
  

  

Abstract—This paper focus on the development of P300 

speller and design of a rehabilitation robot for brain machine 

interface. This research method mainly points out a norm which 

can be used to recognize whether the individual’s independence 

is increasing or decreasing comparing with the original signals 

after extracting and composing some different features. The 

result shows that this feature combination, SMCF, can keep 

90% sorting rate when the “Round” number is 5, also it can 

reduce the relationship of individual independence. Among the 

results, the highest value can increase to 36.04%.  

On the other hand, considering the interaction between 

people and machines under safety constraints without utilizing 

difficult and complex control strategies, this paper proposes a 

new actuator design, adaptive coupled elastic actuator (ACEA) 

with adjustable characteristics adaptive to the applied output 

force and input force. This would provide oncoming robotic 

systems with an intrinsic compromise between performance and 

safety in unstructured environments; namely, exhibiting desired 

intrinsic lower and higher output impedance depending on 

different operation situations. Finally, experimental results are 

presented to show the desired properties of the proposed ACEA 

system. 

I. INTRODUCTION 

rain-computer interface (BCI) is a communication 

channel that does not require peripheral nerves or 

muscles; hence it provides a user with a direct communication 

channel which sends commands to electronic devices by 

means of brain activities[1], which is very helpful for people 

with serve motor disabilities. Electroencephalogram (EEG) 

signal, due to its high temporal resolution, has been the most 

frequently used input to BCI systems. The P300 potential is a 

response to an infrequent stimulus. It usually appears in EEG 

signals around 300ms after the infrequent stimulus occurs. 

The most typical BCI system which uses P300 potentials as 

an input would be the P300 speller proposed by Farwell and 

Donchin [2][3], in which the P300 visual evoked potential is 

elicited by an oddball paradigm. The P300 speller BCI system 

is able to detect which character in the spelling matrix is the 

target that the user is focusing on, and then show the detection 

result (target character) on the screen, thereby enabling 

lock-in people communicate with others. Previous works 

related to P300 speller BCI's have utilized various two-class 
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classifiers to solve this problem. Hoffmann et al[4]. used the 

boosting with orthogonal least square (OLS) as the classifier.  

Lenhardt et al. [5] and Bostanov [6] utilized the linear 

discriminant analysis (LDA) method to maximize the 

separation between classes. Based on the LDA, a Bayesian 

LDA (BLDA) classifier was further proposed in [7] and has 

been used in a P300 speller paradigm [8]. The support vector 

machine (SVM) has also shown satisfactory results in P300 

BCI systems [9]. More recently, the SVM ensemble has 

shown to be better than one single SVM in solving the 

problem of P300 detection [10]. The success of SVM in those 

P300 BCI's should be attributed to the facts that it plays 

kernel tricks and its formulation embodies the principle of 

structural risk minimization [11], providing better 

generalization ability than the traditional learning machines 

such as the neural networks trained by error back-propagation 

algorithm [12].  

About the development of robots as mechanical workers 

that can support human labor and assist human daily activities 

by physical interaction, informational interaction, etc., has 

been expected for a long time. That is why, recently, the field 

of physical human-robot interaction (pHRI), considering the 

trade-off between safety and performance, emerges from 

modern robotics as a focused effort to design manipulators 

intrinsically safe for human interaction [13].  

Traditionally, modifying the controllers of rigid robots by 

additional sensors has demonstrated the effectiveness of 

achieving safe manipulation [14]. However, the intrinsic 

properties of a controller restrict the dynamic performance of 

a robot because of the unmatched mechanical bandwidth. 

Furthermore, the natural dynamics of the system may be 

affected by extrinsic dynamic behavior due to the energy loss 

caused by the software control system.  

Specifically, the most critical feature of modern actuator 

designs is the stiffness constant of the series elastic 

component, a physical quantity which dominates the 

bandwidth and payload capacity of the overall system and the 

safety level of the pHRI. It is also worthwhile to mention that 

designing this kind of system should always determine a 

maximum allowable output impedance and a maximum 

tolerable striction on the system to define the upper bound of 

the stiffness constant, and a minimum acceptable large force 

bandwidth to define the lower bound of the stiffness constant 

[15]. In addition, among those systems, stiff ones exhibit 

more rapid responses to load change and more capacity to 

handle heavy objects, whereas with respect to the pHRI, they 

may result in a more acute impulse shock to harm humans 

seriously. On the contrary, soft ones exhibit slower responses 

to load change and less capacity to handle heavy objects, 
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whereas focusing on the pHRI, they do have intrinsic safety 

motions to protect humans during manipulation. In general, a 

compromise between safety and performance is difficult to 

achieve.  

The major objective is to provide an inherently adjustable 

series elastic device for physical human-robot interaction. 

Herein, a new actuator, namely an adaptive coupled elastic 

actuator (ACEA) with adjustable characteristics adaptive to 

the applied output force and input force is developed.  

