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 
Abstract—We investigate the modeling of inverse dynamics 

without prior kinematic information for holonomic rigid-body 

robots. Despite success in compensating robot dynamics and fric-

tion, general inverse dynamics models are nontrivial. Rigid-body 

models are restrictive or inefficient; learning-based models are 

generalizable yet require large training data. The structured 

kernels address the dilemma by embedding the robot dynamics in 

reproducing kernel Hilbert space. The proposed kernels auton-

omously converge to rigid-body models but require fewer samples; 

with a semi-parametric framework that incorporates additional 

parametric basis for friction, the structured kernels can efficiently 

model general rigid-body robots. We tested the proposed scheme 

in simulations and experiments; the models that consider the 

structure of function space are more accurate. 

 
Index Terms—Inverse Dynamics, Intelligent Robots, Repro-

ducing Kernel Hilbert Space, System Identification. 

 

I. INTRODUCTION 

Robots that exploit inverse dynamics as feedforward com-

pensation perform better in tracking and force control [1, 2]. In 

particular, an inverse model is indispensable for impedance 

control to perform the desired behavior [3] or for exoskeleton to 

estimate human intention [4].  

On the basis of modeling criteria, we categorize the literatures 

into the parametric models based on rigid-body assumption and 

the machine learning models based on approximation theory. 

Under the assumptions that all links of a robot are rigid and that  

friction can be disregarded, traditional rigid-body models [5-10] 

are parameterized by kinematic parameters and inertial pa-

rameters, in which kinematic parameters specify De-

navit-Hartenberg (DH) model, whereas inertial parameters 

consist of the inertia matrix as well as the mass and the position 

of each link’s center of mass. In modeling, Newton-Euler 

method [6] and energy formulation [8], with kinematic param-

eters pre-calibrated by laser [11] or camera [12], identify the 

inertial parameters in linear regression, suffering from accu-

mulated kinematic errors; Euler-Lagrange method [13] ex-
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plores both kinematic and inertial unknowns by linear regres-

sion, suffering from the curse of dimensionality in computation 

due to the lack of kinematic information, especially for robots 

with large degrees of freedom (DOF). In addition, the dynamics 

of general closed-loop robots may be difficult to be casted in 

linear form [14], and none of the rigid-body models above 

directly considers friction. Therefore, an analytic rigid-body 

model is suitable, only if unmodeled dynamics exert negligible 

strength.  

Learning-based models have been proposed as alternatives, 

considering uncertainties due to friction, joint flexibility, and 

manufacturing errors [15-21]. Dated back to the advent of 

neural networks and the subsequent kernel methods based on 

reproducing kernel Hilbert space (RKHS), these flexible 

learners approximate a system only by inputs and outputs [16, 

19, 22, 23], improve the analytic model [24], use the rigid-body 

model as prior information to boost performance [17, 25]. 

In this paper, we study the autonomous modeling of inverse 

dynamics for general holonomic rigid-body robots using only 

system inputs and outputs. Without kinematic information, 

most rigid-body models fail or become infeasible; although 

several papers based on rigid-body model [26, 27] addressed 

this issue by exploiting linear form of Jacobian matrix, an ex-

ternal sensor (e.g. camera) remains necessary. By contrast, 

learning-based models are natural extensions for this setting but 

often requires large amount of samples. In particular, the pop-

ular radial basis function (rbf) kernels in the form of

( , ) ( )
i j i j

k x x k x x  often fail to generalize, underestimating 

the predicted torque. Although identically independently dis-

tributed (i.i.d.) sampling stochastically relaxes the requirement, 

samples fail to meet general applications (with iterative learn-

ing control [28] as an exception). The curse of dimensionality 

in sufficient samples still challenges. 

On the basis of our preliminary results [29], we propose a 

family of finite-dimensional reproducing kernels that embed 

the structure of rigid-body dynamics—the structured kernels. 

By designing appropriate RKHSs, we can directly model rig-

id-body dynamics with neither kinematic information nor Eu-

ler-Lagrange method. Furthermore, these computationally 

efficient structured kernels limit the covering number of the 

hypothesis space: learning automatically, the proposed ap-

proach requires fewer samples than general learning-based 

models, and even uniformly converges to the rigid-body model 
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with finite samples.  

In application, we further adopt it in a semi-parametric 

framework with parametric functions for friction. Transformed 

into a multiple kernel fashion, this frameworks can be easily 

incorporated in any off-shelve, state-of-the-art kernel methods 

(e.g. regularized least-square, Gaussian process regression, and 

support vector regression). Finally, in simulations and experi-

ments, we test the generalization performance in prediction and 

tracking with pre-computed torque control. The results show 

that the models with structured kernels are more accurate. 

The rest of the paper is organized as follows. Section II pre-

sents the main results: the structured kernels and the conver-

gence analysis. Section III demonstrates the method by which 

the semi-parametric framework can be approximated by mul-

tiple kernels. The simulations and the experimental results are 

presented in Sections IV and V and discussed in Section VI. 

Finally, Section VII concludes the paper.  

II. STRUCTURED REPRODUCING KERNEL HILBERT SPACE OF 

RIGID-BODY DYNAMICS 

To analyze the RKHS of inverse dynamics, we begin with the 

notations used throughout the subsequent derivation. For an 

N-DOF robot, N
q denotes its generalized coordinates, and 

3
: ( , , )

N
x q q q  denotes its state vector. We assume that

x

  during the robot’s entire operation, and define the 

compact subset as the union of all possible states endowed 

with probability measure
x

 . For simplicity, with the abuse of 

notation, we denote q as that q belongs to the set of all 

possible positions, and denote F  as that the column space of 

F is included in the span of { | , }
n n n N

g e g n   , in which

N M
F


 is a matrix function, is a scalar function space, 

and N

n
e  is the nth standard basis of N .  

In modeling, we treat the identification of inverse dynamics 

of an N-DOF robot as N independent scalar regression prob-

lems, i.e. each joint model is identified independently. Without 

loss of generality, we assume that the robot is serial and that all 

joints are rotary, because the proposed scheme can be trivially 

generalized to robots with prismatic joints or close loop [30].   

Our goal is to design a hypothesis space as a subset in ( )C  

that contains inverse dynamics yet presents low complexity so 

that a model can effectively generalize without directly con-

fronting the curse of dimensionality. Expressing rigid-body 

robot dynamics in the Euler-Lagrange equation, we treat the 

inverse dynamics as the image of the Lagrangian under a linear 

map and model the RKHS for the Lagrangian. Exploiting this 

relationship, our result identifies a finite-dimensional RKHS

pol
with hybrid polynomial kernel, in which the uniform 

convergence to the rigid-body dynamics is possible even under 

finite observations.  

