
Predictor Corrector Policy Optimization

Ching-An Cheng
Gerogia Tech/NVIDIA

Xinyan Yan
Gerogia Tech

Nathan Raliff
NVIDIA

Byron Boots
Georgia Tech/NVIDIA

Abstract

We present a predictor-corrector framework, called PICCOLO, that can transform
a first-order model-free reinforcement or imitation learning algorithm into a new
hybrid method that leverages predictive models to accelerate policy learning. The
new “PICCOLOed” algorithm optimizes a policy by recursively repeating two steps:
In the Prediction Step, the learner uses a model to predict the unseen future gradient
and then applies the predicted estimate to update the policy; in the Correction Step,
the learner runs the updated policy in the environment, receives the true gradient,
and then corrects the policy using the gradient error. Unlike previous algorithms,
PICCOLO corrects for the mistakes of using imperfect predicted gradients and
hence does not suffer from model bias. The development of PICCOLO is made
possible by a novel reduction from predictable online learning to adversarial online
learning, which provides a systematic way to modify existing first-order algorithms
to achieve the optimal regret with respect to predictable information. We show,
in both theory and simulation, that the convergence rate of several first-order
model-free algorithms can be improved by PICCOLO.

1 Introduction
Reinforcement learning (RL) has recently solved a number of challenging problems [1, 2, 3]. However,
many of these successes are confined to games and simulated environments, where a large number
of agent-environment interactions can be cheaply performed. Therefore, they are often unrealistic
in real-word applications (like robotics) where data collection is an expensive and time-consuming
process. Improving sample efficiency still remains a critical challenge for RL.

Model-based RL methods improve sample efficiency by using an accurate model that can cheaply
simulate interactions to compute policy updates without real-world interactions [4]. A classical
example is optimal control [5, 6, 7, 8], which has recently been extended to model abstract latent
dynamics with structured neural networks [9, 10]. These methods use a model of the dynamics and
cost functions to predict cost-to-go functions or policy gradients when updating policies. Another
way to use model information is the hybrid DYNA framework [11, 12], which interleaves model-based
and model-free updates, ideally cutting learning time in half. However, all these approaches, while
potentially accelerating learning, suffer from a common drawback: when the model is inaccurate, the
performance of the policy can become biased away from the best achievable in the policy class.

Several strategies have been proposed to remove this performance bias. Learning-to-plan attempts to
train the planning process end-to-end [13, 14]. While using a policy structure similar to the model-
based algorithms, these algorithms are still optimized through standard model-free RL techniques, so
it is unclear as to whether they are more sample efficient. Another class of bias-free algorithms is
control variate methods [15, 16, 17], which use models to reduce the variance of sampled gradients.

In this paper, we provide a novel learning framework that can leverage models to improve sample
efficiency while avoiding performance bias due to modeling errors. Our approach is built on
techniques from online learning [18, 19]. The use of online learning to analyze policy optimization
was pioneered by Ross et al. [20], who proposed to reduce imitation learning (IL) to adversarial
online learning problems. This reduction provides a framework for performance analysis, leading to
algorithms such as DAGGER [20] and AGGREVATE [21]. However, it was recently shown that a naïve
32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

reduction to adversarial online learning loses information [22]: in practice, IL is predictable [23]
and can be thought of as a predictable online learning problem [24]. Based on this insight, Cheng
et al. [23] recently proposed a two-step algorithm, MOBIL. The authors prove that, by leveraging
predictive models to estimate future gradients in an interleaved fashion, MOBIL can speed up the
convergence of IL, without incurring performance bias due to imperfect models.

Given these theoretical advances in IL, it is natural to ask if similar ideas can be extended to RL.
Here we show that RL can also be formulated as a predictable online learning problem, and provide
a first-order learning framework, PICCOLO (PredICtor-COrrector poLicy Optimization), for both
RL and IL. PICCOLO is a meta-algorithm: it takes a standard online learning algorithm designed
for adversarial problems (like ADAM [25]) as input and returns a new algorithm that can use model
information to accelerate convergence. This new “PICCOLOed” algorithm optimizes the policy by
recursively repeating two steps: In the Prediction Step, the learner uses a predictive model to estimate
the gradient of the next loss function and then applies it to update the policy; in the Correction Step,
the learner runs the updated policy in the environment, receives the true gradient, and then corrects
the policy using the gradient error. We note that PICCOLO is an approach orthogonal to control
variate methods; it can still improve learning even if the true gradient is noise-free (see Section 4.3.2).

