
  

 

Abstract—The inverse dynamics model of robots is often the 

key for accurate control. Especially in the computed torque 

control, the nonlinearity and the friction can be compensated, 

leading to better performance. The inverse models, however, is 

not trivial. The traditional Euler-Lagrange model based on the 

rigid body assumption often underfits in the presence of frictions 

and requires tedious derivations; the learning-based model 

needs larger training data set, since the structure of the 

dynamics is not considered. To overcome the aforementioned 

issues, we propose a structured kernel to replace the rigid body 

model and combine it with the universal radial basis kernel by 

direct sum. The proposed structured kernel asymptotically has 

the same convergence rate as the traditional model, and is 

general regardless of the configuration of the robot. Therefore, 

no analytic derivation is needed. Together with the universal 

radial basis kernel, the proposed approach enjoys the 

advantages of both the conventional and the learning-based 

models. To verify the proposed method, the simulations are used 

to investigate the performance in terms of the prediction errors. 

I. INTRODUCTION 

It is well known that a control loop that includes the 
inverse dynamics as the feed-forward compensation achieves 
better performance in tracking and force control [1]. In 
particular, the impedance control of robots requires the 
inverse dynamics model to perform the desired dynamics [2], 
or the prediction of human intention in the exoskeleton control 
[3]. Despite the appealing success of the inverse dynamics 
model, the application is limited in general due to the 
modeling difficulties. Traditionally, the dynamics model of 
the robots is derived based on Newton-Euler method or 
Euler-Lagrange formulation [4], which we refer them as the 
rigid body model hereafter. Assuming that each link of the 
robot is a rigid body and the friction can be neglected, the 
unknowns in the dynamics model consists of the kinematic 
parameters and the dynamics parameters, in which the 
kinematic parameters are referred to those specifying the 
traditional Denavit-Hartenberg model, whereas the dynamics 
parameters consists of the inertia matrix, and the position and 
the mass of the center of mass for each link. Traditionally, the 
calibration of the dynamics model can be categorized into two 
approaches according to the formulation. In the Newton-Euler 
method, the kinematic parameters is first calibrated using laser 
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[5] or camera [6], and the dynamics parameters are identified 
joint by joint iteratively [7]. This approach restricts the 
calibration to be carried only in offline, and the most 
importantly, the uncertainty of the former links passes to the 
following links. An alternative solution is based on the 
Euler-Lagrange formulation [7]. This approach explores all 
the unknown terms in the dynamics model in terms of the 
nonlinear bases, and therefore the identification problem 
becomes an ordinary linear regression problem, which is then 
solved by least-squares. While the Euler-Lagrange based 
approach is popular especially in the adaptive control 
community [8], the number of expanded terms of the 
dynamics model grows, however, in the worst case 
exponentially with the degrees of freedom (DOF) of the robot. 
As a result, the computational burden may become intractable, 
which limits the usage for complex systems, e.g. robot 
manipulators with arbitrary Denavit-Hartenberg parameters. 
Also, none of the models above consider directly the frictions. 

Considering the uncertainties due to frictions, joint 
flexibility, and manufacturing errors, the machine learning 
based inverse dynamics models haves been proposed [9-16]. 
The learning of the dynamics can be long dated back to the 
neural networks, and the following machines based on the 
reproducing kernel Hilbert space (RKHS), e.g. support vector 
machine and Gaussian process regression, etc. Despite the 
universality of these methods, the curse of dimensionality and 
the ability of generalization to the unseen data remain as the 
major issues. First, since the complexity of the underlying 
problem grows exponentially with the DOF of the robot, how 
to choose a proper kernel space and the regularization is the 
key to prevent the overfitting. Second, along with the curse of 
the dimensionality, the definition of sufficient rich data for a 
machine learning model in the learning the dynamics may vary 
and depend on the applications.  