A. Euler-Lagrange Formulation 

We begin with analyzing the Euler-Lagrange formulation of 

robot dynamics [30]. For an N-DOF robot, let 

1
( , ) ( )

2

T
T q q q M q q   (1) 

1

1
( ) ( ) ( ) ( ) ( ) ( )

2 i i i i

N
T T T T

i v v i i i

i

q m J q J q J q R q R q J q q 



       

1

( ) ( )
N

T

i ci

i

U q m g r q


    (2) 

be the kinematic energy and the potential energy, respectively, 

and define the Lagrangian as 

 :L T U  , (3) 

in which
i

m is the mass,
ci

r is the position of the center of mass,

i
  

 
is the inertia matrix, 

iv
J  is the Jacobian matrix of linear 

velocity, 
i

J
 is the Jacobian matrix of angular velocity,

i
R is the 

rotational matrix between the inertial frame to joint frame of link

i , g is the gravitational acceleration vector, and ( )
N N

M q


  

is the generalized inertia matrix of the entire robot.  

The Euler-Lagrange equation shows that the generalized 

force is the image of the Lagrangian under a linear map defined 

by the differential operator: 

 ,
( ) ( )

dyn n n

n n

d
f x L

dt q q


 
  

 
 , (4) 

which can be summarized in the form as 

 ( ) ( ) ( , ) ( )
dyn

f x M q q C q q q G q     , (5) 

in which 3

,
:

N

dyn n
f  is the inverse dynamics of the nth 

generalized coordinate, 
n

q is the nth generalized coordinate and

n
 is the nth generalized force, ( )

N N
M q


 is the inertia ma-

trix as defined in (1), ( , )
N N

C q q


 is the Coriolis/centrifugal 

matrix, ( )
N

G q  is the gravitational term, ,n
: ( )

Ndyn dyn n
f f


  

: ( )
Nn n

 


 , and : {1,..., }
N

N . In particular,
,n

( )
dyn

f C


 , 

the Banach space of smooth functions. 

In the context of robotics, modeling with (4) is referred to as 

Euler-Lagrange method, in which the unknowns, including 

both kinematic and dynamic parameters, can be arranged in a 

linear form. However, its worst-case computational complexity 

exponentially explodes, if prior information of kinematics is 

unavailable. Therefore, the exact formulation of (4) for general 

robots is intricate and computationally intractable even with 

symbolic mathematics toolbox. 

B. Finite Dimensional Reproducing Kernel Hilbert Space of 

Rigid-Body Dynamics 

Let
pol

be the proposed structured RKHS. In the following, 

we derive its reproducing kernel
pol

k and show that 
pol

is a 

finite-dimensional space containing (4). First, we analyze the 

RKHS that contains the Lagrangian. Then we design
pol

by 

identifying a computationally efficient kernel whose span in-

cludes the image of the Lagrangian of arbitrary rigid-body 

dynamics under the linear map in (4), and incorporate it with a 

parameter to regulate its complexity.  

A RKSH [31, 32] is a vector space of continuous functions 

with the reproducing property 
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 ( ) , ,  
x

f x f k f    , (6) 

in which
x

k is the corresponding reproducing kernel of , so 

the evaluation of a function f  on x is the projection on the 

kernel vector
x

k . Consequently, the learning problem of an 

unknown function f with finite observations becomes the in-

ference problem with the projection of f  on the subspace 

spanned by the observations, which can be solved by kernel 

methods.  

However, the choice of RKHS is nontrivial and considerably 

affects the result. Learning in a RKHS of small capacity can 

enable fast convergence but may introduce bias, whereas 

learning in a universal and large RKHS is prone to variance. 

This observation motivates us to identify a RKHS that is large 

enough to contain (4) yet sufficiently small enough to prevent 

over-fitting to finite samples. A particularly favorable option is 

a finite-dimensional space, for which uniform convergence is 

possible even with finite samples. Furthermore, this RKHS 

should be endowed with a computationally efficient repro-

ducing kernel function for real-time applicability. 

To model the RKHS for the Lagrangian, we first introduce 

three RKHSs,
q

,
q q

, and


, with the reproducing kernels 

 
1

( , ) ,
q i j i j

k x x N q q


   (7) 

 
2

2
( , ) ,

q q i j i j
k x x N q q




   (8) 

 ( , ) (cos( ) 1)

N

i j i j

n

k x x q q



    . (9) 

Proposition 1 

q
k ,

q q
k


, k are positive definite kernels. 

Proof: The proof for first two kernels is trivial. For k , define a 

nonlinear map
3

:
N

  as 

 ( , , ) (cos ,sin ,1)
N

n n
n

x q q q q q


   .  (10) 

By the trigonometric identity, ( , ) ( ), ( )
i j j i

k x x x x   .  

q
,

q q
, and  are well-defined RKHSs:

q
contains the 

functions linear in q ,
q q

contains the functions quadratic in q , 

and


contains the functions multi-linear in{cos ,sin ,1}
n n

q q

for
N

n . In addition, we introduce the normalization factor

1
N


to control the complexity such that the norm of the kernel 

functions (7)–(9) is bounded regardless of N given x

   

(The factor
1

N


can be removed if a constraint max
x x is im-

posed instead of max
x x


 , for some

max
0x  . We choose the 

latter, because it can be more efficiently checked). 

With these three elementary RKHSs, we can identify the 

RKHS for the Lagrangian by identifying the RKHSs for the 

kinematic energy and potential energy in (1) and (2). 

Proposition 2 

The kinematic energy and the potential energy of rigid-body 

dynamics lie in the following RKHSs, 

 :
q q T

T  
     , (11) 

 :
U

U    . (12) 

Namely,
T U

L  . 

Proof: Let a serial robot be indexed in accordance with DH 

convention, in which frame i-1 is defined with respect to link i, 

and the two endpoints of link i are joint i and joint i+1. Then the 

nth column of linear Jacobian
iv

J and angular Jacobian
i

J
of 

frame i can be written as 

 ,

/ , if 

0, elsei

ci n

v n

r q n i
J

  
 


, (13) 

 
1

,

, if 

0, elsei

n n

n

z n i
J





 


, (14) 

in which
n

 is 0, if joint n is prismatic, and is 0, if joint n is rotary,

ci
r is the position of frame i,

1n
z


 is the axis of the nth generalized 

coordinate, and
N

n . 

