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Abstract

Value aggregation is a general framework for solving imitation learning problems.
Based on the idea of data aggregation, it generates a policy sequence by itera-
tively interleaving policy optimization and evaluation in an online learning setting.
While the existence of a good policy in the policy sequence can be guaranteed
non-asymptotically, little is known about the convergence of the sequence or the per-
formance of the last policy. In this paper, we debunk the common belief that value
aggregation always produces a convergent policy sequence. Moreover, we identify
a critical stability condition for convergence and provide a tight non-asymptotic
bound on the performance of the last policy. These new theoretical insights let us
stabilize problems with regularization, which removes the inconvenient process of
identifying the best policy in the policy sequence in stochastic problems.

1 Introduction

Reinforcement learning (RL) is a general framework for solving sequential decision problems (Sutton
and Barto, 1998). Using policy gradient methods, it has demonstrated impressive results in GO (Silver
et al., 2016) and video-game playing (Mnih et al., 2013). However, due its generality, it can be
difficult to learn a policy sample-efficiently or to characterize the performance of the found policy,
which is critical in applications that involves real-world costs, such as robotics (Pan et al., 2017). To
better exploit the domain knowledge about a problem, one popular approach is imitation learning
(IL) (Pomerleau, 1989). In this framework, instead of learning a policy from scratch, it leverages a
black-box policy π∗, called the expert, from which the learner can query demonstrations. The goal of
IL is to identify a policy π such that its performance is similar to or better than π∗.

A recent approach to IL is based on the idea of data aggregation and online learning (Ross et al.,
2011; Sun et al., 2017). The main idea is as follows: the algorithm starts with an empty dataset and
an initial policy; in the nth iteration, the algorithm uses the current policy πn to gather new training
data into the current dataset and then a supervised learning problem is solved on the updated dataset
to compute the next policy πn+1. By interleaving the optimization and the data collection processes
in an online fashion, it overcomes the covariate shift problem in the traditional batch IL (Ross et al.,
2011).

This family of algorithms can be realized under the general framework of value aggregation (Ross
and Bagnell, 2014), which has gained increasing attention due to its non-asymptotic performance
guarantee. After N iterations, a good policy π exists in the generated policy sequence {πn}Nn=1 with
performance J(π) ≤ J(π∗)+Tε+ Õ( 1

N ), where J is the performance index, ε is describes error due
lack of expressiveness of the policy class, and T is the horizon of the problem. While this result seems
strong at the first glance, its guarantee concerns only the existence of a good policy and therefore is
not ideal for stochastic problems. In other words, in order to find the best policy in {πn}Nn=1 without
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incurring large statistical errors, a sufficient amount of data has to be acquired in each iteration, or all
policies have to be memorized for a final evaluation with another large dataset (Ross et al., 2011).

This inconvenience incentivizes practitioners to just return the last policy πN (Laskey et al., 2017),
and, anecdotally, the last policy πN has been reported to have good empirical performance (Ross
et al., 2013; Pan et al., 2017). Supporting this heuristic is the insight that the last policy πN is trained
with all observations and therefore ideally should perform the best. Indeed, such idealism works
when all the data are sampled i.i.d., as in the traditional batch learning problems (Vapnik, 1998).
However, because here new data is collected using the updated policy in each iteration, whether such
belief applies depends on the convergence of the distributions generated by the policy sequence.

While Ross and Bagnell (2014) alluded that “. . . the distribution of visited states converges over the
iterations of learning.”, we show this is not always true—the convergence is rather problem-dependent.
In this paper, we identify a critical stability constant θ that determines the convergence of the policy
sequence. We show that there is a simple example in which the policy sequence diverges when
θ > 1, and we prove that the sequence always converges when θ < 1. Moreover, we provide a tight
non-asymptotic bound on the performance of the last policy πN in both deterministic and stochastic
problems.

In Section 2 and 3, we first define our problem of interest and provide a concise introduction
to value aggregation. In Section 4, we give the simple counter-example that motivates our main
analysis in Section 5, in which we provide conditions for convergence and performance guarantees.
Additionally, we provide ways to stabilize the problem by regularization in Section 6 and discuss
potential implications and applications of our analysis in Section 7.

2 Problem Setup

We consider solving a discrete-time RL problem. Let S be the state space and A be the action space
of an agent. Let Π be the class of policies and let T be the length of the planning horizon. In this
paper, we restrict ourselves to finite-horizon, continuous-valued problems and deterministic policies.1
The objective of the agent is to search for a policy π ∈ Π to minimize an accumulated cost J(π):

min
π∈Π

J(π) := min
π∈Π

Eρπ

[
T−1∑
t=0

ct(st, at)

]
(1)

in which ct is the instantaneous cost at time t, and ρπ denotes the trajectory distribution of (st, at) ∈
S× A, for t = 1, . . . , T , under policy at = π(st) given a prior distribution p0(s0).