The popular radial basis kernel and those kernels that 
decay as the distance metric between the seen and the unseen 
data increases often fails to generalize well in learning the 
inverse dynamics. More specifically, they often underestimate 
the predicted torque. Since theses kernels are essentially based 
on the interpolation of the acquired training data, the 
sufficiently rich training data should cover all the frequencies 
and the magnitudes, or should be at least sufficiently rich in 
the space of possible reference trajectories so that the 
identically independently distributed (i.i.d.) sampling 
assumption holds. On the other hand, the analytic rigid body 
model can generalize well, if the effect of the unmodeled 
dynamics is limited and negligible. Since it captures the 
polynomial tendency of the generalized force with respect to 
the accelerations and the velocities, the sufficiently rich data 
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do not require the trajectories of all frequencies and 
magnitudes. That is, the model can predict for the high-speed 
trajectory with large magnitude well even with limited training 
data. 

Recently, Duy et al.[13] showed that the prediction and the 
control is more accurate by incorporating both the rigid body 
model and the radial basis kernel compared to the model used 
only either of them alone, in which the rigid body model is 
derived based on the Euler-Lagrange method. Along with this 
trend, we too propose to use the fusion the two models here. 
Compared to [13], no explicit derivation of the rigid body 
model is needed here. By formulating the proper RKHS, we 
can directly model the rigid body dynamics without referring 
to the Euler-Lagrange method, which is often tedious even 
with the symbolic mathematics toolbox. Also, we introduce an 
additional parameter to control the complexity of the overall 
model, so the model can regularize the learning in the 
presence of the curse of the dimensionality as the DOF 
increase. Since the proposed RKHS is radically the rigid body 
dynamics, it converges to the analytic model uniformly. 

In summary, we introduce the new structured reproducing 
kernel and further, in a multiple kernel fashion, incorporate it 
with the universal radial basis kernel, which is used to model 
the nonlinear dynamics and the frictions. To verify the 
proposed kernel, we test the ability in the simulations. For the 
rest of this paper, it is organized as follows. Section II shows 
the main result of this work, the explicit formulation of the 
kernel space, and Section III shows how the multiple kernels 
is formulated to learn the inverse dynamics model with the 
standard kernel methods, such as support vector regression 
and kernel ridge regression. In Section IV, the simulation 
results are presented, which is then discussed in Section V. 
Finally, we give a short conclusion in Section VI.  

II. REPRODUCING KERNEL HILBERT SPACE OF RIGID BODY 

DYNAMICS 

By identifying the structure of the function space with 
Euler-Lagrange Method, the corresponding RKHS of the 
inverse dynamics can be derived. The objective, here, is to 
identify the smallest possible RKHS in the sense of 
dimensionality that includes the function space of the inverse 
dynamics. In this paper, we assume the robot is holonomic and 
serial with all rotary joints, but this framework can be easily 
extended to the cases with prismatic joints accordingly. We 
omitted here for the compactness. Also, we mention that the 
models of all the joints are learned independently. 

A. The Euler-Lagrange Method 

We begin with analyzing the Euler-Lagrange formulation 
of the dynamics of the robot [7]. For a N-DOF robot, 

let N
q be the generalized coordinates, i.e. the joint angle 

for a rotary robot, and let 
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be the kinematic energy and the potential energy respectively, 

where
i

m is the mass,
ci

r is the position of the center of the 

mass,
i

 is the inertia tensor matrix,
iv

J is the Jacobian matrix 

of linear velocity, 
i

J is the Jacobian matrix of angular 

velocity, 
i

R is the rotational matrix between the inertial frame 

to joint frame of link i , and g is the gravitational acceleration 

vector, and ( )
N N

M q


 is the generalized inertia matrix of 

the whole robot defined as in (1). With the kinematic energy 
and the potential energy, we define the Lagrangian as 

 :L T U  . (3) 

The Euler-Lagrange equation shows the generalized force 
is actually the image of the Lagrangian under a linear map, i.e. 