Assume all the joints are rotary (the derivation for prismatic 

joints is simpler and similar). Because the kinematic energy and 

the potential energy can be represented in the body frame, to 

prove Proposition 2, it is sufficient to show that the column 

space of
iv

J and
i

T

i
R J in (1) are in


. For linear velocity, 

iv
J  because

ci
r  and the linear operator /

n
q   maps 

all elements in


to


; for angular velocity,
i

J  because

0 0 1

1 1 3 3
=

T T i

i n n n i n n n
R z R R e R e   

 
 and 1

3

i

n
R e 


 ( ( )

i
R q is the 

rotation from frame i to inertial frame), in which 3

3
e  is the 

standard basis of z-axis. As for the potential energy, the deri-

vation is similar. Finally, because L T U  ,
T U

L  .  

Finally, we design RKHS
pol

as a RKHS that contains the 

image of 
T U
 under the linear map in (4). Because

T U
  , there exists

dyn pol
f  for arbitrary rigid-body 

robots. 

Theorem 1 

Let Im( )
T U n
 be the image of 

T U
 under the linear 

map,  

 : ( )
n

n n

d
T

dt q q

 
 

 
,

N
n . (15) 

Then Im( )
T U n
 can be included in the following RKHS 

 
1

:=( ) ( ) \
pol q q q   

    , (16) 

for all
N

n , in which
1
 is the space of constant function. 

Proof: Shown in Appendix A.   

In Theorem 1, we demonstrate a RKHS 
pol

that contains

,dyn n
f for all

N
n , because

,dyn n
f is substantially based on the 

Lagrangian. Moreover,
pol

is finite-dimensional, as later 

shown in Corollary 1, and contains the nonlinear bases in Eu-

ler-Lagrange method as a subspace. 

Despite high dimensionality, the RKHS
pol

 inherits com-

putationally efficient reproducing kernel functions from (7), (8), 

and (9). Specifically, we propose a family of hybrid polynomial 
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kernels parameterized by [0, ]   as the kernel function for

pol
: 

 1 2
( , ) ( (1 ) )

pol i j q q q
k x x k k k k c   


     ,  (17) 

in which 

 
, ,

cos( )
( , ) : (1 )

1
N

i n j n

i j

n

q q
k x x c 




 


 , (18) 

: ((2 ) / (1 ))
N

c   
   is chosen so that 1k  . Remaining 

the same dimensionality,
pol

’s complexity is controlled by 

parameter : with
pol

scaled by , the contributions of cen-

trifugal terms and high-order trigonometric terms are penalized 

by the 1
(1 ) 
 factor in (17) and (18), respectively. Because the 

centrifugal terms, which result from the coupling between dif-

ferent links, are small when a robot is equipped with a large gear 

ratio, 
pol

k with   is designed to behave like the model 

linear in q , the simple mass model. Moreover, because the 

high-order terms in (4) correspond to the terms, usually few, not 

canceled by zero DH parameters (e.g. zero link offset), the pa-

rameterization in (17) serves as a good prior knowledge. In short,

pol
models general rigid-body dynamics, but, because of the 

computationally efficient kernel (17), it requires no derivation 

of complicated nonlinear bases in (4), resulting to an effective 

and autonomous model. 

C. Convergence and Complexity of Learning 

To infer the model of inverse dynamics with Hilbert space , 

we consider the error function 

 
2

( ) : ( ( ) )
x

f f x y d   (19) 

and our goal is to estimate the optimal solution in 2
( , )

x


 : arg min ( )
f

f f  . (20) 

We adopt regularized least-square regression 

 
22

min ( ( ) )
x

f
f x y d f 


   , (21) 

in which y is the outcome and 0  is the regularization pa-

rameter. To highlight how the hypothesis space affects learning, 

instead of (21), we focus on the learning algorithm  

 
2

2
min ( ( ) )

x
f R

f x y d


  , (22) 

because there exists ( )R such that the solutions in (21) and (22) 

are identical [33]. Given a RKHS , therefore, a natural can-

didate for the hypothesis space is 

 : ( ( ))
K R

H I B ,  (23) 

in which : ( )
K

I C X is the inclusion map in the space of 

continuous functions.  

Suppose m observations {( , )}
mi i i

Z x y


 are given. Let 

 
221

arg min ( ( ) )

m

i i
f

i

f f x y f
m






  z . (24) 

be the empirical estimate of f in H and let : arg min ( )
H

f H
f f




be the optimal solution in H . By the equivalence between (21) 

and (22), we decompose ( ) ( ) ( )
H H

f f f 
z z

to evaluate the 

model:  

 
2

( ) : ( )
H H x

f f f d z z  (25) 

is the sample error and ( )
H

f is the approximation error, which 

is independent of Z . Upon a further inspection, we see 

 
2

( ) ( ) ( )
H H x

f f f d f     (26) 

in which ( )f is a constant independent of both Z and H . 

Because f may not be in H , ( ) ( )
H

f f in general. There-

fore, to minimize ( )f
z

, a sufficient approach is to limit ( )
H

f
z

 

and ( )
H

f ,  

We analyze this bound by the following two theorems using 

covering number of the hypothesis space H . 

Definition 1 

Let S be a metric space and 0  . Covering number ( , )S   

is the minimal number of disks in S with radius  covering S . 

Theorem 2 [34] 

Let H be a compact and convex subset in ( )C . Assume that 

for all f H , ( )f x y M  almost everywhere. Then, for all

0  , 

 
2

288Prob{ ( ) } 1 ( , ) e
24

m

M
H

f H
M








  
z

  (27) 

Theorem 3 [33] 

Let k be a Mercer kernel of RKHS on and 2
: ( , )

k x
L 

2
( , )

x
 be the operator given by 

  ( ) ( , ) ( ) ( ),   
k x

L f x k x t f t d t x  . 

Let 0  . If /(4 2 )

k
f L g

 




  for some 2

( , )
x

g  , then 

 2
2

22 2

( , )
inf ( ) 2

x
x

f R

f f d g R
 

 


 



  . (28) 

By taking ( ( ))
K R

H I B , Theorem 2 and Theorem 3 can be 

used to bound the sampling error and the approximation error, 

respectively. More specifically, we focus on the order of cov-

ering number and the norm 

 
2

/(4 2 )

( , )x
k

L f
 

 

 
, (29) 

and use them to analyze RKHSs in learning the inverse dy-

namics model (4). Our results show a quantitative bound of 

covering number and a qualitative analysis of (29). 