Theoretically, we prove that PICCOLO can improve the convergence rate of any base algorithm that
can be written as mirror descent [26] or Follow-the-Regularized-Leader (FTRL) [27]. This family of
algorithms is rich and covers most first-order algorithms used in RL and IL [28]. And, importantly,
we show that PICCOLO does not suffer from performance bias due to model error, unlike previous
model-based approaches. To validate the theory, we “PICCOLO” multiple algorithms in simulation.
The experimental results show that the PICCOLOed versions consistently surpass the base algorithm
and are robust to model errors; they converge even the models are adversarial.

The design of PICCOLO is made possible by a novel reduction that converts a given predictable
online learning problem into a new adversarial problem, so that standard online learning algorithms
can be applied optimally without referring to specialized algorithms. Thus, we can treat PICCOLO as
an automatic process for designing new algorithms that safely leverages imperfect predictive models
(such as off-policy gradients or gradients simulated through dynamics models) to speed up learning.
Particularly, MOBIL is its special case when the base algorithm is FTRL.

2 Problem Definition
We consider solving policy optimization problems of the form below: given state and action spaces S
and A, and a parametric policy class Π, we desire a stationary policy π ∈ Π that solves

min
π∈Π

J(π), J(π) := E(s,t)∼dπEa∼πs [ct(s, a)] (1)

where ct(s, a) is the instantaneous cost at time t of state s ∈ S and a ∈ A, πs is the distribution of a
at state s under policy π, and dπ is a generalized stationary distribution of states generated by running
policy π in a Markov decision process (MDP); the notation Ea∼πs denotes evaluation when π is
deterministic. The use of dπ in (1) abstracts different discrete-time RL/IL problems into a common
setup. For example, an infinite-horizon γ-discounted problem with time-invariant cost c can be
modeled by setting ct = c and dπ(s, t) = (1−γ)γtdπ,t(s), where dπ,t is the state distribution visited
by policy π at time t; that is, we can equivalently write J(π) = (1−γ)Eρπ [

∑∞
t=0 γ

tc(st, at)], where
ρπ is the trajectory distribution generated by π. An IL problem can also be written similarly [22]. For
convenience, we will usually omit the random variable in expectation notation to simplify writing (e.g.
we write (1) as EdπEπ [c]). For a policy π, we overload the notation π to also denote its parameter,
and write Qπ,t and Vπ,t := Eπ[Qπ,t] as its Q-function and value function at time t, respectively.

3 IL and RL as Predictable Online Learning
Online learning is a theoretical framework for analyzing online decision making [29]. For policy
optimization, let us consider the following setup: in round n, the learner plays a policy πn in the
MDP environment of (1), and then the environment reveals a loss function ln, called the per-round
loss. The analysis of online learning concerns regret, which measures how the performance of the
learner’s decision sequence {πn} is compared with any single constant decision in the set Π. Given a
policy class Π and a weight sequence {wn > 0}, we define the N -step weighted regret of {πn} with
respect to the loss sequence {ln} as

regretN (l) :=
∑N
n=1 wnln(πn)−minπ∈Π

∑N
n=1 wnln(π) (2)

2

and an expressiveness measure of the policy class Π

εΠ,N (l) := minπ∈Π
1

w1:N

∑N
n=1 wnln(π) (3)

where w1:n =
∑n
m=1 wm. In this section, we show that the policy optimization problems in IL and

RL can be formulated into online learning problems for some per-round losses such that the policy
performance can be upper-bounded in terms of regretN and εΠ,N . In particular, we show that these
online learning problems are predictable: the per-round losses are not completely adversarial but can
be estimated using past information.

3.1 IL as Online Learning
We first summarize the online learning approach to IL (online IL for short) [20, 22]. The core idea
of IL is to use domain knowledge about a problem through expert demonstrations. Online IL, in
particular, optimizes policies by letting the learner π query the expert π? for the desired action, so
that a policy can be quickly trained to perform as well as the expert. Online IL at its heart is based on
the following lemma, which relates the performance between π and π?.