 ( )
n

n n

d
L

dt q q


 
 

 
, (4) 

where
n

q is the nth generalized coordinate, and
n

 is the nth 

generalized force. Or we can write it more compactly in the 
matrix form 

 ( ) ( , ) ( )M q q C q q q G q    , (5) 

where ( , )
N N

C q q


 is the Coriolis/centrifugal 

matrix, ( )
N

G q  is the gravitational term, N  is the 

vector of generalized forces.  

In the context of robotics, (5) are referred to the dynamics 
of Euler-Lagrange method, in contrast to the iterative 
Newton-Euler method. It can be shown that the unknowns in 
(5) including both the kinematic and dynamic parameters can 
be arranged in a linear regressor form, so they can be 
identified by the ordinary linear regression offline, or by the 
canonical adaptive law online. However, the number of the 
bases and the unknowns in the worst case grow exponentially 
with N, if there is no cancellation due to the zero terms in the 
kinematic parameters, e.g. zero link length, link offset in the 
Denavit-Hartenberg parameters. Also, the derivation of the 
exact formulation of (5) for general robots is actually intricate 
and computationally intractable even for the symbolic 
mathematics toolbox. 

B. Reproducing Kernel Hilbert Space of Rigid Body 

Dynamics 

A RKSH  [17] is vector space of continuous functions 

with the reproducing property 

 ( ) , ,  
x

f x f k f    , (6) 

where
x

k is the corresponding reproducing kernel of , so the 

evaluation of a function f   is the projection on the 



  

kernel
x

k . As a result, the learning problem of the unknown 

function f , i.e. the system identification, given some finite 

observations becomes the inference problem given the 

projection of f on some subspace in defined by the 

observation [18], which can be solved the standard kernel 
methods e.g. regulated least-square or support vector machine. 
However, the choice of RKHS actually affects the learning 
greatly. A RKHS with small effective dimensionality or size in 

terms of
x

k can learn and converge faster. Therefore, the 

chosen RKHS should capture the structure of the unknown 

function f .  

The objective is to find a particular RKHS that is large 
enough to contain (4) and yet small enough to prevent 
overfitting given finite observations. Also the RKHS should 
be endowed with computationally efficient reproducing kernel. 

We denote
L

the RKHS that contains (4) with such 

characteristics. Now we shall derive the analytic form of the 

reproducing kernel of
L

. Let be the set of all possible 

states ( , , )q q q of the robot, and with the abuse of notation we 

may write, for example, q for simplicity. Since is a 

bounded and closed subset in the Euclidean space, and (4) is a 
bounded and continuous functional on , there exists at least 
one RKHS containing (4). First, we define the following 
RKHSs, 
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where the nonlinear map 
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the bar denotes the completion of a metric space, 

: {1,..., }
N

N , and N is introduced as a normalization 

factor. Namely,
q

contains the linear functions of q , 

and
q q

contains the quadratic functions of q , and so on.  

Proposition 

The kinematic energy and the potential energy of the rigid 
body dynamics lie in the following RKHS, 

 :
q q T

T  
    , (11) 

 :
U

U   ; (12) 

Proof: 

Since the Jacobian matrices can be shown to be 
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where 

 
0, if joint  prismatic

1, if joint  rotary
n

n

n



 


 (15) 

1n
z


is the axis of the nth generalized coordinate, and

N
n . 

We note that the order of the subscript follows the traditional 
Denavit-Hartenberg convention, in which the frame i-1 is 
defined with respect to link i, and the two endpoints of link i 
are joint i and joint i+1. Although we assume all the joints are 
rotary, the derivation for prismatic joints is simpler and can be 
done in the same fashion. To claim Proposition, it is sufficient 

to show 
iv

J , ( ) ( )
i

T

i
R q J q  , where it is obvious 

that
iv

J  since
ci

r  and the linear operator /
n

q  maps 

all the elements in 


to the subspace in


. For the angular 

velocity, we have 

 0 0 1

1 1 3 3
( ) ( ) ( ) = ( )

T T i

i n n n i n n n
R q z R q R q e R q e   

 
 , (16) 

where 3

3
e  is the standard basis, and therefore it is in


.  

