byron Boots (2018). “Convergence of Value Aggregation for Imi-
tation Learning”. In: International Conference on Artificial Intelligence and Statistics.
Vol. 84, pp. 1801–1809.

Cheng, Ching-An and Han-Pang Huang (2016). “Learn the Lagrangian: A Vector-Valued
RKHS Approach to Identifying Lagrangian Systems”. In: IEEE Transactions on Cy-
bernetics 46.12, pp. 3247–3258.

Cheng, Ching-An, Xinyan Yan, and Byron Boots (2019). “Trajectory-wise Control Variates
for Variance Reduction in Policy Gradient Methods”. In: Conference on Robot Learn-
ing.

Cheng, Ching-An, Han-Pang Huang, Huan-Kun Hsu, Wei-Zh Lai, and Chih-Chun Cheng
(2016). “Learning the inverse dynamics of robotic manipulators in structured reproduc-
ing kernel Hilbert space”. In: IEEE Transactions on Cybernetics 46.7, pp. 1691–1703.

Cheng, Ching-An, Xinyan Yan, Nolan Wagener, and Byron Boots (2018a). “Fast Policy
Learning using Imitation and Reinforcement”. In: Conference on Uncertainty in Artifi-
cial Intelligence.

Cheng, Ching-An, Mustafa Mukadam, Jan Issac, Stan Birchfield, Dieter Fox, Byron Boots,
and Nathan Ratliff (2018b). “RMPflow: A Computational Graph for Automatic Motion
Policy Generation”. In: The 13th International Workshop on the Algorithmic Founda-
tions of Robotics.

— (2018c). “Rmpflow: A computational graph for automatic motion policy generation”.
In: arXiv preprint arXiv:1811.07049.

Cheng, Ching-An, Remi Tachet des Combes, Byron Boots, and Geoff Gordon (2019a).
“A Reduction from Reinforcement Learning to No-Regret Online Learning”. In: arXiv
preprint arXiv:1911.05873.

Cheng, Ching-An, Xinyan Yan, Evangelos A Theodorou, and Byron Boots (2019b). “Ac-
celerating imitation learning with predictive models”. In: International Conference on
Artificial Intelligence and Statistics.

Cheng, Ching-An, Jonathan Lee, Ken Goldberg, and Byron Boots (2019c). “Online Learn-
ing with Continuous Variations: Dynamic Regret and Reductions”. In: arXiv preprint
arXiv:1902.07286.

Cheng, Ching-An, Xinyan Yan, Nathan Ratliff, and Byron Boots (2019d). “Predictor-Corrector
Policy Optimization”. In: International Conference on Machine Learning.

Cheng, Ching-An, Mustafa Mukadam, Jan Issac, Stan Birchfield, Dieter Fox, Byron Boots,
and Nathan Ratliff (2019e). “RMPflow: A Geometric Framework for Generation of

507

Multi-Task Motion Policies”. In: IEEE Transactions on Automation Science and Engi-
neering (in submission).

Chiang, Chao-Kai, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong
Jin, and Shenghuo Zhu (2012). “Online optimization with gradual variations”. In: Con-
ference on Learning Theory, pp. 6–1.

Correll, Nikolaus, Kostas E Bekris, Dmitry Berenson, Oliver Brock, Albert Causo, Kris
Hauser, Kei Okada, Alberto Rodriguez, Joseph M Romano, and Peter R Wurman (2018).
“Analysis and observations from the first amazon picking challenge”. In: IEEE Trans-
actions on Automation Science and Engineering 15.1, pp. 172–188.

Cucker, Felipe and Ding Xuan Zhou (2007). Learning theory: an approximation theory
viewpoint. Vol. 24. Cambridge University Press.

Daafouz, Jamal, Pierre Riedinger, and Claude Iung (2002). “Stability analysis and control
synthesis for switched systems: a switched Lyapunov function approach”. In: IEEE
Transactions on Automatic Control 47.11, pp. 1883–1887.

Dai, Bo, Albert Shaw, Niao He, Lihong Li, and Le Song (2018). “Boosting the actor with
dual critic”. In: International Conference on Learning Representation.

Dang, Cong D and Guanghui Lan (2015). “On the convergence properties of non-euclidean
extragradient methods for variational inequalities with generalized monotone opera-
tors”. In: Computational Optimization and applications 60.2, pp. 277–310.

Daniely, Amit, Alon Gonen, and Shai Shalev-Shwartz (2015). “Strongly adaptive online
learning”. In: International Conference on Machine Learning, pp. 1405–1411.

Daskalakis, Constantinos, Paul W Goldberg, and Christos H Papadimitriou (2009). “The
complexity of computing a Nash equilibrium”. In: SIAM Journal on Computing 39.1,
pp. 195–259.

Deisenroth, Marc and Carl E Rasmussen (2011). “PILCO: A model-based and data-efficient
approach to policy search”. In: International Conference on Machine Learning, pp. 465–
472.

Dellaert, Frank, Michael Kaess, et al. (2017). “Factor graphs for robot perception”. In:
Foundations and Trends R© in Robotics 6.1-2, pp. 1–139.

Denardo, Eric V and Bennett L Fox (1968). “Multichain Markov renewal programs”. In:
SIAM Journal on Applied Mathematics 16.3, pp. 468–487.

Dhariwal, Prafulla, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, and Yuhuai Wu (2017). OpenAI Baselines.

508

Diakonikolas, Jelena and Lorenzo Orecchia (2017). “Accelerated extra-gradient descent: A
novel accelerated first-order method”. In: arXiv preprint arXiv:1706.04680.

Dietrich, Alexander, Alin Albu-Schäffer, and Gerd Hirzinger (2012). “On continuous null
space projections for torque-based, hierarchical, multi-objective manipulation”. In: IEEE
International Conference on Robotics and Automation. IEEE, pp. 2978–2985.

Dietrich, Alexander, Christian Ott, and Jaeheung Park (2018). “The hierarchical opera-
tional space formulation: stability analysis for the regulation case”. In: IEEE Robotics
and Automation Letters 3.2, pp. 1120–1127.

Dixit, Rishabh, Amrit Singh Bedi, Ruchi Tripathi, and Ketan Rajawat (2019). “Online
learning with inexact proximal online gradient descent algorithms”. In: IEEE Trans-
actions on Signal Processing 67.5, pp. 1338–1352.

Dong, J., M. Mukadam, F. Dellaert, and B. Boots (2016). “Motion Planning as Probabilis-
tic Inference using Gaussian Processes and Factor Graphs”. In: Robotics: Science and
Systems.

Drews, Paul, Grady Williams, Brian Goldfain, Evangelos A Theodorou, and James M Rehg
(2017). “Aggressive Deep Driving: Model Predictive Control with a CNN Cost Model”.
In: Conference on Robot Learning, pp. 133–142.

Duan, Yan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel (2016). “Bench-
marking deep reinforcement learning for continuous control”. In: International Confer-
ence on Machine Learning, pp. 1329–1338.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods for
online learning and stochastic optimization”. In: Journal of Machine Learning Research
12.Jul, pp. 2121–2159.

Erez, Tom, Kendall Lowrey, Yuval Tassa, Vikash Kumar, Svetoslav Kolev, and Emanuel
Todorov (2013). “An integrated system for real-time model-predictive control of hu-
manoid robots”. In: IEEE/RAS International Conference on Humanoid Robots.