We first discuss some popular options for (4). Given that

,
( )

dyn n
f C


 in (4), a popular RKHS candidate is 

rbf
en-

dowed with the universal kernel, 

 
2

( , ) : exp( / 2 )
rbf i j i j

k x x x x    . (30) 

However, this appealing choice may not be ideal for learning 

inverse dynamics of general robots, especially those with rotary 

joints. This deficiency is attributable to the fact that 

 

22

2 2

0

,
( , )

( ) !

ji

n
xx

i j

rbf i j n
n

x x
k x x e e

n

 







   (31) 

penalizes all high-order polynomial terms. If in (30) is large, 
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i.e. when (29) increases, the cross-terms in (4) due to the serial 

structure and the terms due to trigonometric functions are par-

ticularly highly penalized. Yet a small  easily leads to 

over-fitting, as shown in the following proposition. 

Proposition 3 [33] 

Let
d

x and 0  , for
rbf

with the kernel defined in (30), 

 

1 12

2

640 (Diam( ))
ln ( ( ( )), ) 32 ln

d d

K R

d R
I B n

 

 

 
   

  
  

 (32) 

For rotary joints, the kernel (30) can be modified as 

 

2 2

( ) ( )
( , ) : exp( )

2

i j i j i j

rbfs i j

q q q q q q
k x x

 



    
   (33) 

As in the proof of Theorem 1, (4) is a quadratic function of ( )x . 

Therefore, a large may exist so that (29) is small for the kernel 

(33). On the other hand, (33) is equivalent to a rbf kernel defined 

on 4 N , inducing a larger variance in learning. Even so, in 

learning rotary robots (33) outperforms (30) mostly because the 

structure of (4) is considered, as evidenced in the simulations. 

The RKHS
pol

with the hybrid polynomial kernel (17) fea-

tures better: First, (17) considers the trigonometric bases as 

with (33). Second, introducing the tensor of different elemen-

tary RKHSs reduces the dimensionality, as shown in Theorem 

1, selecting only partial terms of the polynomial function of 

degree 2N in 4 N . Finally, the control parameter  tailored (17) 

specially for robot dynamics so that the penalized subspaces 

have physical meanings.  

We show the covering number of ( ( ))
K R pol

I B by Theorem 4 

with a lemma in approximation theory. 

Lemma 1 [33] 

Let E be an n-dimensional Banach space. For all 0R   ,

0 R  , 

  ln ( ( ), ) ln 3 /
R

B E n R   , (34) 

and for R  , ( ( ), ) 1
R

B E   . 

Theorem 4 

For
pol

with kernel defined in (17), the covering number of

( ( ))
K R pol

I B is bounded by a non-increasing function of  . In 

the limit, it resembles 

 ln ( ( ( )), ) ~ ( ln( ))
K R pol

R
I B O N


 (35) 

as   , and 

 2
ln ( ( ( )), ) ~ ( 5 ln( ))

N

K R pol

R
I B O N


 (36) 

as 0  . 

Proof: Shown in Appendix B.   

Parameter  controls the size of hypothesis space

( ( ))
K R pol

I B and affects the convergence of learning. For 

robots with a large gear ratio or simple DH parameters, a large

 increases the convergence rate, because the effective size of 

the hypothesis space is smaller and (29) minimally grows given 

the specific penalization in (17). Conversely, for general robots, 

hybrid polynomial kernel (17) still benefits learning, because it 

captures the tendency polynomial in q and q . Therefore, this 

kernel is sufficient to train a descent model for high-speed 

applications with training data of slow trajectories. As for 

kernels such as (30) and (33), sufficient training data suggest 

trajectories with all speeds and accelerations, a setting gener-

ally impossible. Finally, Corollary 1, which follows straight 

from the proof of Theorem 4, shows a bound of the dimension 

of
pol

using trigonometric identities. 

Corollary 1 

For
pol

with hybrid polynomial kernel (17),  

 2
dim( ) ~ ( 5 )

N

pol
O N . (37) 

In particular, 

 
1

dim ( 2 ( 1))5 3 1
N N

pol
N N N


     . (38) 

III. LEARNING INVERSE DYNAMICS IN A SEMI-PARAMETRIC 

FRAMEWORK 

In control of holonomic robots, the inverse dynamics model is 

referred to as the mapping from the states of dynamics ( , , )q q q

to actuation force
a

 . That is, the inverse map : ( , , )
a

q q q  

such that 

 , ,
( )

n a n f n

n n

d
L

dt q q
  

 
   

 
 (39) 

holds for all
N

n , in which
f

 denotes the force due to fric-

tion and unmodeled dynamics, and the subscript denotes the nth 

component. In presence of
f

 , especially large static friction, the 

inverse map  is poorly defined in general, whereas the inverse 

map from ( , , )q q q to
n

 (i.e.
,dyn n

f ) always exists. Therefore, 

because the hypothesis space lies in ( )C , we can at best learn 

in a probably approximately correct fashion. 

We adopt a semi-parametric framework to model inverse 

dynamics, leading to the problem  

 
22

,

1
min ( ( )+ ( ) )

dyn
dyn j

m B

i j j i i
f b

i j

f x b x y f
m

 


 

   ,  (40) 

in which
dyn

is the RKHS for modeling rigid-body dynamics in 

(4), B is the number of the (nonlinear) bases { }
Bb b


 that are 

not regularized, and
j

b represents the coefficients to be identified. 

Because dim( )B H , over-fitting due to parametric bases 

does not occur. For friction, we use the bases 

 
,

{ , tanh( / ),1}
n i n f

q q   (41) 

to model viscous friction and coulomb friction of joint n, in 

which
f

 is the additional parameter for controlling the Lip-

schitz constant of the sigmoid function. Given that (41) are 

continuous functions, a RKHS
fri

with kernel function
fri

k that 

contains (41) exists; for example,  

 
, , , ,

( , ) tanh( / ) tanh( / ) 1
fri i j i n j n i n f j n f

k x x q q q q    . (42) 

In addition to (41), the basis of rigid-body dynamics with known 

kinematics [6] can also be included to improve the performance 

as in [17], using
dyn

 to correct kinematic errors. In the suc-
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ceeding simulations and experiments, we consider only para-

metric bases in (41), because we want to show that the proposed 

structured kernels (17) alone yield comparable performance. 