For notation: we denote Qπ|t(s, a) as the Q-function at time t under policy π and Vπ|t(s) =
Ea∼π[Qπ|t(s, a)] as the associated value function. In addition, we introduce some shorthand: we de-
note dπ|t(s) as the state distribution at time t generated by running the policy π for the first t steps, and
define a joint distribution dπ(s, t) = dπ|t(s)U(t), where U(t) is the uniform distribution over the set
{0, . . . , T−1}. Due to space limitations, we will often omit explicit dependencies on random variables
in expectations, e.g. we will write minπ∈Π EdπEπ [ct] to denote minπ∈Π Es,t∼dπEa∼π [ct(s, a)],
which, by definition of dπ , can be shown to be equivalent to the RL problem in (1).

3 Value Aggregation

Solving general RL problems is challenging. In this paper, we focus on a particular scenario, in
which the agent, or the learner, has access to an expert policy π∗ from which the learner can query
demonstrations. Here we embrace a general notion of expert. While it is often preferred that the
expert is nearly optimal in (1), the expert here can be any policy, e.g. the agent’s initial policy. Note,
additionally, that the RL problem considered here is not necessarily directly related to a real-world
application; it can be a surrogate problem which arises in solving the true problem.

The goal of IL is to find a policy π that outperforms or behaves similarly to the expert π∗ in the sense
that J(π) ≤ J(π∗) +O(T ). That is, we treat IL as performing a robust, approximate policy iteration

1A similar derivation can be applied to problems with a discounted infinite-horizon, discrete-valued spaces,
and stochastic policies.
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from π∗: ideally IL should lead to a policy that outperforms the expert, but it at least returns a policy
that performs similarly to the expert.

AGGREVATE (Aggregate Value to Imitate) is an IL algorithm proposed by Ross and Bagnell (2014)
based on the idea of online learning (Hazan et al., 2016). Here we give a compact derivation and
discuss its important features in preparation for the analysis in Section 5. To this end, we introduce
the performance difference lemma due to Kakade and Langford (2002), which will be used as the
foundation to derive AGGREVATE.
Lemma 1. (Kakade and Langford, 2002) Let π and π′ be two policies andAπ′|t(s, a) = Qπ′|t(s, a)−
Vπ′|t(s) be the (dis)advantage function at time t with respect to running π′. Then it holds that

J(π) = J(π′) + TEs,t∼dπEa∼π[Aπ′|t(s, a)]. (2)

3.1 Motivation

The main idea of AGGREVATE is to minimize the performance difference between the learner’s
policy and the expert policy, which by Lemma 1 is given as 1

T (J(π)− J(π∗)) = EdπEπ[Aπ∗|t(s, a)].
AGGREVATE can be viewed as solving an RL problem with Aπ∗|t(s, a) as the instantaneous cost at
time t:

min
π∈Π

EdπEπ
[
Aπ∗|t

]
. (3)

Although the transformation from (1) to (3) seems trivial, it unveils some critical properties. Most
importantly, the range of the problem in (3) is normalized. For example, regardless of the original
definition of ct, if Π 3 π∗, there exists at least a policy π ∈ Π such that (3) is non-positive (i.e.
J(π) ≤ J(π∗)). As now the problem (3) is relative, it becomes possible to place a qualitative
assumption to bound the performance in (3) in terms of some measure of expressiveness of the policy
class Π.

We formalize this idea into Assumption 1, which is one of the core assumptions implicitly imposed
by Ross and Bagnell (2014).2 To simplify the notation, we define a function F such that for any two
policies π, π′

F (π′, π) := Edπ′Eπ
[
Aπ∗|t

]
(4)

This function captures the main structure in (3). By separating the roles of π′ (which controls the
state distribution) and π (which controls the reaction/prediction), the performance of a policy class Π
relative to an expert π∗ can be characterized with the approximation error in a supervised learning
problem.
Assumption 1. Given a policy π∗, the policy class Π satisfies that for arbitrary sequence of policies
{πn ∈ Π}Nn=1, there exists a small constant εΠ,π∗ such that

min
π∈Π

1

N
f1:N (π) ≤ εΠ,π∗ , (5)

where fn(π) := F (πn, π) and f1:n(π) =
∑N
n=1 fn(π).

This assumption says that there exists at least a policy π ∈ Π which is as good as π∗ in the sense that
π can predict π∗ well in a cost-sensitive supervised learning problem, with small error εΠ,π∗ , under
the average distribution generated by arbitrary sequence {πn ∈ Π}Nn=1.

Following this assumption, AGGREVATE exploits another critical structural property of the problem.
Assumption 2. ∀π′ ∈ Π, F (π′, π) is a strongly convex function in π.

While Ross and Bagnell (2014) did not explicitly discuss under which condition Assumption 2 holds,
here we point out some examples.We further note that AGGREVATE has demonstrated impressive
empirical success even when Assumption 2 cannot be verified (Sun et al., 2017; Pan et al., 2017).
Proposition 1. Suppose Π consists of deterministic linear policies (i.e. a = φ(s)Tx for some feature
map φ(s) and weight x) and ∀s ∈ S, ct(s, ·) is strongly convex. Assumption 2 holds under any of
the following: 1) Vπ∗|t(s) is constant over S (in this case Aπ∗|t(s, a) is equivalent to ct(s, a) up to a
constant in a) 2) The problem is continuous-time and the dynamics are affine in action.