Escande, Adrien, Nicolas Mansard, and Pierre-Brice Wieber (2014). “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation”. In: The International
Journal of Robotics Research 33.7, pp. 1006–1028.

Facchinei, Francisco and Jong-Shi Pang (2007). Finite-dimensional variational inequalities
and complementarity problems. Springer Science & Business Media.

Featherstone, Roy (2008). Rigid Body Dynamics Algorithms. Springer.

509

Flacco, F., T. Kröger, A. De Luca, and O. Khatib (2012). “A depth space approach to
human-robot collision avoidance”. In: IEEE International Conference on Robotics and
Automation, pp. 338–345.

Gammell, Jonathan D., Siddhartha S. Srinivasa, and Timothy D. Barfoot (2015). “Batch
Informed Trees (BIT*): Sampling-based Optimal Planning via the Heuristically Guided
Search of Implicit Random Geometric Graphs”. In: IEEE International Conference on
Robotics and Automation.

Garber, Dan and Elad Hazan (2015). “Faster rates for the frank-wolfe method over strongly-
convex sets”. In: International Conference on Machine Learning.

Garcıa, Javier and Fernando Fernández (2015). “A comprehensive survey on safe reinforce-
ment learning”. In: Journal of Machine Learning Research 16.1, pp. 1437–1480.

Geist, A René, Andreas Hansen, Eugen Solowjow, Shun Yang, and Edwin Kreuzer (2017).
“Data Collection for Robust End-to-End Lateral Vehicle Control”. In: ASME 2017 Dy-
namic Systems and Control Conference. American Society of Mechanical Engineers,
V001T45A007–V001T45A007.

Ghadimi, Saeed, Guanghui Lan, and Hongchao Zhang (2016). “Mini-batch stochastic ap-
proximation methods for nonconvex stochastic composite optimization”. In: Mathemat-
ical Programming 155.1-2, pp. 267–305.

Gibbs, Alison L and Francis Edward Su (2002). “On choosing and bounding probability
metrics”. In: International Statistical Review 70.3, pp. 419–435.

Gijsberts, Arjan and Giorgio Metta (2013). “Real-time model learning using incremental
sparse spectrum gaussian process regression”. In: Neural Networks 41, pp. 59–69.

Gordon, Geoffrey J (1995). “Stable function approximation in dynamic programming”. In:
Machine Learning Proceedings 1995. Elsevier, pp. 261–268.

— (1999). “Regret bounds for prediction problems”. In: Conference on Learning Theory.
Vol. 99, pp. 29–40.

Grathwohl, Will, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud (2018).
“Backpropagation through the Void: Optimizing control variates for black-box gradient
estimation”. In: International Conference on Learning Representations.

Greensmith, Evan, Peter L Bartlett, and Jonathan Baxter (2004). “Variance reduction tech-
niques for gradient estimates in reinforcement learning”. In: Journal of Machine Learn-
ing Research 5.Nov, pp. 1471–1530.

510

Gupta, Vineet, Tomer Koren, and Yoram Singer (2017). “A unified approach to adaptive
regularization in online and stochastic optimization”. In: arXiv preprint arXiv:1706.06569.

Hall, Eric and Rebecca Willett (2013). “Dynamical Models and tracking regret in online
convex programming”. In: International Conference on Machine Learning, pp. 579–
587.

Hayes, Thomas P (2005). “A large-deviation inequality for vector-valued martingales”. In:
Combinatorics, Probability and Computing.

Hazan, Elad, Amit Agarwal, and Satyen Kale (2007). “Logarithmic regret algorithms for
online convex optimization”. In: Machine Learning 69.2, pp. 169–192.

Hazan, Elad et al. (2016). “Introduction to online convex optimization”. In: Foundations
and Trends R© in Optimization 2.3-4, pp. 157–325.

Hensman, James, Nicolo Fusi, and Neil D Lawrence (2013). “Gaussian processes for big
data”. In: arXiv preprint arXiv:1309.6835.

Hernández-Lerma, Onésimo and Jean B Lasserre (2012). Discrete-time Markov control
processes: basic optimality criteria. Vol. 30. Springer Science & Business Media.

Ho-Nguyen, Nam and Fatma Kılınç-Karzan (2018). “Exploiting problem structure in op-
timization under uncertainty via online convex optimization”. In: Mathematical Pro-
gramming, pp. 1–35.

Ijspeert, A. J., J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal (2013). “Dynamical
Movement Primitives: Learning Attractor Models for Motor Behaviors”. In: Neural
Computation 25.2, pp. 328–373.

Ivan, Vladimir, Dmitry Zarubin, Marc Toussaint, Taku Komura, and Sethu Vijayakumar
(2013). “Topology-based representations for motion planning and generalization in dy-
namic environments with interactions”. In: The International Journal of Robotics Re-
search 32.9-10, pp. 1151–1163.

Jacobson, David H and David Q Mayne (1970). “Differential dynamic programming”. In:

Jadbabaie, Ali, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan (2015).
“Online optimization: Competing with dynamic comparators”. In: Artificial Intelli-
gence and Statistics, pp. 398–406.

Jaggi, Martin (2013). “Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimiza-
tion.” In: International Conference on Machine Learning, pp. 427–435.

511

Jofré, Alejandro and Roger J-B Wets (2014). “Variational convergence of bifunctions: mo-
tivating applications”. In: SIAM Journal on Optimization 24.4, pp. 1952–1979.

Johnson, Matthew, Brandon Shrewsbury, Sylvain Bertrand, Tingfan Wu, Daniel Duran,
Marshall Floyd, Peter Abeles, Douglas Stephen, Nathan Mertins, Alex Lesman, et al.
(2015). “Team IHMC’s lessons learned from the DARPA robotics challenge trials”. In:
Journal of Field Robotics 32.2, pp. 192–208.

Journée, Michel, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre (2010). “Gener-
alized power method for sparse principal component analysis”. In: Journal of Machine
Learning Research 11.Feb, pp. 517–553.

Juditsky, Anatoli, Arkadi Nemirovski, and Claire Tauvel (2011). “Solving variational in-
equalities with stochastic mirror-prox algorithm”. In: Stochastic Systems 1.1, pp. 17–
58.

Juditsky, Anatoli, Arkadi Nemirovski, et al. (2011). “First order methods for nonsmooth
convex large-scale optimization, i: general purpose methods”. In: Optimization for Ma-
chine Learning, pp. 121–148.

Kaess, Michael, Hordur Johannsson, Richard Roberts, Viorela Ila, John J Leonard, and
Frank Dellaert (2012). “iSAM2: Incremental smoothing and mapping using the Bayes
tree”. In: The International Journal of Robotics Research 31.2, pp. 216–235.

Kahn, Gregory, Tianhao Zhang, Sergey Levine, and Pieter Abbeel (2017). “Plato: Policy
learning using adaptive trajectory optimization”. In: IEEE International Conference on
Robotics and Automation. IEEE, pp. 3342–3349.

Kakade, Sham and John Langford (2002). “Approximately optimal approximate reinforce-
ment learning”. In: International Conference on Machine Learning. Vol. 2, pp. 267–
274.

Kakade, Sham M (2002). “A natural policy gradient”. In: Advances in Neural Information
Processing Systems, pp. 1531–1538.

Kakade, Sham M and Ambuj Tewari (2009). “On the generalization ability of online strongly
convex programming algorithms”. In: Advances in Neural Information Processing Sys-
tems, pp. 801–808.