To numerically solve (40), we cast the semi-parametric 

framework (40) into a multiple kernel formulation: 

 
2 221

min ( ( ) ) ((1 ) )
dyn fri

dyn fri
m

i i
f

i

f x y f f
m

  
 



     

221
min ( ( ) )

dyn fri
dyn fri

m

i i
f

i

f x y f
m


 



    (43) 

for some 0 1  , in which the effective kernel function of 

dyn fri
 is then 

 1 1
(1 )

dyn fri dyn fri
k k k  


   . (44) 

Therefore, the regularized least-square in (24) can be used with 

kernel function (44) to solve (40), which is numerically equiv-

alent to the linear system 

 ( )
dyn fri

m


 I K α y  (45) 

giving the estimated model in the form of 

 ( ) ( , )

m

i dyn fri i

i

f x k x x




 z
,  (46) 

in which ( )
mi i




α are the coefficients to be identified,

( )
mi i

y


y , and
,

( ( , ))
mdyn fri dyn fri i j i j

k x x
  

K .  

In evaluation, we rearrange the solution (46) back into the 

semi-parametric form. That is, to recover the unknown coeffi-

cient 
j

b in (40) from (46) by 

 
1

( )

m

j i j i

i

b x  



  . (47) 

Therefore, only
dyn

k is necessary for evaluating (46), i.e. 

  
1

( ) (1 ) ( , ) ( )

m B

i dyn i j j

i j

f x k x x b x  

 

   z
, (48) 

which considerably increases efficiency, especially for online 

applications.  

The representation in (46) holds, which approximates the 

solution of (40), as long as >0 . For 0  , there exists

i i
   satisfying 

 
1

( ) (1 ) ( , ) ( , )

m

i dyn i i fri i

i

f x k x x k x x  



  z
,  (49) 

in which
i

 is finite with equivalence 

 ( )

m

j i j i

i

b x 


  . (50) 

Finally, we prove that the semi-parametric framework is 

consistent in learning.  

Theorem 5 

For holonomic rigid-body robots, let y be the random variable 

,n f n
  , f

z
be the solution of (40), and 

 
2

,
: arg min min ( )

pol j
B

H pol j j x
f b

j

f f b y d 




   . (51) 

Assume y   almost everywhere. Then there exist 
0

, 0  

such that with probability 1  , ,
( , )

pol
H pol

f f m  
z for all

0
  , in which ( , )m  is a monotonically decreasing func-

tion of m and a non-increasing function of  . Thus, 

lim ( , ) 0
m

m 


 . 

Proof: To prove the convergence of (40), we analyse the con-

vergence of (43) in the direct-summed RKHS
pol fri
 by 

showing that the solution of (51) has a finite representation

,H pol
f in

pol fri
 , and that the solution of (43) converges to

,H pol
f by Theorem 2. Then, by the equivalence between (40) and 

(43), the solution of (40) is consistent. 

Let
,H pol pol fri

f f f  . Because dim( )
pol

  and B   , 

there exists finite
pol pol

f  and
fri fri

f  such that
,H pol

f rep-

resents the solution of (51); by definition of 
pol fri

 in (43), 

that is,
pol fri

H
f


  .   

As a result, because of the connection between (21) and (22), 

there exists
0

0  , such that for all
0

  the solution of (21) is 

in accordance with finite solution in hypothesis space

( ( ))
K R pol fri

H I B  with
,

pol fri
H pol

f R


   . 

Finally, by Theorem 2, taking 

 
2

2 2

24
ln( )

288 288( , )
24

m mMR
C N

M MH e e e
M



 






 

   (52) 

in which 0C  is a non-increasing function of , independent 

of M , R , and  , and using the lower bound of (52), 

 

2

2

2

2

ln ln( )
24 288

ln( ) ln
24 288

m
C N

MR M
m

C N
MR M





 


 

  

 

 (53) 

we have 

 

2

2 2

1

1 1

2
(24 ) ( )

288

C N

C N C Nm
MR

M



 






 
 .  

IV. SIMULATIONS 

We compare the generalization of the structured kernel (17), 

the modified rbf kernel (33), and the traditional rbf kernel (30) 

in learning inverse dynamics of rigid-body robot. In each of the 

following simulations, we show testing error with respect to the 

complexity of the underlying model, i.e. the robot’s DOF, in 

different scenarios: with or without the presence of measure-

ment noise and friction. For each DOF, 10 different robots are 

used as the target to be learned, whose kinematic and dynamic 

parameters, gear ratios, and friction magnitude are uniformly 

sampled from a bounded set so that all these robots are physi-

cally feasible (e.g. the inertia matrix is always positive definite). 

For each robot, 500m  training data and 15000
val

m  vali-

dating data, with angular positions, angular velocities, and 

angular accelerations sampled from a bounded uniform distri-

bution, are generated by Newton-Euler method; for comparison, 

the torque is normalized so that 1

 . The adopted noise, 

which shares the same unit as the normalized torque, is a ze-

ro-mean Gaussian with standard variation 0.05; with different 

joints independently modeled, the Coulomb friction is modeled 
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as sign function, and the viscous friction is modeled by a force 

linear in joint velocity. 

To learn the unknown model, we use regularized least-square 

regression in (24) and the parameters ,
f

 , and   are chosen 

by 5-fold cross validation, if not particularly specified;  is 

fixed as
3

10 ( ) / ( )
dyn fri

trace trace


K K , in which m m

dyn


K and

m m

fri


K are the empirical kernel matrices. The optimal 

parameters, with which the entire training data set used to re-

train the final model, are chosen to be the combination of pa-

rameters that minimizes the empirically expected prediction 

error. To verify the result, the performance is illustrated in 

terms of prediction errors over all the generalized coordinates 

in root-mean-square (RMS), i.e. 1/2
( )

i i
N y f x




z
. 

In learning without kinematic information, pol denotes the 

proposed kernel (17), rbf  denotes (30), rbfs denotes (33), and 

fri denotes (42); the notation + is used to combine two kernels 

in the form of (44), in which the first argument is
dyn

and the 

second argument is
fri

. Also, for benchmark, we take motor, a 

simple independent joint model,  

 
1 2n n

c q c q , (54) 

in which
1

c  and
2

c are the unknowns to be identified for joint n. 

We do not use Euler-Lagrange model, because it can be expo-

nentially complex for general robots. 