2The assumption is implicitly made when Ross and Bagnell (2014) assume the existence of εclass in Theorem
2.1 on page 4.
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3.2 Algorithm and Performance

Given Assumption 2, AGGREVATE treats fn(·) as the per-round cost in an online learning problem
and updates the policy sequence as follows: Let π1 be an initial policy. In the nth iteration of
AggreVaTe, the policy is updated by3

πn+1 = arg min
π∈Π

f1:n(π). (6)

After N iterations, the best policy in the sequence {πn}Nn=1 is returned, i.e. π = π̂N , where

π̂N := arg min
π∈{πn}Nn=1

J(π). (7)

As the update rule (6) (aka Follow-the-Leader) has sublinear regret, it can be shown that (cf. Sec-
tion 5.1) J(π̂N ) ≤ J(π∗) + T (εclass + εregret) , in which εregret = Õ( 1

N ) is the average regret, and
εclass := minπ∈Π

1
N

∑N
n=1 Edπn

[
Eπ[Qπ∗|t]− Eπ∗ [Qπ∗|t]

]
compares the best policy in the policy

class Π and the expert policy π∗. The term εclass can be negative if there exists a policy in Π that
is better than π∗ under the average distribution, 1

N

∑N
n=1 dπn , generated by AGGREVATE. By

Assumption 1, εclass ≤ εΠ,π∗ ; we know εclass at least should be small.

The performance bound above satisfies the requirement of IL that J(π̂N ) ≤ J(π∗) +O(T ). Espe-
cially because εclass can be non-positive, AGGREVATE can be viewed as robustly performing one
approximate policy iteration from π∗. One notable special case of AGGREVATE is DAGGER (Ross
et al., 2011). DAGGER tackles the problem of solving an unknown RL problem by imitating a desired
policy π∗. The reduction to AGGREVATE can be seen by setting ct(s, a) = Ea∗∼π∗ [‖a − a∗t ‖]
in (1). In this case, π∗ is optimal for this specific choice of cost and therefore Vπ∗|t(s) = 0. By
Proposition 1, Aπ∗|t(s, a) = ct(s, a) and εclass reduces to minπ∈Π

1
N

∑N
n=1 EdπnEπ[ct] ≥ 0, which

is related to the expressiveness of the policy class Π.

4 Guarantee on the Last Policy?

The performance bound in Section 3 implicitly assumes that the problem is either deterministic or that
infinite samples are available in each iteration. For stochastic problems, f1:n can be approximated
by finite samples or by function approximators (Ross and Bagnell, 2014). Suppose m samples are
collected in each iteration to approximate fn. An additional error in O( 1√

mN
) will be added to the

performance of π̂N . However, in practice, another constant statistical error4 in O( 1
m ) is introduced

when one attempts to identify π̂N from the sequence {πn}Nn=1.

This practical issue motivates us to ask whether a similar guarantee applies to the last policy πN so
that the selection process to find π̂N can be removed. In fact, the last policy πn has been reported to
have good performance empirically (Ross et al., 2013; Pan et al., 2017). It becomes interesting to
know what can one say about πN . It turns out that running AGGREVATE does not always yield a
policy sequence {πn} with reasonable performance, as given in the example below.

A Motivating Example Consider a two-stage deterministic optimal control problem:

min
π∈Π

J(π) = min
π∈Π

c1(s1, a1) + c2(s2, a2) (8)

where the transition and costs are given as

s1 = 0, s2 = θ(s1 + a1),

c1(s1, a1) = 0, c2(s2, a2) = (s2 − a2)2.

3We adopt a different notation from Ross and Bagnell (2014), in which the per-round cost EdπnEπ
[
Qπ∗|t

]
was used. Note these two terms are equivalent up to an additive constant, as the optimization here is over π with
πn fixed.

4The original analysis in the stochastic case by Ross and Bagnell (2014) only guarantees the existence of
a good policy in the sequence. The O( 1

m
) error is due to identifying the best policy (Lee et al., 1998) (as the

function is strongly convex) and the O( 1√
mN

) error is the generalization error (Cesa-Bianchi et al., 2004).
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Since the problem is deterministic, we consider a policy class Π consisting of open-loop stationary
deterministic policies, i.e. a1 = a2 = x for some x (for convenience π and x will be used
interchangeably). It can be easily seen that Π contains a globally optimal policy, namely x = 0.
We perform AGGREVATE with a feedback expert policy a∗t = st and some initial policy |x1| > 0.
While it is a custom to initialize x1 = arg minx∈X F (x∗, x) (which in this case would ideally return
x1 = 0), setting |x1| > 0 simulates the effect of finite numerical precision.