Lemma 3.1 (Performance Difference Lemma [30]). Let π and π′ be two policies and Aπ′,t(s, a) =
Qπ′,t(s, a)− Vπ′,t(s) be the (dis)advantage function with respect to running π′. Then

J(π) = J(π′) + EdπEπ[Aπ′]. (4)

Given the equality in (4), the performance difference between π and π? can then be upper-bounded as

J(π)− J(π?) = EdπEπ[Aπ?] ≤ Cπ?Edπ [D(π?||π)] (5)

for some functionDt and constantCπ? > 0. OftenDt is derived from statistical distances such as KL-
divergence. When Vπ∗,t is available, we can also setDt(π

?
s ||πs) = Ea∼πs [Aπ?,t(s, a)], as in value ag-

gregation (AGGREVATE) [21]. Without loss of generality, we suppose Dt(π
?
s ||πs) = Ea∼πs [c̄t(s, a)]

for some c̄t. By (5), minimizing the performance gap is a new RL problem minπ∈Π EdπEπ[c̄]. Online
IL tackles this new problem indirectly through online learning, thereby avoiding difficulties in RL
(such as estimating value functions). It defines a per-round loss l̃n that is an unbiased estimate of

ln(π) := EdπnEπ[c̄]. (6)

The regret with respect to l̃n upper-bounds the performance gap between the learner and the expert.

Lemma 3.2 ([23]). Let {wn > 0} be a weight sequence. Then

E
[∑N

n=1
wnJ(πn)
w1:N

]
≤ J(π?) + Cπ?E

[
εΠ,N (l̃) +

regretN (l̃)
w1:N

]
where the expectation is due to sampling l̃n.

Therefore, when a no-regret algorithm is used, the performance converges to J(π?) +Cπ?E[εΠ,N (l̃)].

3.2 RL as Online Learning
Can we also formulate RL as online learning? Here we propose a new perspective on RL using
Lemma 3.1. Given a policy πn in round n, we define a per-round loss f̃n as an unbiased estimate of

fn(π) = EdπnEπ[Aπn−1
]. (7)

fn(π) describes how well a policy π performs relative to the previous policy πn−1 under the state
distribution of πn. For example, by Lemma 3.1, we see that fn(πn) = J(πn) − J(πn−1). This
choice of per-round loss in (7) has an interesting relationship both to actor-critic in RL [31] and
AGGREVATE in IL [21].

Relationship to Actor-Critic Although, theoretically, the actor-critic method computes
the gradient Edπn (∇Eπ)[Aπn]|π=πn to update the policy πn, in practice, it computes
Edπn (∇Eπ)[Aπn−1

]|π=πn , as the value function estimate in round n is updated only after updating
the policy πn. This gradient is exactly∇fn(πn) in (7).

3

Relationship to Value Aggregation AGGREVATE can be viewed as taking a policy improvement
step from some reference policy: e.g., with the per-round loss EdπnEπ[Aπ?], it improves one step
from π∗. Realizing this one step improvement in AGGREVATE, however, requires solving mul-
tiple rounds of online learning, because Π does not contain all functions and the dynamics are
unknown [22]. Therefore, while ideally one can solve multiple AGGREVATE problems (one per
each policy improvement step) to optimize policies, computationally this can be very challenging.
Minimizing the loss in (7) can be viewed as an approximate policy improvement step in the AGGRE-
VATE style. Rather than waiting until convergence in each AGGREVATE policy improvement step, it
performs only a single policy update and then switch to the next AGGREVATE problem with a new
reference policy (i.e. the latest policy).

We show that the regret of the online learning problem with f̃n upper-bounds the on-average perfor-
mance of a policy sequence (proved in Appendix C).
Lemma 3.3. Let{wn > 0} be a weight sequence satisfying wn+k

wn
≤ wm+k

wm
, ∀n ≥ m ≥ 1 and k ≥ 0,

Then, for arbitrary initial reference policy π0,

E
[∑N

n=1
wnJ(πn)
w1:N

]
≤ J(π0) +

∑N
n=1

wN−n+1

w1:N
E
[
regretn(f̃) + w1:nεΠ,n(f̃)

]
(8)

where the expectation is due to sampling f̃n.
Interestingly, Lemma 3.3 applies to any initial reference policy π0, which can be different from the
learner’s initial policy π1. In particular, if we choose π0 = π?, then the bound in (8) becomes relative
to J(π?). This choice tightens the link between (7), actor-critic, and AGGREVATE.