Fig.1 shows predicting the ideal robot dynamics without any 

friction and noise, in which we fixed 12
10 

 in (24) and 

searched parameter  by cross validation. Recalling the bound 

of the dimensionality of
pol

in (38), we can see that Fig. 1.(b) 

shows uniform convergence for 2N  in
pol

, because 500 

training data are sufficient to span the entire space. Conversely, 

for 2N  , the generalization is dominated by regularization. In 

this situation, the performance of a kernel depends on the 

quality of the regularized parameters, i.e.  in each kernel 

function. In comparison, rbfs outperforms the traditional rbf, 

because it better captures the characteristics of the rotary joints, 

so that a hypothesis space with both small covering number and 

(29) is possible. And the proposed kernel pol shows the best 

performance because of its special structure.  

Fig.2 shows predicting the ideal robot dynamics with both 

friction and noise, in which the Coulomb friction and the vis-

cous friction are modeled with the magnitude randomly chosen 

as mentioned. Compared with the finding in Fig.1, that in Fig. 2 

indicates that the kernel pol alone exhibits poor performance in 

the presence of friction at small N . Its performance increases, 

however, by introducing fri. Given that pol+fri captures the 

structure of the dynamics, its performance is consistently better 

than that of rbf and rbfs. Another feature is that all the models 

learn similarly as N increases, because the coupling of different 

links dominates the effect of friction. Overall, pol+fri learns, as 

if no friction exists, consistently exhibiting better performance 

than rbf and rbfs.  

V. EXPERIMENTS 

The models were empirically validated in experiments with 

the 6-DOF NTU robot arm (NTU Robotics Laboratory) in Fig. 

3, which is a 6-DOF robotic manipulator driven by 

DC-micromotors with large gear ratios. With current sensors 

and encoders, the robot arm is fed back by a 10-kHz inner 

torque PI-controller and a 250-Hz outer position PD-controller, 

and can be feedforwarded with additional torque command. To 

collect training data, we used 10 trajectories (interpolated by a 

5th-order polynomial; sampled at 500 Hz) that randomly, 

smoothly traverse all workspace at different speeds for ap-

proximately 30-40 seconds, and recorded the trajectory track-

ing experiments of 6-DOF NTU robot arm with PD position 

feedback. To compute q and q , the sampled trajectories were 

filtered with a 3rd-order Butterworth filter and then differenti-

ated. 

Blocked cross validation [35] was adopted in the experiments, 

which is commonly used in time-series prediction. By blocking 

the training data in time domain into equal-sized groups, a 

particular set of parameters was scored by carrying out con-

ventional cross validation in terms of the groups. Because the 

i.i.d. assumption is likely to be satisfied in terms of such parti-

tion, blocked cross validation enables correct and unbiased 

parameter selection, provided that the block is large enough. 

To validate the models, we compare prediction torque error 

 
(a) 

 
(b) 

 (c) 

Fig. 1.  RMS error of prediction in learning the ideal model. (a) RMS error 

(b) RMS error in dB 20log( ) (c) the variance of RMS .error, where a.u. 

denotes arbitrary unit. 
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Fig. 3.  6-DOF NTU robot arm. 

 
(a) 

 
(b) 

Fig. 2.  RMS error of prediction in learning the ideal model with simulated 

friction and Gaussian measurement noise. (a) mean (b) variance. 

and position tracking error in pre-computed torque control [36] 

with the learned model. To unbiasedly estimate prediction error, 

we, using a 5-fold 3-second blocked cross validation, trained 

the model with only 500 samples from the first 1/3 of each 

trajectory in time domain, and tested the prediction torque with 

the validation set composing of the remaining 2/3 of the data, as 

illustrated in Fig.4. Therefore, this score more faithfully reflects 

how a model performs in applications where training data over 

the entire workspace is prohibited. While Fig. 4 exemplifies the 

performance of a single prediction, Fig. 5 summarizes the 

torque predictions of all trajectories in RMS error. Because the 

friction in the 6-DOF NTU robot arm is large, indicating that a 

single kernel standalone does not provide satisfactory results, 

the semi-parametric framework considerably increases accu-

racy by introducing the simple basis fri for friction. 

In addition to prediction, we conducted experiments with 

pre-computed torque control using the learned models. In these 

experiments, 500 samples from the first 1/3 of each trajectory 

were used to train the models, and then tracking experiments of 

the whole trajectory with the 6-DOF NTU robot arm were 

conducted using PD feedback and the feedforward terms pre-

dicted by the learned models. Given that the first 1/3 of the data 

were used in learning, only the position tracking errors of the 

remaining 2/3 of a trajectory were used in evaluation. We note 

that the magnitude of the PD gain was purposely tuned small to 

contrast the tracking results with and without the feedforward 

term, and therefore the absolute tracking error bears little sig-

nificance. In consequence, these figures (Fig. 5–8) serve rather 

as a profile for qualitative analysis.  

Fig. 6 shows the RMS errors of tracking the trajectories used 

in Fig. 5 with precomputed feedforward compensation. The 

results majorly fall into three groups: feedback only (denoted as 

none), feedforward without friction model, and feedforward 

with friction model. These results evidence the importance of 

the semi-parametric model; however, because multiple factors 

were involved, as explained in section VI, the discrimination 

between the models is less obvious than that in Fig. 5.  

Fig. 7 and Fig. 8 further present the tracking results of the 

model pol+fri, which also learned from the first 1/3 of the 

training data and then predicted the feedforward term for the 

whole trajectory. Fig. 7 shows the result of tracking a square 

trajectory in the Cartesian space. In this experiment, the PD 

gain was tuned 1/3 of that used in the experiments in Fig. 6 and 

Fig. 8, so that the tracking without feedforward term (denoted 

as none) becomes undesirable and more discernable. Under this 

extreme condition, despite imperfection, using the model that 

learned from limited observations still largely decreases the 

tracking error. To further investigate the property of each joint, 

Fig. 8 shows the result of tracking another joint-space trajectory 

that was generated randomly in same way as the data used in 

Fig. 5 and Fig. 6. In this experiment, the PD gain was the same 

as that in Fig. 6. As shown in these figures, the importance of 

the feedforward term depends on the dynamics of the joint: for 

joints with large coupled terms or friction (e.g. joint 2–5), the 

improvement is more significant. 