We consider two cases (θ > 1 or θ < 1) to understand the behavior of AGGREVATE. First, suppose
θ > 1. Without loss generality, take θ = 10 and x1 = 1. We can see running AGGREVATE will
generate a divergent sequence x2 = 10, x3 = 55, x4 = 220 . . . (in this case AGGREVATE would
return x1 as the best policy). Since J(x) = (θ − 1)2x2, the performance {J(xn)} is an increasing
sequence. Therefore, we see even in this simple case, which can be trivially solved by gradient
descent in O( 1

n ), using AGGREVATE results in a sequence of policies with degrading performance,
though the policy class Π includes a globally optimal policy. Now suppose on the contrary θ < 1.
We can see that {xn} asymptotically converges to x∗ = 0.

This example illustrates several important properties of AGGREVATE. It showcases that whether
AGGREVATE can generate a reasonable policy sequence depends on some intrinsic property of the
problem (i.e. the value of θ). In addition, it shows that εΠ,π∗ can be large while Π contains an optimal
policy. This suggests that Assumption 1 is too strong.

5 Theoretical Analysis

Motivated by the example in Section 4, we investigate the convergence of the policy sequence
generated by AGGREVATE in general problems. We assume the policy class Π consists of policies
parametrized by some parameter x ∈ X , in which X is a convex set in a normed space with norm
‖ · ‖ (and ‖ · ‖∗ as its dual norm). With abuse of notation, we abstract the RL problem in (3) as

min
x∈X

F (x, x) (9)

where we overload the notation F (π′, π) defined in (4) as F (π′, π) = F (y, x) when π, π′ ∈ Π
are parametrized by x, y ∈ X , respectively. Similarly, we will write fn(x) = F (xn, x) for
short. In this new notation, AGGREVATE’s update rule in (6) can be simply written as xn+1 =
arg minx∈X f1:n(x).

Here we will focus on the bound on F (x, x), because, for π parameterized by x, this result can be
directly translated to a bound on J(π): by definition of F in (4) and Lemma 1, J(π) = J(π∗) +
TF (π, π). For simplicity, we will assume for now F is deterministic; the convergence in stochastic
problems will be discussed at the end of the section.

5.1 Classical Result

For completeness, we restate the structural assumptions made by AGGREVATE in terms of X and
present the known convergence of AGGREVATE (Ross and Bagnell, 2014). The proof is given in
Appendix.

Assumption 3. Let∇2 denote the derivative with respect to the second argument.

1. F is uniformly α-strongly convex in the second argument: ∀x, y, z ∈ X , F (z, x) ≥
F (z, y) + 〈∇2F (z, y), x− y〉+ α

2 ‖x− y‖
2.

2. F is uniformly G2-Lipschitz continuous in the second argument: ∀x, y, z ∈ X , |F (z, x)−
F (z, y)| ≤ G2‖x− y‖ .

Assumption 4. ∀{xn ∈ X}Nn=1, there exists a small constant εΠ,π∗ such that minx∈X
1
N f1:N (x) ≤

εΠ,π∗ .

Theorem 1. Under Assumption 3 and 4, AGGREVATE generates a sequence such that, for allN ≥ 1,

F (x̂N , x̂N ) ≤ 1

N

N∑
n=1

fn(xn) ≤ εΠ,π∗ +
G2

2

2α

ln(N) + 1

N
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5.2 New Structural Assumptions

AGGREVATE can be viewed as an attempt to solve the optimization problem in (9) without any infor-
mation (not even continuity) regarding how F (x, x) changes with perturbations in the first argument.
Because making even a local improvement for general Lipschitz continuous problem is known to be
NP-hard (Nesterov, 2013), the performance of AGGREVATE is mainly due to Assumption 4, which
implies the existence of some good policy. Therefore, to analyze the performance of the last iterate
xN , we need additional structure on F .

Here we introduce a continuity assumption.
Assumption 5. ∇2F is uniformly β-Lipschitz continuous in the first argument: ∀x, y, z ∈ X
‖∇2F (x, z)−∇2F (y, z)‖∗ ≤ β‖x− y‖.

Because the first argument of F in (4) defines the change of state distribution, Assumption 5 basically
requires that the expectation over dπ changes continuously with respect to π, which is satisfied in
most RL problems. Intuitively, this quantifies the difficulty of a problem in terms of how sensitive the
state distribution is to policy changes.

In addition, we relax Assumption 4. As shown in Section 4, Assumption 4 is sometimes too strong,
because it might not be satisfied even when Π contains a globally optimal policy. In the analysis of
convergence, we instead rely on a necessary condition of Assumption 4 (i.e. ε̃Π,π∗ ≤ εΠ,π∗), which
is satisfied by the example in Section 4.
Assumption 6. Let π be a policy parametrized by x. There exists a small constant ε̃π,π∗ such that
∀x ∈ X , miny∈X F (x, y) ≤ ε̃Π,π∗ .

5.3 Guarantee on the Last Policy

In our analysis, we define a stability constant θ = β
α . One can verify that this definition agrees with

the θ in the example in Section 4. This stability constant will play a crucial role in determining the
convergence of {xn}, similar to the spectral norm of the Jacobian matrix in discrete-time dynamical
systems (Antsaklis and Michel, 2007). We have already shown above that if θ > 1 there is a
problem such that AGGREVATE generates a divergent sequence {xn} with degrading performance
over iterations. We now show that if θ < 1, then limn→∞ F (xn, xn) ≤ ε̃Π,π∗ and moreover {xn} is
convergent. The proof in given in Appendix.