 

II. MATERIALS AND METHODS 

A. Data Acquisition and Preprocessing 

Our system uses six monochannels. Each channel 

receives EEG signals from a distinct electrode. The six 

electrodes are placed on Fz, Fcz, Cz, Pz, P7, and P8 in the 

10-20 system, respectively. The potential measured from 

each of the first four (Fz, Fcz, Cz, pz) is further subtracted by 

the average of P7 and P8 potentials. At the preprocessing 

stage, a 0.1-70 Hz band­pass filtering is performed. The 

acquired EEG signals are amplified with the gain of 24,000. 

The signals are then converted to digital ones and sent into a 

computer via the DAQ-6212 produced by National 

Instrument. The received digitized EEG signals are called 

EEG data. 

At the computer side, the data collection task is done by 

our own software written in C#. The EEG data are collected at 

a sampling rate of 250 Hz. The software has three parts. The 

first part presents the 6 x 6 spelling matrix (Fig. 1) and the 

intensification (stimulus) of the row or column. The second 

part is responsible for sending the corresponding stimulus 

code to be embedded in the data stream in a time-locked 

manner when a stimulus is presented. By the stimulus code, 

the first 500-ms data (an epoch) from each channel can be 

automatically obtained.  

 

Fig. 1. P300 speller. 

B. Training Data Collection 

Our data collection procedure, mainly following the 

one suggested in [16], contains three stages:  1)  preparation; 

2)  training set collection; 3)  test set collection stages.  

 
Fig. 2. Data collection for a subject. The computer is placed behind the blue 

shield. 

 

During the preparation stage, an electro-cap is attached 

to a subject. An electrolyte gel is applied to the electrodes to 

reduce the impedance. The subject sits at the position around 

90 cm in front of a 17-inch liquid crystal display (LCD) (see 

Fig. 2.). During the training stage, the subject is asked to 

focus on a sequence of characters given by the experimenter, 

one character at a time. First, one of the characters is 

intensified on the LCD for 4 s, by which the subject can direct 

his\her focus to the position of this character. After the 

attention-catching intensification, a 2.5 s preparation gap is 

given before a data collection procedure. During this 

procedure, the subject is asked to focus on the target 

character, and then the system will initiate a 10-round 

intensification process, where within each round, 12 

randomly-ordered visual stimuli will be presented. Each 

stimulus is the intensification of either one row or one 

column, and will be presented for 100 ms, and after a 75 ms 

inter-stimuli interval, the next stimulus will be presented. 

After presentation of 10 stimuli, a round is ended, and after a 

pause of 0.5 s, the next round begins. Therefore, a 10-round 

intensification process will take 27.75 s. 

At the computer side, the data collection task is done by 

our own software written in C#. The EEG data are collected at 

a sampling rate of 250 Hz. The software has three parts. The 

first part presents the 6 x 6 spelling matrix (Fig. 2) and the 

intensification (stimulus) of the row or column. The second 

part is responsible for sending the corresponding stimulus 

code to be embedded in the data stream in a time-locked 

manner when a stimulus is presented. By the stimulus code, 

the first 500-ms data (an epoch) from each channel can be 

automatically obtained. Namely, when a particular row or 

column is intensified (flashed), we get the vector 
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where K and N denote the number of channels and the 

number of samples, respectively, and xi(j) denotes the jth 

sample from the ith channel. Here, N = 125 and K = 4. 



  

 

Fig. 3. Band-pass filtered P300 potentials using inverse DFT. The X axis is 

the time from the stimulus presentation. 

Fig. 3.Fig. 3 shows P300 potentials recorded from Pz. 

Moreover, it is also found that the SVM achieve the best 

classification accuracy when the frequency band is set as 1 

-15 Hz. With this band, the SNR of the EEG signals can be 

greatly increased, since the 60-Hz line noise is completely 

removed and the impact from electromyography (EMG) 

signals ( 10 -400 Hz [17]) is substantially reduced. However, 

such reconstruction is unable to remove electrooculography 

(EOG) signals since EOG signals lies in low frequencies 

smaller than 10 Hz [18]. To avoid the ocular artifacts, the 

subjects were asked not to make any eye movements during 

the experiments. 

C. Feature extraction and Classification 

Feature extraction can be divided into two parts : 1) the 

EEG signal superposition of the average after feature 

extraction, there are three features of the area, N100 and P300 

time and slope. 2) the EEG signal is depicted in a binary 

image, and turn it into a closed curve by using the boundary 

extraction algorithm (BEA) [19]. The edge of the binary 

image recorded by Fourier descriptors. Then the edge 

information into the form of frequency data and we can obtain 

the edge of the center (xcenter,ycenter). 

 
(a) Area 

Sum of the EEG signal between 200ms to 500ms. 