VI. DISCUSSIONS 

In the experiments, we adopted blocked cross validation in-

stead of standard cross validation.  Given that cross validation 

relies on i.i.d. assumption that the testing data (including posi-

 
Fig. 4.  The collected data and the prediction of pol+fri of joint 3. Each 

model is trained with the first 1/3 of the collected data, and tested on the 

rest 2/3. The validation trajectories traverse the workspace with a speed 

gradually ascending.  
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tion, velocity, and acceleration) share the same probability 

distribution as the training data, learning-based methods often 

fail to choose the correct parameters if standard cross validation 

is employed. More specifically, the parameter selected by 

standard cross-validation tends to overfit the data, because the 

collected data are dependent over time, traveling on a manifold 

in forward dynamics. Underestimating the support of
x

 , it 

optimistically assumes that the potential data in the succeeding 

application have the same probability distribution as the col-

lected data. However, such assumption typically does not hold 

in identifying dynamics, because available observations are 

finite and the size of  is exponential in N .  

For a similar reason, we used the first 1/3 of the data for 

training and evaluated the error on the last 2/3. Separating the 

training and the validation data in time domain gives a more 

unbiased estimate of the model’s performance (of both predic-

tion and tracking). On the other hand, because of the strong 

time-domain correlation, uniform sampling results in an over-

estimated performance, only suitable for iterative learning 

control where over-fitting becomes rather a merit. 

The factors involved in pre-computed torque control are more 

complicated. Given that an appropriate feedforward term the-

oretically linearizes the system, two primary factors affect the 

outcome. First, the maximum output torque of the actuator is 

limited. Therefore, the controller cannot eliminate the effects of 

robot dynamics even if the feedforward term is ideally correct, 

making the position deviate from the predefined trajectory. 

Second, pre-computed compensation (as opposed to comput-

ed-torque control which cancels the whole dynamics with 

online feedback) may be different from the torque needed when 

the accumulated errors drive the current state far from the 

supposed state in the reference trajectory. This leads to a co-

nundrum in presenting the tracking results: using a simple 

feedback with limited gain can better distinguish the perfor-

mance of different models yet introduces other tracking errors, 

which may be larger the difference. As a result, we present Fig. 

6 rather qualitatively and consider only a single trajectory in 

Fig. 7 for demonstration purpose.  

 
Fig. 6.  RMS error of position trajectories in experiments, evaluated on 
the remaining 2/3 of collected data (none denotes PD position feedback 

alone). 

 
Fig. 5.  RMS error of torque prediction in experiments, evaluated on the 

remaining 2/3 of collected data. 

 
Fig. 7.  The results of tracking a square trajectory (none denotes PD 

position feedback alone). 

 
 joint 1 joint 2 joint 3 

 
 joint 4 joint 5 joint 6 

Fig. 8.  The results of tracking a joint-space trajectory that transverses through randomly selected points over the workspace (none denotes PD position feedback 
alone). 



IEEE TRANSACTIONS ON CYBERNETICS 10 

In summary, the simulations and the experiments mainly 

demonstrate two trends: kernels sharing a structure similar to 

robot dynamics generalize better to unseen data; compensating 

friction, the semi-parametric framework significantly improves 

the performance, especially if friction is too large to disregard.  

In terms of generalization, the proposed pol kernel, which 

converges to the same function as Euler-Lagrange method 

without explicit evaluation of the nonlinear bases, surpasses 

general kernels. According to the analysis in Section II.C, the 

generalization is mainly affected by the covering number of the 

hypothesis space. Therefore, with its dimensionality decreased 

by its structure resembling Euler-Lagrange model and the 

corresponding covering number regularized by physically 

meaningful , the kernel pol effectively generalizes to rest of 

the data, though the model learns only form partial data (simi-

larly, for robots with rotary joints, kernel rbfs is a better choice 

than rbf).  

However, pol, or even rbf and rbfs, alone may yield unsatis-

factory results when friction is relatively large. In this case, we 

suggest the semi-parametric framework as it effectively 

boosted the performance of all kernels, in particular pol+fri. 

This effect can be observed in both of the simulations and the 

experiments: in the simulations, the performance of pol im-

proves significantly in Fig. 2, nearly to that without friction; in 

the experiments, the performance of all kernels improves, es-

pecially at low speed where friction is large compared with the 

size of dynamics.  

To better illustrate, we can further compare the results with 

the simple model motor+fri. As previously stated, the NTU 

robot arm has large gear ratios, and therefore the system be-

haves similarly to the independent-joint model, as long as the 

robot operates slow enough to generate non-significant coupled 

dynamics. Thus, we can treat the simple motor model in (54) as 

benchmark. In Fig. 5, motor+fri overtakes the other models at 

very low speed, whereas pol+fri yields more satisfactory re-

sults generally, especially in high-speed trajectories; rbfs per-

forms worse than rbf, in contrast to the simulated results in Fig. 

1 and 2. All these differences are explained by the size of fric-

tion: when robot dynamics dominate, the kernels perform sim-

ilarly as with Fig. 1 or as with robots with large DOF in Fig. 2; 

when friction dominates, the kernels maintain the original 

performance, only if friction can be compensated by additional 

parametric basis. Therefore, the success of the semi-parametric 

framework can be attributed to that the RKHSs in which the 

hypothesis space has small covering number are different for 

robot dynamics and friction. 

For future applications, we would incorporate the nominal 

plant (derived from CAD or rigid-body model with 

un-calibrated kinematic information) as part of the parametric 

basis in the semi-parametric framework, and use the proposed 

kernel
pol

k to learn the error dynamics. Given that a good 

nominal plant reduces the norm of the unknown in the RKHS, 

the covering number of the hypothesis space decreases, thereby 

generalizing better.  

Another practical adaption is to use a modified pol kernel, 

 
1 2

( (1 ) )
pol q q q

k k k k 


   , (55) 

which does not consider gravity, with the parametric basis for 

gravity derived from Euler-Lagrange method using (2). We 

tailor this fusion especially for robots whose dynamics are 

dominated by quasi-static approximation and floating-base 

robots (e.g. humanoids), in which the gravity vector varies with 

regard to the robot’s base. Instead of using the original (17) 

which assumes stationary gravitational filed, this fusion distin-

guishes the gravity part, which possesses efficient parametric 

bases elementary to derive, and the kinetic part, which contrib-

utes to the main burden in Euler-Lagrange method. As a result, a 

robot can not only learn automatically without kinematic in-

formation, but also adjust in accordance to the information of 

gravity force. 