Theorem 2. Suppose Assumption 3, 5, and 6 are satisfied. Let θ = β
α . Then for all N ≥ 1 it holds

F (xN , xN ) ≤ ε̃Π,π∗ +

(
θe1−θG2

)2
2α

N2(θ−1)

and ‖xN − x̄N‖ = G2e
1−θ

α Nθ−1, where x̄N = 1
N x1:N . In particular, if θ < 1, then {xn}∞n=1 is

convergent

Theorem 2 implies that the stability and convergence of AGGREVATE depends solely on the problem
properties. If the state distribution dπ is sensitive to minor changes of policy, running AGGREVATE
would fail to provide any guarantee on the last policy. Moreover, Theorem 2 also characterizes the
performance of the average policy x̄N when θ < 1, .

The upper bound in Theorem 2 is tight as indicated in the next theorem. Note a lower bound on
F (xN , xN ) leads directly to a lower bound on J(πN ), for πN is parametrized by xN .
Theorem 3. There is a problem such that running AGGREVATE for N iterations results in
F (xN , xN ) ≥ ε̃Π,π∗ + Ω(N2(θ−1)). In particular, if θ > 1, there is a problem in which the
policy sequence and performance sequence diverge.

5.4 Stochastic Problems

We analyze the convergence of AGGREVATE in stochastic problems using finite-sample approxima-
tion: Define f(x; s) = Eπ[Aπ∗|t] (namely, fn(x) = Edπn [f(x; s)], for a policy π is parametrized
by x). Instead of using fn(·) as the per-round cost in the nth iteration, we take its finite samples
approximation gn(·) =

∑mn
k=1 f(·; sn,k), where mn is the number of independent samples collected

in the nth iteration under distribution dπn . That is, the update rule in (6) in stochastic setting is
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modified to πn+1 = arg minπ∈Π g1:n(π). Then we have the following result. The proof is based
on the concentration of vector-valued martingales (Hayes, 2005), which is technical and therefore
omitted.
Theorem 4. In addition to Assumption 5 and 6, assume f(x; s) is α-strongly convex in x and
‖f(x; s)‖∗ < G2 almost surely. Let θ = β

α and suppose mn = m0n
r for some r ≥ 0. For all N > 0,

with probability at least 1− δ,

F (xN , xN ) ≤ ε̃Π,π∗ + Õ

(
θ2

c

ln(1/δ) + CX /n

nmin{r,2,2−2θ}

)
+ Õ

(
ln(1/δ) + CX
cnmin{2,1+r}

)
where c = α

G2
2m0

and CX is a constant5 of the complexity of Π.

The bound in Theorem 4 has a weak dependency on CX and the major stochastic error is due
to ‖∇gn(xn) − ∇fn(xn)‖∗, which is bounded by O( 1√

mn
), as reflected through the dependency

on r. Therefore, the growth of sample size mn over iterations determines the main behavior of
AGGREVATE in stochastic problems. For r = 0, compared with Theorem 2, Theorem 4 has an
additional constant error in Õ( 1

m0
), which is comparable to the stochastic error in selecting the

best policy in the classical approach. For r > 0, by slightly taking more samples over iterations
(e.g. r = 2 − 2θ), we see the convergence rate can get closer to Õ(N2−2θ) as in the ideal case
given by Theorem 2. However, it cannot be better than Õ( 1

N ). Therefore, for stochastic problems,
a stability constant θ < 1/2 and a growing rate r > 1 does not contribute to faster convergence as
opposed to the deterministic case in Theorem 2. Note while our analysis here is based finite-sample
approximation. A similar technique can also be applied to the scenario in which only samples of
function value fn(xn; s) are available and another online regression problem is perform to learn fn(·)
as in the case considered by Ross and Bagnell (2014)

6 Regularization for Stability

We have shown that whether AGGREVATE generates a convergent policy sequence and a last policy
with the desired performance depends on the stability constant θ. Here we show that by adding
regularization to the problem we can make the problem stable. For simplicity, here we consider
deterministic problems or stochastic problems with infinite samples.

6.1 Mixing Policies

We first consider the idea of using mixing policies to collect samples, which was originally proposed
as a heuristic in (Ross et al., 2011). It works as follows: in the nth iteration of AGGREVATE, instead
of using F (πn, ·) as the per-round cost, it uses F̂ (πn, ·) which is defined by

F̂ (πn, π) = Edπ̃nEπ[Aπ∗|t] (10)
The state distribution dπ̃n(s) is generated by running π∗ with probability q and πn with probability
1− q at each time step. Originally, Ross et al. (2011) proposes to set q to decay exponentially over
the iterations of AGGREVATE. (The proofs are given in Appendix).