Kakade, Sham Machandranath et al. (2003). “On the sample complexity of reinforcement
learning”. PhD thesis. University of London London, England.

Kalai, Adam and Santosh Vempala (2005). “Efficient algorithms for online decision prob-
lems”. In: Journal of Computer and System Sciences 71.3, pp. 291–307.

512

Kaldestad, K. B., S. Haddadin, R. Belder, G. Hovland, and D. A. Anisi (2014). “Collision
avoidance with potential fields based on parallel processing of 3D-point cloud data on
the GPU”. In: IEEE International Conference on Robotics and Automation, pp. 3250–
3257.

Kappler, Daniel, Franziska Meier, Jan Issac, Jim Mainprice, Cristina Garcia Cifuentes,
Manuel Wüthrich, Vincent Berenz, Stefan Schaal, Nathan Ratliff, and Jeannette Bohg
(2018). “Real-time Perception meets Reactive Motion Generation”. In: IEEE Robotics
and Automation Letters 3.3, pp. 1864–1871.

Karaman, Sertac and Emilio Frazzoli (2011). “Sampling-based Algorithms for Optimal
Motion Planning”. In: The International Journal of Robotics Research 30.7, pp. 846–
894.

Kearns, Michael J and Satinder P Singh (1999). “Finite-sample convergence rates for Q-
learning and indirect algorithms”. In: Advances in Neural Information Processing Sys-
tems, pp. 996–1002.

Khalil, Hassan K (1996). “Noninear systems”. In: Prentice-Hall, New Jersey 2.5, pp. 5–1.

Khatib, O. (1985). “Real-time obstacle avoidance for manipulators and mobile robots”. In:
IEEE International Conference on Robotics and Automation. Vol. 2, pp. 500–505.

Khatib, Oussama (1987). “A unified approach for motion and force control of robot ma-
nipulators: The operational space formulation”. In: IEEE Journal on Robotics and Au-
tomation 3.1, pp. 43–53.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980.

Koenig, Nathan and Andrew Howard (2004). “Design and use paradigms for gazebo, an
open-source multi-robot simulator”. In: IEEE/RSJ International Conference onIntelli-
gent Robots and Systems. Vol. 3. IEEE, pp. 2149–2154.

Komlósi, SÁNDOR (1999). “On the Stampacchia and Minty variational inequalities”. In:
Generalized Convexity and Optimization for Economic and Financial Decisions, pp. 231–
260.

Konda, Vijay R and John N Tsitsiklis (2000). “Actor-critic algorithms”. In: Advances in
Neural Information Processing Systems, pp. 1008–1014.

Kong, Jason, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli (2015). “Kinematic
and dynamic vehicle models for autonomous driving control design”. In: IEEE Intelli-
gent Vehicles Symposium. IEEE, pp. 1094–1099.

513

Konnov, Igor V (2007). “Combined relaxation methods for generalized monotone varia-
tional inequalities”. In: Generalized convexity and related topics. Springer, pp. 3–31.

Konnov, Igor V and Erkki Laitinen (2002). Theory and applications of variational inequal-
ities. University of Oulu, Department of Mathematical Sciences.

Konnov, IV and S Schaible (2000). “Duality for equilibrium problems under generalized
monotonicity”. In: Journal of Optimization Theory and Applications 104.2, pp. 395–
408.

Kontorovich, Aryeh and Maxim Raginsky (2017). “Concentration of measure without in-
dependence: a unified approach via the martingale method”. In: Convexity and Concen-
tration. Springer, pp. 183–210.

Korpelevich, GM (1976). “The extragradient method for finding saddle points and other
problems”. In: Matecon 12, pp. 747–756.

Lakshminarayanan, Chandrashekar, Shalabh Bhatnagar, and Csaba Szepesvári (2018). “A
linearly relaxed approximate linear program for Markov decision processes”. In: IEEE
Transactions on Automatic Control 63.4, pp. 1185–1191.

Lan, Guanghui (2013). “The complexity of large-scale convex programming under a linear
optimization oracle”. In: arXiv preprint arXiv:1309.5550.

Laskey, Michael, Caleb Chuck, Jonathan Lee, Jeffrey Mahler, Sanjay Krishnan, Kevin
Jamieson, Anca Dragan, and Ken Goldberg (2016). “Comparing human-centric and
robot-centric sampling for robot deep learning from demonstrations”. In: arXiv preprint
arXiv:1610.00850.

— (2017). “Comparing human-centric and robot-centric sampling for robot deep learning
from demonstrations”. In: IEEE International Conference on Robotics and Automation.
IEEE, pp. 358–365.

Laurense, Vincent A, Jonathan Y Goh, and J Christian Gerdes (2017). “Path-tracking for
autonomous vehicles at the limit of friction”. In: 2017 American Control Conference
(ACC), pp. 5586–5591.

LaValle, Steven M. (2006). Planning Algorithms. Available at http://planning.cs.uiuc.edu/.
Cambridge, U.K.: Cambridge University Press.

Lázaro-Gredilla, Miguel, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, and Anı́bal
R. Figueiras-Vidal (2010). “Sparse spectrum Gaussian process regression”. In: Journal
of Machine Learning Research 11.Jun, pp. 1865–1881.

514

Le, Hoang M, Nan Jiang, Alekh Agarwal, Miroslav Dudı́k, Yisong Yue, and Hal Daumé
III (2018). “Hierarchical Imitation and Reinforcement Learning”. In: arXiv preprint
arXiv:1803.00590.

Lee, Donghwan and Niao He (2018). “Stochastic Primal-Dual Q-Learning”. In: arXiv
preprint arXiv:1810.08298.

Lee, Jaemin, Nicolas Mansard, and Jaeheung Park (2012). “Intermediate desired value ap-
proach for task transition of robots in kinematic control”. In: IEEE Transactions on
Robotics 28.6, pp. 1260–1277.

Lee, Jeffrey M. (2009). Manifolds and differential geometry. Graduate Studies in Mathe-
matics, vol. 107, American Mathematical Society.

Lee, Jeongseok, Michael X. Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Sid-
dhartha S. Srinivasa, Mike Stilman, and C. Karen Liu (2018a). “DART: Dynamic Ani-
mation and Robotics Toolkit”. In: The Journal of Open Source Software 3.22, p. 500.

Lee, Jeongseok, Michael X Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Sid-
dhartha S Srinivasa, Mike Stilman, and C Karen Liu (2018b). “DART: Dynamic ani-
mation and robotics toolkit”. In: The Journal of Open Source Software 3.22, p. 500.

Lee, Jonathan, Michael Laskey, Ajay Kumar Tanwani, Anil Aswani, and Ken Goldberg
(2018c). “A Dynamic Regret Analysis and Adaptive Regularization Algorithm for On-
Policy Robot Imitation Learning”. In: arXiv preprint arXiv:1811.02184.

Lee, Wee Sun, Peter L Bartlett, and Robert C Williamson (1998). “The importance of
convexity in learning with squared loss”. In: IEEE Transactions on Information Theory
44.5, pp. 1974–1980.

Levine, Sergey and Vladlen Koltun (2013). “Guided policy search”. In: Proceedings of the
30th International Conference on Machine Learning (ICML-13), pp. 1–9.

Levine, Sergey, Chelsea Finn, Trevor Darrell, and Pieter Abbeel (Jan. 2016). “End-to-end
Training of Deep Visuomotor Policies”. In: Journal of Machine Learning Research
17.1, pp. 1334–1373.