As for the potential energy, the derivation is similar. 

  Q.E.D. 

After identifying the RKHSs of the kinematic energy and 

the potential energy, the RKHS
L

should contains the image 

of 
T U
 under the linear map (4). 

Theorem  

Let Im( )
T U n
 be the image of 

T U
 under the linear 

map,  

 : ( )
n

n n

d
T

dt q q

 
 

 
, 

N
n . (17) 

Then Im( )
T U n
 can be included in the following RKHS 
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for all
N

n , where
1
is the space of constant function. 

The RKHS
L

is indeed computationally efficient and can 

model the inverse dynamics with the reproducing kernel, 

2
2

, ,

, ,

ˆ ( , ) ( , , ) (cos( ) 1)

                 (cos( ) 1) 1

L

N

N
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i

x i y i

i

k x y q q q q q q

q q





   
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


(19) 

We omitted the proof here for the compactness.  

In fact, it is only slightly larger than the smallest RKHS 

possible by observing that the smallest RKHS to contain 
n

  

for all
N

n is of size N times larger than Im( )
T U n
 . 

However, such a RKHS may loss the easily manipulated 

reproducing kernel function, whereas in
L

the reproducing 

kernel has a simple closed form. 



  

To this end, if (19) is used unreservedly, the curse of 
dimensionality may occur. We can observe that 

2
dim( ) (6 )

N

L
N , and therefore the limited size of 

training data can never catch up the size of the hypothesis 
space. This obstruction can be circumvented by introducing 

an additional regularization parameter , and by scaling
L

, 

we can obtain a new reproducing kernel 
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In this scaled
L

, the contributions of high-order terms are 

penalized, though the overall dimensionality is the same. The 
additional parameter  , selected by cross-validation, can 

guide the machine to bias to the correct parameterization.  One 
can observe that the high-order terms in (4) are those without 
the cancellation due to the DH parameters, which shows the 
parameterization in (20) is a good prior knowledge to learn the 

inverse dynamics. Finally, we remark that
L

is essentially the 

same as the rigid body dynamics, but no derivation of 
nonlinear bases in (5) is needed anymore, and the 
computational time decreases due to the computational 
efficient kernel (20). 

III. LEARNING THE INVERSE DYNAMICS IN 

MULTIPLE-KERNEL FORMULATION 

By learning the inverse dynamics, we mean learning the 
mapping from the states of the dynamics and the actuation 

force
a

 , that is : ( , , )
a

q q q   such that 

 , ,
( )

n a n f n

n n

d
L

dt q q
  

 
   

 
 (22) 

holds for all
N

n , where
f

 is the force due to frictions and 

other unmodeled dynamics, and the subscript denotes the nth 

component. In the presence of
f

 , the inverse map  is not 

well defined in general, whereas the inverse map 

from ( , , )q q q to
n

 always exists. Let
x

 be the probability 

measure on , the learning of inverse dynamics is aimed to 

find the actuation force ˆ
a

  such that, 
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,

2

, , , ( , )
ˆ arg min

xa n

a n a n f n n 
   


    (23) 

for all
N

n , where is the hypothesis space. 

As mentioned earlier and evidenced in [13], the 
combination of the rigid body dynamics and the radial basis 
kernel can model the dynamics better, since the rigid body 
dynamics captures quickly the structured component while the 
radial basis kernel can approximate universally any function. 
Therefore, to model the inverse dynamics we combine the 
proposed kernel (20) with a general radial basis kernel rbfs 

2 2 2 2

cos cos sin sin
exp( )

2

( , ) :

x y x y x y x y

rbfs

q q q q q q q q

k x y



      




 (24) 

where the trigonometric mappings are introduced to better 
model the effect of the rotary joints, in contrast to the 
traditionally used radial basis kernel rbf in modeling (5) 

2 2 2

( , ) : exp( )
2

x y x y x y

rbf

q q q q q q
k x y



    
   (25) 

In terms of (23), it is equivalent to choose 

 
L rbfs

  , (26) 

where
rbfs

is the RKHS with reproducing kernel (24). 