Here we show that the usage of mixing policies has the effect of stabilizing the problem.
Lemma 2. Let ‖p1 − p2‖1 denote the total variational distance between distribution p1 and p2.
Assume6 for any policy π, π′ parameterized by x, y it satisfies 2G2

T

∑T−1
t=0 ‖dπ|t−dπ′|t‖1 ≤ β‖x−y‖

and assume ‖∇xEπ[Aπ∗|t](s)‖∗ < G2.Then ∇2F is uniformly (1− qT )β-Lipschitz continuous in
the second argument.

By Lemma 2, if θ > 1, then choosing q > (1− 1
θ )1/T ensures the stability constant of F̂ to be θ̂ < 1.

However, stabilizing the problem in this way incurs a constant cost as shown in Corollary 1.

Corollary 1. Suppose Eπ[Aπ∗|t] < M for all π. Define ∆N = (θ̂e1−θ̂G2)2

2α N2(θ̂−1). Then under the
assumptions Lemma 2 and Assumption 3.1, running AGGREVATE with F̃ in (10) and mixing rate q
gives F (xN , xN ) ≤ ∆N + ε̃Π,π∗ + 2M min(1, T q)

5The constantCX can be thought as ln |X |, where |X | measures the size of X in e.g. Rademacher complexity
or covering number (Mohri et al., 2012). For example, ln |X | is linear in dimX .

6These two are sufficient to Assumption 3.2 and 5.

7



6.2 Weighted Regularization

Here we consider another scheme for stabilizing the problem. Suppose F satisfies Assumption 3 and
5. For some λ > 0, define

F̃ (x, x) = F (x, x) + λR(x) (11)
in which R(x) is an α-strongly convex regularization term such that R(x) ≥ 0, ∀x ∈ X and
miny∈X F (x, y) + λR(y) = (1 + λ)O(ε̃Π,π∗). For example, R can be F (π∗, ·) when π∗ is (close)
to optimal (e.g. in the case of DAGGER), or R(x) = Es,t∼dπ∗Ea∼πEa∗∼π∗ [d(a, a∗)], where π is a
policy parametrized by x and d(·, ·) is some metric of space A (i.e. it uses the distance between π
and π∗ as regularization).

It can be easily seen that F̃ is uniformly (1 + λ)α-strongly convex in the second argument and∇2F̃
is uniformly β-continuous in the second argument. That is, if we choose λ > θ − 1, then the stability
constant θ̃ of F̃ satisfies θ̃ < 1.

Corollary 2. Define ∆N = (θ̃e1−θ̃G2)2

2α N2(θ̃−1). Running AGGREVATE with F̃ in (11) as the per-
round cost has performance satisfies: for all N > 0,

F (xN , xN ) ≤ (1 + λ) (O(ε̃Π,π∗) + ∆N )

Proof. Because F (xN , xN ) = F̃ (xN , xN ) − λR(xN ), the inequality can be proved by applying
Theorem 2 to F̃ (xN , xN ). �

By Corollary 2, using AGGREVATE to solve a weighted regularized problem in (11) would generate
a convergent sequence for λ large enough. Unlike using a mixing policy, here the performance
guarantee on the last policy is only worsened by a multiplicative constant on ε̃Π,π∗ , which can be
made small by choosing a larger policy class.

The result in Corollary 2 can be strengthened particularly when R(x) =
Es,t∼dπ∗Ea∼πEa∗∼π∗ [d(a, a∗)] is used. In this case, it can be shown that CR(x) ≥ F (x, x) for
some C > 0 (usually C > 1) (Pan et al., 2017). That is, F (x, x) + λR(x) ≥ (1 + λ/C)F (x, x).
Thus, the multiplicative constant in Corollary 2 can be reduced from 1 + λ to 1+λ

1+λ/C . It implies that
simply by adding a portion of demonstrations gathered under the expert’s distribution so that the
leaner can anchor itself to the expert while minimizing F (x, x), one does not have to find the best
policy in the sequence {πn}Nn=1 as in (7), but just return the last policy πN .

7 DISCUSSION

We contribute a new analysis of value aggregation, unveiling several interesting theoretical insights.
Under a weaker assumption than the classical result, we prove that the convergence of the last policy
depends solely on a problem’s structural property and provide a tight non-asymptotic bound on its
performance in both deterministic and stochastic problems. In addition, using the new theoretical
results, we show that the stability of the last policy can be reinforced by additional regularization
with minor performance loss. This suggests that under proper conditions a practitioner can just run
AGGREVATE and then take the last policy, without performing an additional statistical test to find the
best policy required by the classical analysis. In addition, as our results of the last policy are based on
the perturbation of gradients, we believe this provide a potential explanation to why AGGREVATE
has shown empirical success in non-convex problems with neural-network policies.