(b) Time of N100 and P300 

N100(trough) and P300(peak) time. 

N100:50ms~170ms  

P300:220ms~500ms 

(c) Slope 
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P300_volt : P300 peak value. 

N100_volt : N100 trough value. 

P300_time : P300’s time. 

N100_time : N100’s time. 

(d) Fourier Descriptor (FD) [20] and Center 

Assume that the edges of an image can make use of the 

Cartesian coordinate system, so we can get the following 
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the center of the edge (xcenter,ycenter). 

 We use the support vector machine as classifier after 

feature extraction. In SVM, the training set is given 

as
1{ , }n

i i ix y =
 where 

d

i Rx  are the training patterns 

and { 1, 1}iy  − + are the class labels. Here, d = 500. Let w 

and b be the weight vector and the bias of the separating 

hyperplane, respectively, the objective of SVM is to find the 

optimal hyperplane by maximizing the margin of separation 

and minimizing the training errors, formulated as the 

optimization problem: 
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The dual problem of SVM is as follows: 
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Finally, we can obtain the decision function: 
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The kernel type is chosen as Gaussian kernel: 
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The cross-validation is chosen as 2-fold and 10 runs. SVM 

determines the most probable row and column by the 

following two decision functions: 
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where nr and nc are the number of row and the number of 

column in the character matrix, respectively( nr = nc = 6), and 

i are Lagrange multipliers. Once the indices are determined, 

the character is recognized. 

 

III. REHABILITATION SYSTEM 

A. Design Concept of ACEA 

Utilizing a set of two different elastic components, one 

with soft stiffness and the other with hard stiffness, may 

alleviate the aforementioned drawbacks of traditional SEA 

systems. A new approach adaptive coupled elastic actuator 

(ACEA) is proposed, and the model is shown in Fig. 4, where 

lM , lX  and lF  denote the link mass, displacement of the 

output link and force on the link; mM , mX  and mF  denote 

the actuator mass, displacement of the actuator and input 

force of the actuator; sK  and hK  denote stiffness of the soft 

and hard elastic elements, respectively. 

Actuator

Mass

Link

Mass

l

lFmF

mX
lX

mM lM

hK

sK

 

Fig. 4. Model of proposed adaptive coupled elastic actuator. 

Herein, by assuming that the total compression distance 

( )s m lX X X = −  is always positive or equal to zero and 

defining that the critical length ( , )sl t X  is the difference in 

displacement between the positions of the hard elastic 

element and the output link at time t , the equivalent 

transmission stiffness of the ACEA approach can be shown as 
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,     otherwise               
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where ( ,0)th sF K l t=   is the threshold force that equals to 

sK  multiplying the preset critical length ( ,0)l t  associated 

with 0sX = , and 
l s sF K X=   is the restored force 

provided by the deflection when the soft elastic element is 

stressed. The critical length l  that should be adaptive to the 

applied output force and input force decides the inherent 

stiffness of the actuation approach, meaning that the system is 

capable of dividing the total input force into direct driving 

and stiffness shifting forces, two forces which both contribute 

to the output force. Thus, the ACEA can be thought to divide 

the torque generation into separate low- and high-frequency 

parallel actuators by adjusting l  adaptively, as shown in Fig. 

5. 
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Fig. 5. Concept of adaptive coupled elastic actuator: partition of torque into 

low and high frequency components. 

By varying an adjustable l  accompanied by proper active 

control, the actuator may obtain any desired threshold 

force/torque adaptive to task-oriented strategies. Compared to 

the previous compliant or stiff actuators, such as SEA, the 

actuators utilizing the proposed ACEA approach exhibit the 

desired intrinsic lower or higher output impedance. The 

relationship between an external load and deflection can be 

seen in Fig. 6, and the roughly proposed operation states of an 

ACEA system can be seen in Table 1. 
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Fig. 6. Properties of adaptive coupled elastic actuator: the relationship 

between load and deflection. 

Table 1  Different proposed operation state of an ACEA system 



  

Operation speed Hard elastic element Soft elastic element 

High Performance Interaction 

Low 
Performance and 

Interaction 
Interaction 

B. Mechanism Design 

In brief, the critical issues of the ACEA system are how to 

design a mechanism and a control system to adjust   and 

determine the stiffness of the soft and hard elastic 

components in advance. As shown in Fig. 7, the ACEA 

actuator, utilizing only one actuator, is designed to provide a 

favorable solution to adjust the critical length by a torque 

switch mechanism. 

In this design, a worm drives a worm gear through two sets of 

preloaded soft linear compression springs, initially 

restraining the movement of the worm shaft in its axial 

direction. One set of hard linear compression springs will 

restrain the movement of the worm shaft in its axial direction 

while the critical length  becomes zero.  
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Fig. 7. One-DOF adaptive coupled elastic actuator. 