Lewis, Andrew D (2000). The geometry of the maximum principle for affine connection
control systems.

Li, Anqi, Mustafa Mukadam, Magnus Egerstedt, and Byron Boots (2019a). “Multi-Objective
Policy Generation for Multi-Robot Systems Using Riemannian Motion Policies”. In:
International Symposium on Robotics Research.

515

Li, Anqi, Ching-An Cheng, Byron Boots, and Magnus Egerstedt (2019b). “Stable, Concur-
rent Controller Composition for Multi-Objective Robotic Tasks”. In: IEEE Conference
on Decision and Control.

Liberzon, Daniel, Joao P Hespanha, and A Stephen Morse (1999). “Stability of switched
systems: a Lie-algebraic condition”. In: Systems & Control Letters 37.3, pp. 117–122.

Liegeois, Alain (1977). “Automatic supervisory control of the configuration and behaviour
of multibody mechanisms”. In: IEEE Transactions on Systems, Man and Cybernetics
7.12, pp. 868–871.

Lin, Qihang, Selvaprabu Nadarajah, and Negar Soheili (2017). Revisiting approximate lin-
ear programming using a saddle point based reformulation and root finding solution
approach. Tech. rep. working paper, U. of Il. at Chicago and U. of Iowa.

Lin, Qihang, Mingrui Liu, Hassan Rafique, and Tianbao Yang (2018). “Solving Weakly-
Convex-Weakly-Concave Saddle-Point Problems as Weakly-Monotone Variational In-
equality”. In: arXiv preprint arXiv:1810.10207.

Ljung, Lennart (1998). “System identification”. In: Signal analysis and prediction. Springer,
pp. 163–173.

Lo, Sheng-Yen, Ching-An Cheng, and Han-Pang Huang (2016). “Virtual impedance con-
trol for safe human-robot interaction”. In: Journal of Intelligent & Robotic Systems
82.1, pp. 3–19.

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using t-SNE”. In:
Journal of machine learning research 9.Nov, pp. 2579–2605.

Mainprice, Jim, Nathan Ratliff, and Stefan Schaal (2016). “Warping the Workspace Ge-
ometry with Electric Potentials for Motion Optimization of Manipulation Tasks”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems.

Mann, W Robert (1953). “Mean value methods in iteration”. In: Proceedings of the Amer-
ican Mathematical Society 4.3, pp. 506–510.

Manne, Alan S et al. (1959). Linear programming and sequential decision models. Tech.
rep. Cowles Foundation for Research in Economics, Yale University.

McDiarmid, Colin (1998). “Concentration”. In: Probabilistic methods for algorithmic dis-
crete mathematics. Springer, pp. 195–248.

McMahan, H Brendan (2017). “A survey of algorithms and analysis for adaptive online
learning”. In: The Journal of Machine Learning Research 18.1, pp. 3117–3166.

516

McMahan, H Brendan and Matthew Streeter (2010). “Adaptive bound optimization for
online convex optimization”. In: arXiv preprint arXiv:1002.4908.

Meng, Xiangyun, Nathan Ratliff, Yu Xiang, and Dieter Fox (2019). “Learning Latent Space
Dynamics for Tactile Servoing”. In: IEEE International Conference on Robotics and
Automation.

Michels, Jeff, Ashutosh Saxena, and Andrew Y Ng (2005). “High speed obstacle avoidance
using monocular vision and reinforcement learning”. In: International Conference on
Machine learning, pp. 593–600.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller (2013). “Playing atari with deep reinforcement
learning”. In: arXiv preprint arXiv:1312.5602.

Mnih, Volodymyr, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu (2016). “Asynchronous meth-
ods for deep reinforcement learning”. In: International Conference on Machine Learn-
ing, pp. 1928–1937.

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2012). Foundations of ma-
chine learning. MIT press.

Mokhtari, Aryan, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro (2016). “On-
line optimization in dynamic environments: Improved regret rates for strongly convex
problems”. In: Conference on Decision and Control. IEEE, pp. 7195–7201.

Mordatch, Igor and Emo Todorov (2014). “Combining the benefits of function approxima-
tion and trajectory optimization.” In: Robotics: Science and Systems, pp. 5–32.

Morris, Benjamin, Matthew J Powell, and Aaron D Ames (2013). “Sufficient conditions
for the lipschitz continuity of qp-based multi-objective control of humanoid robots”.
In: IEEE Conference on Decision and Control. IEEE, pp. 2920–2926.

Mukadam, Mustafa, Xinyan Yan, and Byron Boots (2016). “Gaussian Process Motion Plan-
ning.” In: IEEE International Conference on Robotics and Automation.

Mukadam, Mustafa, Ching-An Cheng, Xinyan Yan, and Byron Boots (2017). “Approxi-
mately Optimal Continuous-Time Motion Planning and Control via Probabilistic Infer-
ence”. In: IEEE International Conference on Robotics and Automation, pp. 664–671.

Mukadam, Mustafa, Jing Dong, Xinyan Yan, Frank Dellaert, and Byron Boots (2018).
“Continuous-time Gaussian process motion planning via probabilistic inference”. In:
The International Journal of Robotics Research 37.11, pp. 1319–1340.

517

Mukadam, Mustafa, Ching-An Cheng, Dieter Fox, Byron Boots, and Nathan Ratliff (2019).
“Riemannian Motion Policy Fusion through Learnable Hierarchical Energy Reshap-
ing”. In: Conference on Robot Learning.

Muller, Urs, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun (2006). “Off-road obstacle
avoidance through end-to-end learning”. In: Advances in Neural Information Process-
ing Systems, pp. 739–746.

Nair, Ashvin, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel
(2017). “Overcoming exploration in reinforcement learning with demonstrations”. In:
arXiv preprint arXiv:1709.10089.

Nakanishi, J., R. Cory, M. Mistry, J. Peters, and S. Schaal (2008). “Operational space con-
trol: A theoretical and empirical comparison”. In: The International Journal of Robotics
Research 6, pp. 737–757.

Narendra, Kumpati S and Jeyendran Balakrishnan (1994). “A common Lyapunov function
for stable LTI systems with commuting A-matrices”. In: IEEE Transactions on Auto-
matic Control 39.12, pp. 2469–2471.

Nash, John (1956). “The imbedding problem for Riemannian manifolds”. In: Annals of
Mathematics 63.1, pp. 20–63.

Nemirovski, Arkadi (2004). “Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”. In: SIAM Journal on Optimization 15.1, pp. 229–251.

Nemirovski, Arkadi, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro (2009). “Ro-
bust stochastic approximation approach to stochastic programming”. In: SIAM Journal
on Optimization 19.4, pp. 1574–1609.

Nesterov, Yurii (2013). Introductory lectures on convex optimization: A basic course. Vol. 87.
Springer Science & Business Media.

Ng, Andrew Y, Daishi Harada, and Stuart Russell (1999). “Policy invariance under reward
transformations: Theory and application to reward shaping”. In: International Confer-
ence on Machine Learning. Vol. 99, pp. 278–287.

Oh, Junhyuk, Satinder Singh, and Honglak Lee (2017). “Value prediction network”. In:
Advances in Neural Information Processing Systems, pp. 6120–6130.

Paden, Brian, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli (2016).
“A survey of motion planning and control techniques for self-driving urban vehicles”.
In: IEEE Transactions on Intelligent Vehicles 1.1, pp. 33–55.