While our original aim is to understand the performance of the last policy xN , we achieve a number
of extra outcomes for free. First, the theoretical results of xN can directly translate to that of the mean
policy x̄N as suggested by Theorem 2. We note this property continues to hold in stochastic problems.
Furthermore, our analysis given as Theorem 4 can be viewed as a generalization of the analysis
of Empirical Risk Minimization (ERM) to non-i.i.d. scenarios, where the distribution depends on
the decision variable. For optimizing a strongly convex objective function with i.i.d. samples, it
has been shown by Shalev-Shwartz et al. (2009) that xN exhibits a fast convergence to the optimal
performance in O( 1

N ). By specializing our general result in Theorem 4 with θ, r = 0 to recover the
classical i.i.d. setting, we arrives at a bound on the performance of xN in Õ( 1

N ), which matches
the best known result up to a log factor. However, Theorem 4 is proved by a completely different
technique using the martingale concentration of the gradient sequence.
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A Proof of Theorem 1

The proof is based on a basic perturbation lemma in convex analysis (Lemma 3), which for example
can be found in (McMahan, 2014), and a lemma for online learning (Lemma 4).

Lemma 3. Let φ1 : Rd 7→ R
⋃
{∞} be a convex function such that x1 = arg minx φt(x) exits. Let

ψ be a function such that φ2(x) = φ1(x) + ψ(x) is α-strongly convex with respect to ‖ · ‖. Let
x2 = arg minx φ2(x). Then, for any g ∈ ∂ψ(x1), we have

‖x1 − x2‖ ≤
1

α
‖g‖∗

and for any x′

φ2(x1)− φ2(x′) ≤ 1

2α
‖g‖2∗

When φ1 and ψ are quadratics (with ψ possibly linear) the above holds with equality.

Lemma 4. Let lt(x) be a sequence of functions. Denote l1:t(x) =
∑t
τ=1 lτ (x). and let

x∗t = arg min
x∈K

l1:t(x)

Then for any sequence {x1, . . . , xT }, τ ≥ 1, and any x∗ ∈ K, it holds

T∑
t=τ

lt(xt) ≤ l1:T (x∗T )− l1:τ−1(x∗τ−1)

+

T∑
t=τ

l1:t(xt)− l1:t(x
∗
t )

Proof. Introduce a slack loss function l0(·) = 0 and define x∗0 = 0 for index convenience. This does
not change the optimum, since l0:t(x) = l1:t(x).

T∑
t=τ

lt(xt) =

T∑
t=τ

l0:t(xt)− l0:t−1(xt)

≤
T∑
t=τ

l0:t(xt)− l0:t−1(x∗t−1)

= l0:T (x∗T )− l0:τ−1(x∗τ−1)

+

T∑
t=τ

l0:t(xt)− l0:t(x
∗
t ) �

To prove Theorem 1, we first note that by definition of x̂N , it satisfies F (x̂N , x̂N ) ≤ 1
N

∑N
n=1 fn(xn).

To bound the average performance, we use Lemma 4 and write

N∑
n=1

fn(xn) ≤ f1:N (xN+1) +

N∑
n=1

f1:n(xn)− f1:n(xn+1)

since xn = arg minx∈X f1:n−1(x). Then because f1:k is kα-strongly convex, by Lemma 3,

N∑
n=1

fn(xn) ≤ f1:N (x∗n) +

N∑
n=1

‖∇fn(xn)‖2∗
2αn

.

Finally, dividing the upper-bound by n and using the facts that
∑n
k=1

1
k ≤ ln(n) + 1 and min ai ≤

1
n

∑
ai for any scalar sequence {an}, we have the desired result.
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B Proof of Theorem 2

Now we give the proof of Theorem 2. Without using the first-order information of F in the first
argument, we construct our analysis based on the convergence of an intermediate quantity, which
indicates how fast the sequence concentrates toward its last element:

Sn :=

∑n−1
k=1 ‖xn − xk‖

n− 1
(12)

which is defined n ≥ 2 and S2 = ‖x2 − x1‖.
First, we use Assumption 5 to strengthen the bound ‖xn+1 − xn‖ = O( 1

n ) used in Theorem 1 by
techniques from online learning with prediction (Rakhlin and Sridharan, 2013).

Lemma 5. Under Assumption 3, 5, running AGGREVATE gives, for n ≥ 2, ‖xn+1 − xn‖ ≤ θSn
n .

Proof. First, because f1:n(x) is nα-strongly convex,

nα

2
‖xn+1 − xn‖2 ≤ f1:n(xn)− f1:n(xn+1)

≤ 〈∇f1:n(xn), xn − xn+1〉 −
αn

2
‖xn − xn+1‖2.

Let f̄n = 1
nf1:n. The above inequality implies

nα‖xn+1 − xn‖2 ≤ 〈∇fn(xn), xn − xn+1〉
≤ 〈∇fn(xn)−∇f̄n−1(xn), xn − xn+1〉
≤ ‖∇fn(xn)−∇f̄n−1(xn)‖‖xn − xn+1‖
≤ βSn‖xn − xn+1‖

where the second inequality is due to xn = arg minx∈X f1:n−1(x) and the last inequality is due to
Assumption 5. Thus, ‖xn − xn+1‖ ≤ βSn

αn . �

Using the refined bound provided by Lemma 5, we can bound the progress of Sn.