Specifically, the torque switch mechanism consists of a pair 

of traveling gears and corresponding pinions to drive a 

both-end-thread screw that can simultaneously convey two 

movable hard spring holders along the screw. This 

mechanism can channel and switch the input torque into 

either direct output torque or input torque to adjust the critical 

length, permitting the ACEA to vary according to the load 

torque and the input torque. Via the torque switch mechanism, 

the system can mechanically alter the critical length/force in 

response to a light load within the first range of handling a 

relatively light load or within the first range of quickly 

operating to make small output impedance responses, or in 

response to a heavy load within the second range of handling 

a relatively heavy load or the second range of slowly 

operating to make large output impedance responses.  

 

IV. EXPERIMENT RESULTS 

A. P300 experiment results 

First, we discuss the relationship between the numbers of 

Fourier descriptors to its accuracy. As you can see from Fig.8, 

select more than four Fourier descriptors as the feature has 

maintained the same accuracy, but the number of features will 

increase the computational complexity. Therefore, we only 

took the first four Fourier descriptors as a feature, said FD4. 

 
Fig. 8.  The relationship between different Fourier descriptors and 

classification rate. 

On the experimental results, take the beginning of the letters 

to represent features. i.e. A as area, S as slope,…,etc. Raw 

represents the original data. Rounds rear brackets show the 

training time.  

  
Subj1 Subj2 

  
Subj3 Subj 4 

Fig. 9 The different feature extraction combination of classification results  

In Fig. 9, if only consider the A, S, M, C and F the five 

individual features. The A feature is the worst result. M and F 

have the better results. More combinations of features, its 

accuracy has increase the trend in addition to Subj2. The 

combination of ASMCF can be maintained the similar 

accuracy with the raw data. We see SMCF feature 

combination will be able to maintain the classification rate as 

raw data. In addition, you can find a combination containing 

F features, its accuracy had good results by Subj2 can clearly 

see that the feature of F containing a combination of accuracy 

has significantly improved. The different combination of 

features will have different results, and will have different 

effects in different subjects, such as M and C of these two 

features, in Subj2 and Subj3 can get two different results. 

Therefore we chose the combination of features enhance the 

effect for Subj1 to Subj4 have to continue to explore the 

relationship for individual independence. 

Table 2 Raw data of individual independence test  

the results of the accuracy (%) 

Subj 1 2 3 4 

1 98.78 64.02 62.80 68.90 



  

2 62.32 95.12 71.95 82.32 

3 72.07 81.10 98.78 75.73 

4 75.12 65.37 67.80 96.34 

Table 3 SMCF features of individual independence test  

the results of the accuracy (%) 

Subj 1 2 3 4 

1 98.78(0) 84.76(32.38) 84.15(33.98) 93.73(36.04) 

2 75.73(21.53) 92.46(-2.79) 82.93(15.25) 90.02(9.36) 

3 75.12(4.23) 84.76(4.51) 91.46(-7.41) 75.73(0) 

4 75.64(0.69) 61.71(-5.6) 78.41(15.65) 98.78(2.53) 

B. Human-Robot Interaction  
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Fig. 10. Human-robot interaction experiment under three control modes. 

The dynamics of a robotic system can be drastically 

changed by interaction with a human operator, since the 

motion of the human is too complicated to be modeled or 

predicted.  

Herein, the control mode of the designed system was 

chosen to match different operating situations according to 

whether the robot was interacting with a human operator. In 

the beginning, the robot was set to track the given output link 

trajectory without any interaction between human, robot, or 

environment under the output link angle control. Then, the 

human operator tried to randomly guide the output link under 

the motor angle control or zero impedance control. 

The experimental results, shown in Fig. 10, demonstrated that 

the robot can track the given output link trajectory quite well 

under output link angle control in spite of the effect of the link 

dynamics as the main resistive torque source. Because of the 

flexibility of the joint, the human operator can force the robot 

to move as the operator wanted, whereas the robot only 

allowed the operator to partially backdrive the output link 

under the motor angle control. However, the operator could 

randomly guide the robot easily under zero impedance 

control, where the desired output torque is regulated to be 

zero, even if some relatively small resistive torque was 

observed in the experiment. 

V. CONCLUSION 

The P300 result shows that this feature combination, SMCF, 

can keep 90% sorting rate when the “Round” number is 5, 

also it can reduce the relationship of individual independence. 

Among the results, the highest value can increase to 36.04%. 

About the rehabilitation robot, the design, model, and control 

of a new ACEA actuator for human-robot interaction is 

developed. Possessing adjustable characteristics through a 

novel Torque Switch mechanism, it is proposed to handle 

different loads or to make different output impedance 

responses while guaranteeing safety issues.  

Finally, this P300 Speller and ACEA design already provide 

upcoming robots with intrinsic safety in compromise with 

performance in complex environments in our ongoing work.  
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