Since
n L
  and

rbfs
is universal, we can have  
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 (27) 

That is, the modeling error is due to the variance of
f

 with 

respect to the probability measure
x

  as the number of 

observations goes to infinity.  

In implementation, the inverse dynamics is learned by the 
combination of kernels (20) and (24), 

 (1 )
Lmkl rbfs

k k k    , (28) 

where [0,1]  chosen be cross-validation in the experiments 

and 
L

k and
rbfs

k are normalized so that the traces of the 

empirical kernel matrices are the same, and solved by the 
kernel ridge regression or the support vector regression. 

IV. SIMULATIONS 

In this section, the simulation results are presented. We 
want to compare the generalization of the proposed kernels 
(20) and (28), and the traditional learning-based approaches 
(24) and (25). In each of the following simulations, we show 
the testing error with respect to the complexity of the 
underlying model, i.e. the DOF of the robot, in different 
scenarios: with or without the presence of measurement noise 
and nonlinear frictions. In the following, for each of DOF, five 
different robots with random kinematic and dynamic 
parameters are used as the plant to be learned. We remark that 
the parameters are sampled from a bounded uniform 
distribution so that all the parameters are physically feasible, 
e.g. the inertia matrix are always positive definite. For each of 
the robot, 5000 training data and another 5000 testing data 
with angular positions, angular velocities, and angular 
accelerations sampled from the uniform distribution are used 
for the validation. Given the uniformly random states, the 
kinematic and the dynamic parameters, the generalized forces 
in (4) are computed using Newton-Euler method iteratively. 
Therefore, the data of the ideal robot dynamics can be 
obtained. As for the unmodeled dynamics, the adopted noise 
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Fig. 1. Prediction error of the ideal model without measurement noise. 

(a) prediction error (b) prediction error shown in dB 

is the zero-mean Gaussian noise, the viscous friction is 
modeled by the force linear to the generalized velocity, and 
the Coulomb friction is modeled as the sign function of the 
generalized velocity. To learn the unknown model, we use the 
least-square regularized learning, i.e. the kernel ridge 
regression, and the kernel parameters and the parameter that 
controls the tradeoff between the complexity of the space and 
the fitting error all chosen by the 3-fold cross-validation. The 
optimal parameters is chosen to be the combination of 
parameters that minimize the empirically expected prediction 
error, and the whole training data set is used to retrain the final 
model with the optimal parameter. Finally, to verify the result, 
the performances are shown in terms of prediction errors 
overall all the generalized coordinates both in root mean 
square (RMS) and the peak error (PE). Also, we note that all 
the generalized force in the simulation are normalized within 
[-1,1] for comparison. In the following, the proposed kernel 
(20) is denoted by pol, (25) is denoted by rbf, (24) is denoted 
by rbfs, and (28) is denoted by mkl. 

Fig. 1 shows the simulation results of the ideal robot 
dynamics without any friction and noises. Fig. 1 (a) and (b) 
shows the prediction error of the normalized generalized force 
in terms of RMS and PE with respect to the complexity of the 
model, respectively. We remark here that the dimensionality 
of the proposed kernel is actually analytic 

 
1

dim( ) ( ( 1))6 3 1
2

N N

L
N N N     , (29) 

which is the upper bound of possible terms in a general 
Euler-Lagrange model. Since 5000 training data is sufficient 
to cover the whole space in terms of the dimensionality for a 
robot with 3N  , we can see a clear boundary on 3N  in pol. 