Proposition 2. Under the assumptions in Lemma 5, for n ≥ 2, Sn ≤ e1−θnθ−1S2 and S2 =
‖x2 − x1‖ ≤ G2

α .

Proof. The bound on S2 = ‖x2−x1‖ is due to that x2 = arg minx∈X f1(x) and that f1 is α-strongly
convex and G2-Lipschitz continuous.

To bound Sn, first we bound Sn+1 in terms of Sn by

Sn+1 ≤
(

1− 1

n

)
Sn + ‖xn+1 − xn‖

≤
(

1− 1

n
+
θ

n

)
Sn =

(
1− 1− θ

n

)
Sn

in which the first in equality is due to triangular inequality (i.e. ‖xk − xn+1‖ ≤ ‖xk − xn‖ +
‖xn − xn+1‖) and the second inequality is due to Lemma 5. Let Pn = lnSn. Then we can bound
Pn−P2 ≤

∑n−1
k=2 ln

(
1− 1−θ

k

)
≤
∑n−1
k=2 −

1−θ
k ≤ −(1− θ) (lnn− 1), where we use the facts that

ln(1 + x) ≤ x,
∑n
k=1

1
k ≥ ln(n+ 1). This implies Sn = exp(Pn) ≤ e1−θnθ−1S2. �

More generally, define Sm:n =
∑n−1
k=m ‖xn−xk‖

n−m (i.e. Sn = S1:n). Using Proposition 2, we give a
bound on Sm:n. We see that the convergence of Sm:n depends mostly on n not m. (The proof is
given in Appendix.)

Corollary 3. Under the assumptions in Lemma 5, for n > m, Sm:n ≤ O( θ
(n−m)m2−θ + 1

n1−θ ).

Now we are ready prove Theorem 2 by using the concentration of Sn in Proposition 2.
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Proof of Theorem 2. First, we prove the bound on F (xN , xN ). Let x∗n := arg minx∈X fn(x) and let
f̄n = 1

nf1:n. Then by α-strongly convexity of fn,

fn(xn)−min
x∈X

fn(x)

≤ 〈∇fn(xn), xn − x∗n〉 −
α

2
‖xn − x∗n‖2

≤ 〈∇fn(xn)− f̄n−1(xn), xn − x∗n〉 −
α

2
‖xn − x∗n‖2

≤ ‖∇fn(xn)− f̄n−1(xn)‖∗‖xn − x∗n‖ −
α

2
‖xn − x∗n‖2

≤ ‖∇fn(xn)− f̄n−1(xn)‖2∗
2α

≤ β2

2α
S2
n

where the second inequality uses the fact that xn = arg minx∈X f̄n−1(x), the second to the last
inequality takes the maximum over ‖xn − x∗n‖, and the last inequality uses Assumption 5. To bound
F (xN , xN ), we use Proposition 2 and Assumption 6:

fn(xn) ≤ min
x∈X

fn(x) +
β2

2α
S2
n

≤ ε̃Π,π∗ +
β2

2α

(
e1−θnθ−1G2

α

)2

Rearranging the terms gives the bound in Theorem 2, and that ‖xn − x̄n‖ ≤ Sn gives the second
result.

Now we show the convergence of {xn} under the condition θ < 1. It is sufficient to show that
limn→∞

∑n
k=1 ‖xk − xk+1‖ < ∞. To see this, we apply Lemma 5 and Proposition 2: for θ < 1,∑n

k=1 ‖xk − xk+1‖ ≤ ‖x1 − x2‖ +
∑n
k=2

θ
kSk ≤ c1 + c2

∑n
k=2

θ
k

S2

k1−θ
< ∞, where c1, c2 ∈

O(1). �

C Proof of Lemma 2

Define δπ|t such that dπ|t;q(s) = (1− qt)δπ|t(s) + qtdπ∗(s), and define gz|t(s) = ∇zEπz [Qπ∗|t](s),
where πz is a policy parametrized by arbitrary z ∈ X . By assumption, ‖gz|t‖∗ < G2. Let π, π′ be
two policies parameterized by x, y ∈ X , respectively. Then

‖∇2F̂ (x, z)−∇2F̂ (y, z)‖∗
= ‖Edπ̃ [gz|t]− Edπ̃′ [gz|t]‖∗

= ‖ 1

T

T−1∑
t=0

(1− qt)(Eδπ|t;q [gz|t]− Eδπ′|t;q [gz|t])‖∗

≤ (1− qT )
1

T

T−1∑
t=0

‖Eδπ|t;q [gz|t]− Eδπ′|t;q [gz|t]‖∗

≤ (1− qT )
2G2

T

T−1∑
t=0

‖δπ|t;q − δπ′|t;q‖1

≤ (1− qT )
2G2

T

T−1∑
t=0

‖dπ|t − dπ′|t‖1

≤ (1− qT )β‖x− y‖
in which the second to the last inequality is because the divergence between dπ|t and dπ′|t is the
largest among all state distributions generated by the mixing policies.

D Proof of Corollary 1

The proof is similar to Lemma 2 and the proof of (Ross et al., 2011, Theorem 4.1).
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