518

Pan, Y., Ching-An Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and B. Boots. (2019).
“Imitation Learning for Agile Autonomous Driving”. In: The International Journal of
Robotics Research.

Pan, Yunpeng and Evangelos Theodorou (2014). “Probabilistic differential dynamic pro-
gramming”. In: Advances in Neural Information Processing Systems, pp. 1907–1915.

Pan, Yunpeng, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos
Theodorou, and Byron Boots (2017a). “Agile Off-Road Autonomous Driving Using
End-to-End Deep Imitation Learning”. In: arXiv preprint arXiv:1709.07174.

Pan, Yunpeng, Xinyan Yan, Evangelos A. Theodorou, and Byron Boots (2017b). “Predic-
tion under Uncertainty in Sparse Spectrum Gaussian Processes with Applications to
Filtering and Control”. In: International Conference on Machine Learning, pp. 2760–
2768.

Pan, Yunpeng, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos
Theodorou, and Byron Boots (2018). “Agile Off-Road Autonomous Driving Using
End-to-End Deep Imitation Learning”. In: Robotics: Science and Systems.

Papini, Matteo, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli
(2018). “Stochastic Variance-Reduced Policy Gradient”. In: International Conference
on Machine Learning, pp. 4023–4032.

Pascanu, Razvan, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien Racanière,
David Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia (2017). “Learn-
ing model-based planning from scratch”. In: arXiv preprint arXiv:1707.06170.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer (2017). “Automatic
differentiation in pytorch”. In:

Paxton, Chris, Nathan Ratliff, Clemens Eppner, and Dieter Fox (2019). “Representing
Robot Task Plans as Robust Logical-Dynamical Systems”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems.

Peng, Xue Bin, Pieter Abbeel, Sergey Levine, and Michiel van de Panne (2018). “Deep-
Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character
Skills”. In: arXiv preprint arXiv:1804.02717.

Peters, Jan, Katharina Mülling, and Yasemin Altun (2010). “Relative Entropy Policy Search.”
In: Conference on Artificial Intelligence. Atlanta, pp. 1607–1612.

Peters, Jan and Stefan Schaal (2008). “Natural actor-critic”. In: Neurocomputing 71.7-9,
pp. 1180–1190.

519

Peters, Jan, Michael Mistry, Firdaus Udwadia, Jun Nakanishi, and Stefan Schaal (2008). “A
unifying framework for robot control with redundant DOFs”. In: Autonomous Robots
24.1, pp. 1–12.

Pickem, Daniel, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron, and Mag-
nus Egerstedt (2017). “The Robotarium: A remotely accessible swarm robotics re-
search testbed”. In: IEEE International Conference on Robotics and Automation. IEEE,
pp. 1699–1706.

Platt, Robert, Muhammad E Abdallah, and Charles W Wampler (2011). “Multiple-priority
impedance control.” In: IEEE International Conference on Robotics and Automation,
pp. 6033–6038.

Pomerleau, Dean A (1989). “Alvinn: An autonomous land vehicle in a neural network”. In:
Advances in Neural Information Processing Systems, pp. 305–313.

Puterman, Martin L (2014). Markov Decision Processes.: Discrete Stochastic Dynamic
Programming. John Wiley & Sons.

Rajamani, Rajesh (2011). Vehicle dynamics and control. Springer Science & Business Me-
dia.

Rajeswaran, Aravind, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel Todorov,
and Sergey Levine (2017). “Learning complex dexterous manipulation with deep rein-
forcement learning and demonstrations”. In: arXiv preprint arXiv:1709.10087.

Rakhlin, Alexander and Karthik Sridharan (2012). “Online learning with predictable se-
quences”. In: arXiv preprint arXiv:1208.3728.

Rakhlin, Sasha and Karthik Sridharan (2013). “Optimization, learning, and games with pre-
dictable sequences”. In: Advances in Neural Information Processing Systems, pp. 3066–
3074.

Ratliff, Nathan, Marc Toussaint, and Stefan Schaal (2015a). “Understanding the geometry
of workspace obstacles in motion optimization”. In: IEEE International Conference on
Robotics and Automation. IEEE, pp. 4202–4209.

— (2015b). “Understanding the Geometry of Workspace Obstacles in Motion Optimiza-
tion”. In: IEEE International Conference on Robotics and Automation.

Ratliff, Nathan, Matthew Zucker, J. Andrew (Drew) Bagnell, and Siddhartha Srinivasa
(2009). “CHOMP: Gradient Optimization Techniques for Efficient Motion Planning”.
In: IEEE International Conference on Robotics and Automation.

520

Ratliff, Nathan D, Jan Issac, and Daniel Kappler (2018). “Riemannian Motion Policies”.
In: arXiv preprint arXiv:1801.02854.

Rausch, Viktor, Andreas Hansen, Eugen Solowjow, Chang Liu, Edwin Kreuzer, and J.
Karl Hedrick (2017). “Learning a Deep Neural Net Policy for End-to-End Control of
Autonomous Vehicles”. In: IEEE American Control Conference.

Rawlik, Konrad, Marc Toussaint, and Sethu Vijayakumar (2012). “On stochastic optimal
control and reinforcement learning by approximate inference”. In: Robotics: Science
and Systems. Vol. 13. 2, pp. 3052–3056.

Reddi, Sashank J, Satyen Kale, and Sanjiv Kumar (2018). “On the convergence of adam
and beyond”. In: International Conference on Learning Representations.

Riedmiller, Martin (2005). “Neural fitted Q iteration–first experiences with a data efficient
neural reinforcement learning method”. In: European Conference on Machine Learn-
ing. Springer, pp. 317–328.

Rimon, E. and D.E. Koditschek (1991). “The Construction of Analytic Diffeomorphisms
for Exact Robot Navigation on Star Worlds”. In: Transactions of the American Mathe-
matical Society 327.1, pp. 71–116.

Ross, Stephane and J Andrew Bagnell (2012). “Agnostic system identification for model-
based reinforcement learning”. In:

— (2014). “Reinforcement and imitation learning via interactive no-regret learning”. In:
arXiv preprint arXiv:1406.5979.

Ross, Stéphane, Geoffrey J Gordon, and Drew Bagnell (2011). “A reduction of imitation
learning and structured prediction to no-regret online learning”. In: International Con-
ference on Artificial Intelligence and Statistics, pp. 627–635.

Ross, Stéphane, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel, De-
badeepta Dey, J Andrew Bagnell, and Martial Hebert (2013). “Learning monocular
reactive uav control in cluttered natural environments”. In: IEEE International Confer-
ence onRobotics and Automation. IEEE, pp. 1765–1772.

Rutherford, Simon J and David J Cole (2010). “Modelling nonlinear vehicle dynamics with
neural networks”. In: International journal of vehicle design 53.4, pp. 260–287.

Salimbeni, Hugh, Ching-An Cheng, Byron Boots, and Marc Deisenroth (2018). “Orthog-
onally Decoupled Variational Gaussian Processes”. In: Conference on Neural Informa-
tion Processing Systems.

521

Schaal, Stefan (1999). “Is imitation learning the route to humanoid robots?” In: Trends in
Cognitive Sciences 3.6, pp. 233–242.

Schmidt, T., R. Newcombe, and D. Fox (2015). “DART: Dense articulated real-time track-
ing with consumer depth cameras”. In: Autonomous Robots 39.3.