In Lemma 3.3, the amount of policy improvement is reflected in the term E[regretn(f̃)+w1:nεΠ,n(f̃)]

in (8), which trades off E[regretn(f̃)] and the potential performance improvement due to negative
E[εΠ,n(f̃)]. Imagine E[εΠ,n(f̃)] ≤ −Ω(1) and {πn}Nn=1 is updated by a no-regret algorithm. Then
E[regretn(f̃) + w1:nεΠ,n(f̃)] ≤ −Ω(w1:n). This means, e.g., if wn = 1 and regretn(f̃) ≤ O(

√
n),

then the average performance improves around O(NE[εΠ,N (f̃)]) away from J(π0) (which can be
J(π?)). By contrast, in Lemma 3.2, the improvement is only a constant O(E[εΠ,N (l̃)]) distance from
J(π?). However, we note that currently we do not have a formal proof that results in an upper bound
of E[εΠ,n(f̃)]. While it is intuitive to conjecture that E[εΠ,n(f̃)] is negative in the early iterations or
when the policy sequence is concentrated, because J is lower bounded, this intuition does not hold
for all N . Still, Lemma 3.3 suggests an alternative perspective on AGGREVATE and actor-critic that
are known to work well in practice. Further investigation into Lemma 3.3 is left to future work.

3.3 Predictability
An important property of the above online learning problems is that they are not completely adversarial
for IL, as pointed out by Cheng and Boots [22]. This can be seen from the definitions of ln and fn
in (6) and (7), respectively. For example, suppose the cost ct in the original RL problem (1) is known;
then the information unknown before playing the decision πn in the environment is only the state
distribution dπn . Therefore, the per-round loss cannot be truly adversarial, as the same dynamics and
cost functions are used across different rounds. We will exploit this property to design PICCOLO.

4 A PREDICTOR-CORRECTOR LEARNING FRAMEWORK

We showed that the performance of RL and IL can be bounded by the regret of a properly constructed
predictable online learning problem. This suggests that directly applying a standard online learning
algorithm designed for adversarial settings (e.g. gradient/mirror descent) to these RL/IL problems is
suboptimal. The predictable information must be considered in the policy update to achieve optimal
convergence in learning.

One way to include predictable information is to develop specialized two-step algorithms based on
mirror-prox or FTRL-prediction [32, 24, 33]. For IL, MOBIL was recently proposed [23], which
updates policies by approximate Be-the-Leader [34] and provably achieves faster convergence than
previous methods. However, these algorithms often have non-sequential update rules, and their
adaptive versions are less accessible [35]. This can make it difficult to tune them in practice.

Here we take an alternative, reduction-based approach. We present PICCOLO, a general first-order
framework for solving predictable online learning problems. PICCOLO is a meta-algorithm that

4

turns a base algorithm designed for adversarial problems into a new algorithm that can leverage
the predictable information to achieve better performance. As a result, we can adopt sophisticated
first-order adaptive algorithms to optimally learn policies, without reinventing the wheel. Specifically,
given any first-order base algorithm belonging to the family of (adaptive) mirror descent and FTRL
algorithms, we show how one can “PICCOLO it” to achieve a faster convergence rate without
introducing additional performance bias due to prediction errors. Most existing first-order policy
optimization algorithms belong to this family [28], so we can use PICCOLO to wrap these model-free
algorithms into new hybrid algorithms that can robustly use (imperfect) predictive models, such as
off-policy gradients and simulated gradients, to improve policy learning.

4.1 Building Blocks
We begin by reviewing mirror descent and FTRL, which will be used as the building blocks of
PICCOLO. We assume that Π is a closed and convex subset in some normed space with norm
‖ · ‖, and we use BR(π||π′) = R(π)−R(π′)− 〈∇R(π′), π − π′〉 to denote a Bregman divergence
generated by a strictly convex function R, called the distance generator.

Mirror descent updates the decision variable based on proximal maps [36]. In round n, given
first-order information gn and weight wn, it executes

πn+1 = arg min
π∈Π

〈wngn, π〉+BRn(π||πn) (9)

where Rn is a strongly convex function. Mirror descent reduces to gradient descent with step size ηn
when when Rn(π) = 1

2ηn
‖π‖2. Alternatively, FTRL runs

πn+1 = arg minπ∈Π

∑n
m=1 〈wmgm, π〉+Brm(π||πm), (10)

where rm is a strongly convex function. To connect FTRL with mirror descent, we can roughly think
of 〈(wg)1:n−1, ·〉+

∑n
m=1Brm as BRn in (9), since both act as regularization. In particular, when

Π is unconstrained, they are indeed equivalent [37].