On the other hand, 5000 training data no longer covers the 
whole hypothesis space for robot with 3N  . In this situation, 

the performance of the kernel depends on the quality of the 
regularized parameters, i.e.  in each kernel function. As 

mentioned in (29), the size of the training data may never 
catch up the dimensionality of the underlying model, so the 
performance of different models become close especially 

when 2
6

N
N .  Also, we can observe rbfs outperforms the 

traditional rbf, since the characteristics of the rotary joints are 
better captured. Comparing all the models, the proposed pol 
consistently shows better performance, which is expected 
since it is radically the Euler-Lagrange model. 

Fig. 2 shows the simulation results of the ideal robot 
dynamics with both frictions and noises. The Coulomb 
frictions and the viscous frictions are modeled as mentioned 
previously with the magnitude chosen randomly, and the noise 
is the zero-mean Gaussian noise with standard deviation 0.05. 
Compared to Fig. 1, the kernel pol performs badly in the 
presence of frictions. The performance can be increased, 
however, by introducing rbfs forming the kernel mkl. Since 
mkl captures partly the structure of the dynamics, the 
performance is consistently better than rbf and rbfs. Another 
feature is that all the models seem to learn similarly 
as N increases. This is because the effect of the frictions is 

neglectable when the training data is too scarce compared to 
the size of the space. In particular, pol learns as without 
friction and is better than both rbf and rbfs. The mkl model, on 

the contrary, performs better than the others regardless of the 
condition of frictions and noises. Finally, we note that the 
computational time of evaluating 1 testing samples given the 
model spanned by 5000 training samples in a standard PC 
with CPU i5-750 is bounded below 5ms. Therefore, the 
real-time computation is possible. 

V. DISCUSSIONS 

In the simulation of ideal robot dynamics, the proposed 
pol kernel shows better generalization compared to the 
general learning kernel, since it captures the structure of the 
dynamics of the robot as the Euler-Lagrange model. However, 
pol may give unsatisfactory results when the friction cannot be 
neglected. To learn the unmodeled dynamics as well, we 
propose mkl to combine pol with rbfs by direct sum, where the 
weighting between two kernels  is chosen by 

cross-validation instead of using the general multiple-kernel 
learning that automatically tunes the weighting for the 
following two reasons. First, the multiple-kernel learning 
tends to overfit when quality of the training data is poor or the 
size of the training data is small, since the multiple-kernel 
learning is actually an expectation maximization routine. 
Second, the precise value of unknown parameter in our 
experiments tends not to be decisive, so only a small set of 
parameters are needed to be tested in the cross-validation, 
which is much faster than the multiple kernel learning . The 
results show that mkl predicts better compared to the general 
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Fig. 2. Prediction error of the ideal model with measurement noises and 

frictions. (a) prediction error (b) prediction error shown in dB 

kernels rbf, rbfs and the structured kernel pol used alone. In 
comparison with [13], the proposed mkl is expected to give a 
similar result, since regularized-least square is essentially the 
Gaussian regression without the predicting variance. However, 
one may expect that mkl may be worse than the fusion kernel 
in [13], since they use the explicit Euler-Lagrange model 
compared to the proposed pol. This is the necessary tradeoff 
between the size of the hypothesis space and the generality. 
Since pol is general to all the rigid body dynamics, pol uses 
larger hypothesis space than the Euler-Lagrange model given 
specific kinematic parameters. On the contrary, pol does not 
need any derivation, and can calibrate the kinematic 
parameters as well. Thus, we regard mkl as an efficient 
alternative, since they shared the same asymptotical learning 
rate. 

VI. CONCLUSION  

In this paper, we demonstrate how to design a reproducing 
kernel that naturally models the function space of the robot 
dynamics. By modeling the structure of the robot dynamics 
into the RKHS, the generalization of the proposed is better 
compared to the kernels used extensively in learning inverse 
dynamics in the literatures, which is evidenced both in pol and 
rbfs in the simulations. For the future works, the experiments 
of modeling the inverse dynamics and the associating 
feedforward compensations will be performed. Also, we 

would like to modify our framework so the information of the 
nominal plant can be included. 
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