Schroecker, Yannick and Charles L Isbell (2017). “State Aware Imitation Learning”. In:
Advances in Neural Information Processing Systems, pp. 2911–2920.

Schulman, John, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel (2015a).
“High-dimensional continuous control using generalized advantage estimation”. In:
arXiv preprint arXiv:1506.02438.

Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz (2015b).
“Trust region policy optimization”. In: International Conference on Machine Learning,
pp. 1889–1897.

Sentis, Luis and Oussama Khatib (2006). “A whole-body control framework for humanoids
operating in human environments”. In: IEEE International Conference on Robotics and
Automation, pp. 2641–2648.

Shaban, Amirreza, Ching-An Cheng, Nathan Hatch, and Byron Boots (2019). “Truncated
Back Propagation for Bilevel Optimization”. In: International Conference on Artificial
Intelligence and Statistics.

Shalev-Shwartz, Shai (2012). “Online learning and online convex optimization”. In: Foun-
dations and Trends R© in Machine Learning 4.2, pp. 107–194.

Shalev-Shwartz, Shai, Ohad Shamir, Nathan Srebro, and Karthik Sridharan (2009). “Stochas-
tic Convex Optimization.” In: Conference on Learning Theory.

Shimodaira, Hidetoshi (2000). “Improving predictive inference under covariate shift by
weighting the log-likelihood function”. In: Journal of statistical planning and inference
90.2, pp. 227–244.

Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Ried-
miller (2014). “Deterministic policy gradient algorithms”. In: International Conference
on Machine Learning.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. (2017a).
“Mastering the game of Go without human knowledge”. In: Nature 550.7676, pp. 354–
359.

522

Silver, David, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley,
Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. (2017b).
“The predictron: End-to-end learning and planning”. In: International Conference on
Machine Learning.

Slotine, Siciliano B (1991). “A general framework for managing multiple tasks in highly re-
dundant robotic systems”. In: Proceeding of 5th International Conference on Advanced
Robotics. Vol. 2, pp. 1211–1216.

Snelson, Edward and Zoubin Ghahramani (2006). “Sparse Gaussian processes using pseudo-
inputs”. In: Advances in Neural Information Processing Systems.

Sontag, Eduardo D (1983). “A Lyapunov-like characterization of asymptotic controllabil-
ity”. In: SIAM Journal on Control and Optimization 21.3, pp. 462–471.

Squires, Eric, Pietro Pierpaoli, and Magnus Egerstedt (2018). “Constructive Barrier Certifi-
cates with Applications to Fixed-Wing Aircraft Collision Avoidance”. In: Conference
on Control Technology and Applications. IEEE, pp. 1656–1661.

Srinivas, Aravind, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn (2018).
“Universal Planning Networks: Learning Generalizable Representations for Visuomo-
tor Control”. In: Proceedings of the 35th International Conference on Machine Learn-
ing.

Sun, Wen, J. Andrew Bagnell, and Byron Boots (2018). “Truncated Horizon Policy Search:
Deep Combination of Reinforcement and Imitation”. In: International Conference on
Learning Representations.

Sun, Wen, Arun Venkatraman, Geoffrey J. Gordon, Byron Boots, and J. Andrew Bagnell
(2017). “Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Predic-
tion”. In: International Conference on Machine Learning, pp. 3309–3318.

Sun, Wen, Geoffrey J. Gordon, Byron Boots, and J. Andrew Bagnell (2018). “Dual Policy
Iteration”. In: Advances in Neural Information Processing Systems 31, pp. 7059–7069.

Sutanto, Giovanni, Nathan Ratliff, Balakumar Sundaralingam, Yevgen Chebotar, Zhe Su,
Ankur Handa, and Dieter Fox (2019). “Learning Latent Space Dynamics for Tactile
Servoing”. In: IEEE International Conference on Robotics and Automation.

Sutton, Richard S (1991). “Dyna, an integrated architecture for learning, planning, and
reacting”. In: ACM SIGART Bulletin 2.4, pp. 160–163.

Sutton, Richard S and Andrew G Barto (1998). Introduction to reinforcement learning.
Vol. 135. MIT Press Cambridge.

523

Sutton, Richard S, David A McAllester, Satinder P Singh, and Yishay Mansour (2000).
“Policy gradient methods for reinforcement learning with function approximation”. In:
Advances in Neural Information Processing Systems, pp. 1057–1063.

Sutton, Richard S, Csaba Szepesvári, Alborz Geramifard, and Michael P Bowling (2012).
“Dyna-style planning with linear function approximation and prioritized sweeping”. In:
arXiv preprint arXiv:1206.3285.

Tan, Jie, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven
Bohez, and Vincent Vanhoucke (2018). “Sim-to-real: Learning agile locomotion for
quadruped robots”. In: arXiv preprint arXiv:1804.10332.

Tassa, Yuval, Tom Erez, and William D Smart (2008). “Receding horizon differential dy-
namic programming”. In: Advances in Neural Information Processing Systems, pp. 1465–
1472.

Taylor, John R. (2005). Classical Mechanics. University Science Books.

Tieleman, Tijmen and Geoffrey Hinton (2012). “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude”. In: COURSERA: Neural networks for
machine learning 4.2, pp. 26–31.

Titsias, Michalis K. (2009). “Variational learning of inducing variables in sparse Gaus-
sian processes”. In: International Conference on Artificial Intelligence and Statistics,
pp. 567–574.

Todorov, E. (2006). “Optimal control theory”. In: In Bayesian Brain: Probabilistic Ap-
proaches to Neural Coding. Ed. by K. et al. Doya, pp. 269–298.

Todorov, Emanuel and Weiwei Li (2005). “A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear systems”. In: American Control Con-
ference. IEEE, pp. 300–306.

Toussaint, Marc (2009). “Robot Trajectory Optimization using Approximate Inference”. In:
International Conference on Machine Learning, pp. 1049–1056. ISBN: 978-1-60558-
516-1.

Tucker, George, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein
(2017). “REBAR: Low-variance, unbiased gradient estimates for discrete latent variable
models”. In: Advances in Neural Information Processing Systems, pp. 2624–2633.

Udwadia, F. E. (2003). “A new perspective on the tracking control of nonlinear structural
and mechanical systems”. In: Proceedings of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences 459.2035, pp. 1783–1800. eprint: http:

524

http://rspa.royalsocietypublishing.org/content/459/2035/1783.full.pdf
http://rspa.royalsocietypublishing.org/content/459/2035/1783.full.pdf

//rspa.royalsocietypublishing.org/content/459/2035/1783.
full.pdf.

Udwadia, F. E. and R. E. Kalaba (1996). Analytical Dynamics: A New Approach. Cam-
bridge University Press.

Urmson, Chris, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner, MN
Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. (2008). “Au-
tonomous driving in urban environments: Boss and the urban challenge”. In: Journal of
Field Robotics 25.8, pp. 425–466.

Vapnik, Vladimir Naumovich (1998). Statistical learning theory. Vol. 1. Wiley New York.

Veliov, VM and Phan Tu Vuong (2017). “Gradient Methods on Strongly Convex Feasible
Sets and Optimal Control of Affine Systems”. In: Applied Mathematics & Optimization,
pp. 1–34.

Venkatraman, Arun, Martial Hebert, and J Andrew Bagnell (2015). “Improving multi-step
prediction of learned time series models”. In: Conference on Artificial Intelligence.