4.2 The Meta-Algorithm PICCOLO
PICCOLO decomposes a base algorithm (mirror descent or FTRL) into three basic operations

h← update(h,H, g, w), H ← adapt(h,H, g, w), π ← project(h,H) (11)

and recomposes them to generate the new algorithm, where g is a update direction, w is a weight,
h is a representation of π, and H is a regularization function. The operators update and adapt
define how h and H change when receiving first-order information g and weight w, respectively, and
project describes how h is decoded into a policy π. Below we show how these operations define (9)
and (10) and how how PICCOLO uses them to define a new algorithm (see Appendix D for details).

4.2.1 Base Algorithms
We first show the update rules in (9) and (10) can be written within a single framework as

Hn = adapt(hn, Hn−1, gn, wn), hn+1 = update(hn, Hn, gn, wn) (12)

In round n, both algorithms first decode a policy πn = project(hn, Hn−1) and run it in the
environment to get gn (which is equal to ∇l̃n(πn) in IL or∇f̃n(πn) in RL). Then, based on gn and
wn, they use adapt to update Hn and use update to compute hn+1 using the up-to-date Hn.

To validate this, we first define (h,H), update, and project. In mirror descent, we identify h = π
and H as the distance generator in (9), and define

update(h,H, g, w) = arg min
π′∈Π

〈wg, π′〉+BH(π′||h), project(h,H) = h (13)

In FTRL, we identify H as the sum of Bregman divergences in (10) and h as the weighted sum of
past first-order information, and define

update(h,H, g, w) = h+ wg, project(h,H) = arg min
π′∈Π

〈h, π′〉+H(π′) (14)

Before presenting the details of adapt, we can already verify that, with the above identifications,
(12) indeed implements the classical update rules (9) and (10).

5

Algorithm 1 PICCOLO
Input: policy π1, cost sequence {ψn}, regularization H0, model Φ1, iteration N , exponent p
Output: π̄N

1: Set π̂1 = π1 and weights wn = np

2: Sample integer K with P (K = n) ∝ wn

3: for n = 1 . . .K − 1∗ do
4: ĝn = Φn(π̂n, ψn)
5: πn = PredictionStep(π̂n, ĝn, Hn−1, wn)
6: Dn, gn = DataCollection(πn, ψn)
7: Hn, π̂n+1 = CorrectionStep(πn, en, Hn−1, wn), where en = gn − ĝn.
8: Φn+1 = ModelUpdate(Φn,D), where D = D

⋃
Dn.

9: end for
10: Set π̄N = π̂K

The operator adapt is designed to update the regularization H (e.g. changing the step size) so that
the online learner achieves small regret. Although the exact definition of adapt depends on the
specific base algorithm, in general it updates the size of regularization H to grow slowly and inversely
proportional to the norm of g. We will give a concrete example in Appendix A and please refer to
Appendix D for details.

4.2.2 The PICCOLOed Algorithm
PICCOLO accelerates policy learning by using estimates of future gradients. The full algorithm
is summarized in Algorithm 1. In round n, a “PICCOLOed” algorithm first queries the predictive
model Φn for ĝn, which estimates gn the gradient of the unseen per-round loss. Next, it performs the
Prediction Step using ĝn to generate the learner’s decision (i.e. πn) and runs this new policy in the
environment to get the true gradient gn. Using this feedback, the algorithm performs the Correction
Step to amend the bias of using ĝn. This is accomplished by first adapting the regularization to Hn

and then updating πn to π̂n+1 according to prediction error en = gn − ĝn. This intermediate policy
π̂n+1 will be used as an estimate of the next decision πn+1 in querying Φn+1 in the next round.

Update Rules PICCOLO recomposes the three basic operations of a base algorithm to define the
Prediction and the Correction Steps in Algorithm 12:

hn = update(ĥn, Hn−1, ĝn, wn) [Prediction] (15)

Hn = adapt(hn, Hn−1, en, wn)

ĥn+1 = update(hn, Hn, en, wn)
[Correction] (16)

Like the base algorithms earlier, PICCOLO calls πn = project(hn, Hn−1) to make decisions. Here
we write the dependencies in terms of hn (instead of πn) so they can be used with both mirror descent
and FTRL. Note that in the Prediction Step, only hn is updated, not the regularization. A concrete
example of PICCOLOing ADAGRAD is provided in Appendix A.