VII. CONCLUSION  

Circumventing the exact evaluation of parametric function, 

learning in RKHS is an efficient technique to approximate 

continuous functions. We propose a finite-dimensional RKHS

pol
that uniformly converges to rigid-body dynamics with 

controllable complexity. Endowed with the structure inherited 

from rigid-body dynamics and the efficient kernel representa-

tion, the proposed structured kernels enjoy the advantage of 

both rigid-body and learning-based models, not only as a us-

er-friendly alternative but as an upgrade for existing identifi-

cation tools. 
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APPENDIX A (PROOF OF THEOREM 1) 

To prove Theorem 1, recall that the RKHS


is isometrically 

isomorphic to the feature space defined in the proof of Propo-

sition 1. Therefore, by applying 
n

T on the spaces
T

and
U

, 

we can derive the explicit form of
pol

. 

Let the Lagrange function L  be composed of
1

L ,
2

L , and
3

L as 

 
1 2 3

( )
q q

L L L L   
       . (A1) 

With the abuse of notations, define ( ) : (cos ,sin ,1)
n n n

q q q   

and
2

:    , in which  denotes the tensor product. Be-

cause
T

and
U

are composed of
q

,
q q

, and  , the image 

of the linear operator
n

T can be identified by reproducing prop-

erty, 

 
1 2 2 3

[ , , , ]
n n

T L q q L L     . (A2) 

For convenience, we use  as the Kronecker product when 

considering vectors in finite dimensional space; we also neglect 

the normalization factor
1

N


here, because it is not the norm but 

rather the span of vector space is concerned. 

We first see that 

1 2 2 1 2 2

( ) ( )

= , , + , ,
n n n

a b

d L d d
L q q L L q q L

dt q dt q q dt
 

  
 

  
 (A3) 
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Because 

 =( ) ( )
n n

n

d
q q q e e q

dt q


   


 (A4) 

and  

2 2 1 3 3 2 2
( ) ... [ ] ( ) ... ( )

N

i i N

i

d
q q D I I D q q

dt
   



         (A5) 

we have 

1 2 2
( ) , ( ) ,

n N N n
a L e I I e q L      (A6) 

1
 ( )= ,[ ( )]

N
i

T

i n n n n
b L e e I I e q q



       (A7) 

2 2 1 3 3 2 2
, ( ) ... [ ] ( ) ... ( )

i N
L q D I I D q q          

in which : [0 -1  0; 1 0 0; 0 0 0]D  . Similarly,  

 
1 2 2 3

( ) ( )

, , ,
n n n

c d

L
L q q L L

q q q
 

  
  

  
 (A8). 

in which 

1
( ) ,c L q q     (A9) 

2 2 1 3 3 2 2
        , ( ) ... [ ] ( ) ... ( )

n N
L q D I I D q q        

3 1
( ) , ( ) ... ( ) ... ( )

n N
d L q D q q       . (A10) 

By using the adjoint of the operators in (a), (b), (c), and (d), it is 

clear that for all
N

n  

 
1 2 3 2 4

( , , ) , ,
n n n n n

q q q           (A11) 

for some vectors
1n

  ,
2n

 ,
3n

   , and
4n

  . That is, 
n

  is in 

 
( ) ( )

q q q   
   

 
Finally, since the differentiation operator projects out the space 

of constant function,
n pol
  for all

N
n .  

APPENDIX B (PROOF OF THEOREM 4) 

The covering number of the compact subset

( ( ))
K R pol

H I B can be estimated by virtue of the maximal 

covering number of the subspaces that compose RKHS
pol

by 

direct sum. Let 1q

  and 1q


 for all x . Consider an 

arbitrary element
q q q pol

f f f f    in H , in which

( )
q q

f     , ( )
q q q

f  
   , and

1
\

q
f  . 

If ( , )H   , then there exists { }
i i

F f H


  such that

f H   

 
( )

:= sup ( ) ( )
i iC

x

f f f x f x 


   ;  (B1) 

a sufficient condition for (B1) is 

 
2

,
( )( ) / 3

q q i q
k k f f    (B2) 

 
2

,
( )( ) / 3

q q q i q
k k f f 


   (B3) 

 
,

( )( ) / 3
q i q

k c f f     . (B4) 

That is, the covering number of H is bounded by that is re-

quired for (B2), (B3), and (B4).  

Let 1
: (1 ) [0,1]  
   . First, to estimate the required for 

(B4), we decompose k
into 

 
,

( , )= (1 cos( ))

N N n

n

i j p

n p

k x x c q  
 

    (B5) 

in which
,N n

denotes the set of all subsets of 
N

with cardi-

nality n , and
, ,

:
p i p j p

q q q   . We treat k as the inner product 

of the direct sum of subspaces. These spaces are the 

1-dimenisonal space of the constant function, and the other, for 

N
n , 2

n
-dimensional subspaces with multiplicity ( , )C N n  of 

trigonometric functions, because 

 
, , , ,

cos( ) cos cos sin sin
p i p j p i p j p

q q q q q    (B6)  

can be treated as inner product in 2 . Therefore, a sufficient 

condition for (B4)is  

 , , ,

, ( )

/ 3
( )

#( )j
q j i q j

j C

f f
k k 


  ,  (B7) 

for all the subspaces with kernel
, j

k in (B5), in which

#( )k
j



 and 

 #( ) 1 ( , ) 2

N

N

n

k C N n



   , (B8) 

is number of subspaces in (B5). With Lemma 1, we know  that 

satisfies (B4) can be bounded by 

 
9

ln max 2 ln( 2 (1 ) )
N

n N N n

n

R
 


  . (B9) 

For (B2) and (B3), we decompose 2
k as 

,

2 2 2

2

1 cos(2 )
( , ) ( 2 cos( ) 1)

2

1 cos(2 )
[1 (2 cos( ) )]

2

N

N N n

n

i j n

n

n n

n

n p

q
k x x c q

q
c q

 



 

 



 

 
   

 
   



 

(B10) 

which are similar to (B5). Using (B6), we know (B10) is the 

direct sum of the 1-dimeniosnal subspace of the constant func-

tion and the 5
n
-dimensional subspaces with multiplicity ( , )C N n  

for 
N

n ; thus 2
#( ) 2

N
k  . With Lemma 1, we have the 

bound 

9
ln max{1, max 5 ln( 2 (1 ) (2 ) )}

N

n N N n n

n

R
N   


    (B11) 

for (B2) and the bound 

1( 1) 9
ln max{1, max 5 ln( 2 (1 ) (2 ) )}

2 N

n N N n n

n

N N R
  








    (B12) 

for (B3). Thus, it is sufficient to have  balls with radius cov-

ering H ; is bounded by the maximum of (B9), (B11) and 

(B12). Also, it is obvious to show this bound is a non-decreasing 

function of  , i.e. a non-increasing function of  .    
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