Volodymyr, Mnih, Kavukcuoglu Koray, Silver David, A Rusu Andrei, and Veness Joel
(2015). “Human-level control through deep reinforcement learning”. In: Nature 518.7540,
pp. 529–533.

Vu, Linh and Daniel Liberzon (2005). “Common Lyapunov functions for families of com-
muting nonlinear systems”. In: Systems & Control Letters 54.5, pp. 405–416.

Wagener, Nolan, Ching-An Cheng, Jacob Sacks, and Byron Boots (2019). “An Online
Learning Approach to Model Predictive Control”. In: Robotics: Science and Systems.

Walker, Michael W and David E Orin (1982). “Efficient dynamic computer simulation
of robotic mechanisms”. In: Journal of Dynamic Systems, Measurement, and Control
104.3, pp. 205–211.

Wang, Li, Aaron D Ames, and Magnus Egerstedt (2016). “Multi-objective compositions
for collision-free connectivity maintenance in teams of mobile robots”. In: IEEE Con-
ference on Decision and Control. IEEE, pp. 2659–2664.

Wang, Mengdi (2017a). “Primal-Dual π Learning: Sample Complexity and Sublinear Run
Time for Ergodic Markov Decision Problems”. In: arXiv preprint arXiv:1710.06100.

— (2017b). “Randomized linear programming solves the discounted markov decision prob-
lem in nearly-linear (sometimes sublinear) running time”. In: arXiv preprint arXiv:1704.01869.

525

http://rspa.royalsocietypublishing.org/content/459/2035/1783.full.pdf
http://rspa.royalsocietypublishing.org/content/459/2035/1783.full.pdf
http://rspa.royalsocietypublishing.org/content/459/2035/1783.full.pdf

Wang, Mengdi and Yichen Chen (2016). “An online primal-dual method for discounted
Markov decision processes”. In: Conference on Decision and Control. IEEE, pp. 4516–
4521.

Watterson, Michael, Sikang Liu, Ke Sun, Trey Smith, and Vijay Kumar (2018). “Trajectory
Optimization On Manifolds with Applications to SO(3) and R3 × S2”. In: Robotics:
Science and Systems.

Williams, C.K.I and C.E. Rasmussen (2006). Gaussian processes for machine learning.
MIT Press.

Williams, Grady, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou
(2016). “Aggressive driving with model predictive path integral control”. In: IEEE In-
ternational Conference on Robotics and Automation, pp. 1433–1440.

Williams, Grady, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron
Boots, and Evangelos A Theodorou (2017). “Information theoretic mpc for model-
based reinforcement learning”. In: IEEE International Conference on Robotics and
Automation, pp. 1714–1721.

Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning”. In: Reinforcement Learning. Springer, pp. 5–32.

Yang, Tianbao, Lijun Zhang, Rong Jin, and Jinfeng Yi (2016). “Tracking slowly moving
clairvoyant: optimal dynamic regret of online learning with true and noisy gradient”.
In: International Conference on Machine Learning. JMLR. org, pp. 449–457.

Yang, Zhengyuan, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo (2018). “End-to-
end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Per-
ception”. In: arXiv preprint arXiv:1801.06734.

Yu, Hao, Shu Yang, Weihao Gu, and Shaoyu Zhang (2017). “Baidu driving dataset and
end-to-end reactive control model”. In: IEEE Intelligent Vehicles Symposium, pp. 341–
346.

Zeiler, Matthew D (2012). “ADADELTA: an adaptive learning rate method”. In: arXiv
preprint arXiv:1212.5701.

Zhang, Jiakai and Kyunghyun Cho (2016). “Query-efficient imitation learning for end-to-
end autonomous driving”. In: arXiv preprint arXiv:1605.06450.

Zhang, Lijun, Tianbao Yang, Jinfeng Yi, Jing Rong, and Zhi-Hua Zhou (2017). “Improved
Dynamic Regret for Non-degenerate Functions”. In: Advances in Neural Information
Processing Systems, pp. 732–741.

526

Zinkevich, Martin (2003). “Online convex programming and generalized infinitesimal gra-
dient ascent”. In: International Conference on Machine Learning, pp. 928–936.

527

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	The Reality Gap
	Theories Driven by Practical Needs
	Policy Optimization: An Online Learning Approach
	Efficient Policy Optimization via Online Imitation Learning
	Convergence and Acceleration of Online Imitation Learning
	Toward a Generic Framework for Policy Optimization and Beyond

	Expressive Structural Policies with Stability Guarantees
	A Geometric Framework for Policy Fusion
	Combining Policies with Control Lyapunov Functions

	Outline

	I Policy Optimization I: Imitation
	Policy Optimization
	Setup
	Objective and Assumptions
	A General Performance Difference Lemma

	Imitation Learning
	Introduction
	Problem Setup
	Goal of Imitation Learning
	Performance Difference

	Different Approaches to Imitation Learning
	Online Imitation Learning
	Batch Imitation Learning
	Imitation Learning without Demonstrations

	Admissible Experts
	Comparison between Online IL and Batch IL

	Imitation Learning for Agile Autonomous Driving
	Introduction
	Related Work
	The Autonomous Driving System
	Algorithmic Expert: Model-Predictive Control
	Learning a DNN Control Policy
	The Autonomous Driving Platform

	Experimental Setup
	High-speed Driving Task
	Test Track
	Data Collection
	Policy Learning

	Experimental Results
	Algorithmic Expert vs Human Expert
	Empirical Performance
	Generalizability of the Learned Policy
	The Neural Network Policy

	Conclusion
	Design of Algorithmic Expert
	Probabilistic Dynamics Model
	Trajectory Optimization

	Fast Policy Learning through Imitation and Reinforcement
	Introduction
	Problem Setup
	First-Order RL and IL
	Mirror Descent
	First-Order Oracles

	Theoretical Comparison
	Policy Gradients
	Imitation Gradients

	Imitate-Then-Reinforce
	Algorithm: loki
	Analysis

	Related Work
	Experiments
	Tasks
	Algorithms
	Experimental Results

	Conclusion
	Task Details
	Proof of Section 5.4
	Proof of Proposition 5.4.1
	Proof of Proposition 5.4.2

	Proof of Section 5.5
	Proof of Theorem 5.5.1
	Proof of Theorem 5.6.1

	Convergence of Value Aggregation for Imitation Learning
	Introduction
	Problem Setup
	Value Aggregation
	Motivation
	Algorithm and Performance

	Guarantee On the Last Policy?
	Theoretical Analysis
	Classical Result
	New Structural Assumptions
	Guarantee on the Last Policy
	Proof of Theorem 6.5.2
	Stochastic Problems

	Regularization
	Mixing Policies
	Weighted Regularization

	Conclusion
	Missing Proofs
	Proof of Proposition 6.3.1
	Proof of Theorem 6.5.1
	Proof of Theorem 6.5.3
	Proof of Corollary 6.5.1
	Proof of Lemma 6.6.1

	Analysis of AggreVatTe in Stochastic Problems
	Uniform Convergence of Vector-Valued Martingales
	Proof of Theorem 6.5.4

	AggreVatTe with Function Approximations
	Weighted Regularization

	Accelerating Imitation Learning with Predictive Models
	Introduction
	Preliminaries
	Problem Setup: RL and IL
	Imitation Learning as Online Learning

	Accelerating IL with Predictive Models
	Performance and Average Regret
	Algorithms
	Predictive Models

	Theoretical Analysis
	Assumptions
	Performance of MoBIL-VI
	Performance of MoBIL-Prox
	Comparison

	Experiments
	Setup and Results
	Discussions

	Conclusion
	Notation
	Missing Proofs
	Proof of Section 7.3.1
	Proof of Section 7.4.2
	Proof of Section 7.4.3

	Model Learning through Learning Dynamics Models
	Proofs

	Relaxation of Strong Convexity Assumption
	Connection with Stochastic Mirror-Prox
	Variational Inequality Problems
	Stochastic Mirror-Prox
	Connection with MoBIL-Prox
	Comparison of stochastic Mirror-Prox and MoBIL-Prox in Imitation Learning

	Experimental Details
	Tasks
	Algorithms

	Useful Lemmas
	Polynomial Partial Sum
	Sequence in Banach Space
	Basic Regret Bounds of Online Learning

	II Policy Optimization II: Abstraction
	Online Learning with Continuous Variations
	Introduction
	Definition of COL
	Examples
	Main Results

	Related Work
	Preliminaries
	Equivalence and Hardness
	EP and VI Perspectives
	Fixed-point Perspective

	Monotone EP as COL
	Reduction by Regularity
	Example Algorithms
	Remark

	Extensions
	Conclusion
	Complete Proofs of sec:possibility of sublinear dynamic regret
	Proof of th:equivalent problems
	Proofs of pr:dual solutions of EP and VI
	Proof of pr:beta-alpha strongly monotone
	Proof of pr:contraction condition

	Dual Solution and Strongly Convex Sets
	Complete Proofs of sec:monotone ep as col
	Background: Equilibrium Problems (EPs)
	More insights into residuals of primal and dual EPs
	Reduction from Equilibrium Problems to Continuous Online Learning
	Summary

	Complete Proofs of sec:reductions
	Proof of th:reduction of dynamic regret
	Proof of cr:full reduction to static regret
	Proof of pr:alpha equals beta full information
	Proof of pr:mirror descent dynamic regret
	Proof of pr:stochastic mirror descent

	Complete Proofs of sec:extensions
	Proof of pr:generalized contraction property
	Proof of th:predictable problem with
	Proof of th:alpha equals beta predictable problem

	A Reduction from Reinforcement Learning to Online Learning
	Introduction
	Setup & Preliminaries
	Duality in RL
	Toward RL: the Saddle-Point Setup
	COL and EPs

	An Online Learning View
	The COL Formulation of RL
	Policy Performance

	The Reduction
	Proof of th:reduction of RL
	Function Approximators

	Sample Complexity of Mirror Descent
	Proof Sketch of th:sample complexity of mirror descent
	Extension to Function Approximators

	Conclusion
	Review of RL Setups
	Coordinate-wise Formulations
	Linear Programming Formulations

	Missing Proofs of sec:revist
	Proof of lm:residual
	Proof of lm:performance difference lemma
	Proof of pr:rough residual bound
	Proof of pr:residual lower bound

	Missing Proofs of sec:the reduction
	Proof of pr:clever residual bound
	Proof of cr:reduction for funcapp
	Proof of pr:size of epsilon

	Proof of Sample Complexity of Mirror Descent
	The First Term: Martingale Concentration
	Static Regret of Mirror Descent
	Union Bound
	Summary

	Sample Complexity of Mirror Descent with Basis Functions
	Setup
	Online Loss and Sampled Gradient
	Proof of th:sample complexity of mirror descent with basis
	The First Term: Martingale Concentration
	Static Regret of Mirror Descent

	Predictor-Corrector Policy Optimization
	Introduction
	Problem Definition
	IL and RL as Predictable Online Learning
	IL as Online Learning
	RL as Online Learning
	Predictability

	Predictor-Corrector Learning
	The PicCoLO Idea
	The Meta Algorithm PicCoLO
	Summary: Why Does PicCoLO Work?

	Theoretical Analysis
	Convergence Properties
	Comparison

	Experiments
	Conclusion
	Relationship between PicCoLO and Existing Algorithms
	Proof of Lemma 10.3.3
	The Basic Operations of Base Algorithms
	Stationary Regularization Class
	Non-Stationary Regularization Class

	A Practical Variation of PicCoLO
	Example: PicCoLOing Natural Gradient Descent
	Regret Analysis of PicCoLO
	Reduction from Predictable Online Learning to Adversarial Online Learning
	Optimal Regret Bounds for Predictable Problems

	Policy Optimization Analysis of PicCoLO
	Assumptions
	A Useful Lemma
	Optimal Regret Bounds
	Model Learning

	Experimental Details
	Algorithms
	Tasks
	Full Experimental Results
	Experiment Hyperparameters

	III Structral Policy Fusion
	A Geometric Framework for Policy Fusion
	Introduction
	Motion Generation and Control
	Notation
	Motion Policies and the Geometry of Motion

	From Operational Space Control to Geometric Control
	Energy Shaping and Classical Operational Space Control
	A Simple First Step toward Weighted Priorities
	Abstract Task Spaces: Simplified Geometric Mechanics
	Non-constant Weights and Implicit Task Spaces
	Limitations of geometric control

	RMPflow
	Structured Task Maps
	Riemannian Motion Policies (RMPs)
	RMP-tree
	RMP-algebra
	Algorithm: Motion Policy Generation
	Example RMPs

	Theoretical Analysis of RMPflow
	Geometric Dynamical Systems (GDSs)
	Closure
	Stability
	Invariance

	Operational Space Control and Geometric Mechanics in View of RMPflow
	From Operational Space Control to RMPflow with GDSs
	Relationship between RMPflow and Recursive Newton-Euler Algorithms
	Related Approaches to Motion Policy Generation

	Relationship between RMPflow, Factor-Graph, and Sparse Linear Systems
	Preliminary: Quadratic Program
	The Quadratic Program RMPflow Solves
	Discussion

	Experiments
	Controlled Experiments
	System Experiments

	Conclusion
	Non-holonomic Systems
	Proofs of RMPflow Analysis
	Proof of Theorem 11.5.1
	Proof of Proposition 11.5.1
	Proof of Theorem 11.5.2
	Notation for Coordinate-Free Analysis
	Proof of Theorem 11.5.3
	Proof of Theorem 11.5.4

	Degenerate GDSs

	RMPflow with Learnable Lyapunov Function Reshaping
	Introduction
	Quick Recap of RMPflow
	Computation
	Theoretical Properties of RMPflow and GDSs

	RMPfusion
	RMP-tree* and RMP-algebra*
	Stability
	Advantages of RMPfusion over RMPflow
	Learning RMPfusion

	Experiments
	2D Robot
	Franka Robot

	Conclusion
	Proof of th:newflow property
	Background
	Proof of Theorem 12.3.1

	Benefits due to the Extra Flexibility of RMPfusion
	Learning RMPfusion
	Experimental Details
	2D Robot
	Franka Robot
	Discussion

	RMPflow with Control Lyapunov Function
	Introduction
	Background
	Riemannian Motion Policies (RMPs) and RMPflow
	Control Lyapunov Functions (CLFs)

	The CLF Interpretation of RMPflow
	An Induction Lemma
	Global Stability Properties

	A Computational Framework for RMPflow with CLF Constraints
	Algorithm Details
	Stability Properties

	Experimental Results
	Simulation Results
	Robotic Implementation

	Conclusions

	Epilogue
	References