Predictive Models The predictive model Φn is a first-order oracle, which can be updated on-
line using past information. Given a policy π and a cost function ψ (e.g. c̄ in IL or Aπn−1

in RL), it predicts Φn(π, ψ) as an estimate of Edπ (∇Eπ)[ψ]. In PICCOLO, we use Φn and
π̂n = project(ĥn, Hn−1) to construct ĝn. For example, we can set ĝn = Φn(π̂n, Aπn−1

) to
estimate the gradient in (7) in RL. A predictive model can be a simulator with an (online learned)
dynamics model [4, 7], or a neural network trained to predict the required gradients [9, 10]. An
even simpler way is to construct predictive models as off-policy gradients. For our previous exam-
ple, Φn(π̂n, Aπn−1

) = Êdπn−1
(∇Êπ)[Aπn−1

]|π=π̂n can be used to approximate the future gradient

gn = Êdπn (∇Êπ)[Aπn−1
]|π=πn , where Ê denotes finite sample approximation. A similar predictive

model can be constructed using a replay buffer.

4.3 THEORETICAL ANALYSIS
We show that PICCOLO has two major benefits over previous approaches: 1) it accelerates policy
learning when the models predict the required gradient well on average; and 2) it does not bias the
performance of the policy, even when the prediction is incorrect. To analyze PICCOLO, we introduce
an assumption to quantify the adapt operator of a base algorithm.
∗Here we assume project is automatically performed inside PredictionStep and CorrectionStep.
2We provide a variation of PICCOLO in Appendix E.

6

Algorithms Upper bounds in Big-O

PICCOLO 1√
N

(
|Π|+ σ2

g + σ2
ĝ + EΦ

)
model-free 1√

N

(
|Π|+G2

g + σ2
g

)
model-based 1√

N

(
|Π|+G2

ĝ + σ2
ĝ

)
+ EΦ

DYNA 1√
2N

(
|Π|+ 1

2

(
G2

g +G2
ĝ + σ2

g + σĝ

)2)
+EΦ

Table 1: Upper bounds of the average regret of different policy optimization algorithms.

Assumption 4.1. adapt chooses a regularization sequence such that, for some MN = o(w1:N),
‖H0‖R +

∑N
n=1 ‖Hn −Hn−1‖R ≤MN for some norm ‖ · ‖R.

This assumption, which requires the regularization to change slower than the growth of w1:N , is
satisfied by most reasonably-designed base algorithms. For example, in a uniformly weighted
problem, gradient descent with a decaying step size O(1√

n
) has MN = O(

√
N). In general, for

stochastic problems, an optimal base algorithm would ensure MN = O(w1:N√
N

).

4.3.1 Convergence Properties
Now we state the main result, which quantifies the regret of PICCOLO with respect to the sequence
of linear loss functions that it has access to. The proof is given in Appendix G, which is based on a
general reduction from predictive online learning to adversarial online learning.

Theorem 4.1. Suppose Hn defines a strongly convex function with respect to ‖ · ‖n. Under Assump-
tion 4.1, running PICCOLO ensures

∑N
n=1 〈wngn, πn − π〉 ≤MN +

∑N
n=1

w2
n

2 ‖en‖2∗,n − 1
2‖πn −

π̂n‖2n−1, for all π ∈ Π.

The term ‖en‖2∗,n in Theorem 4.1 says that the performance of PICCOLO depends on how well the
base algorithm adapts to the error en, which depends on the adapt operation in the Correction Step.
Usually adapt updates Hn gradually (Assumption 4.1) while minimizing 1

2‖en‖2∗,n, like we showed
in ADAGRAD in Appendix A.

In general, when the base algorithm is adaptive and optimal for adversarial problems, we show
in Appendix H that its PICCOLOed version guarantees that E[

∑N
n=1 〈wngn, πn − π〉] ≤ O(1) +

CΠ,Φ
w1:N√
N

, where CΠ,Φ = O(|Π| + EΦ + σ2
g + σ2

ĝ) is some constant related to the size of Π, the
model bias EΦ, and the sampling variance σ2

g and σ2
ĝ of gn and ĝn, respectively. Through Lemma 3.2

and 3.3, this bound directly implies accelerated and bias-free policy performance.

Theorem 4.2. Let Fn to be either l̃n or f̃n. Suppose Fn is convex3and wn ≥ Ω(1). Then running
PICCOLO yields E[regretn(F)/w1:N] = O(

CΠ,Φ√
N

), where CΠ,Φ = O(|Π|+EΦ +σ2
g +σ2

ĝ) = O(1).

4.3.2 Comparison
We compare several policy optimization algorithms and show that they can be viewed as incomplete
versions of PICCOLO, which only either result in accelerated learning or are unbiased, but not both.
The results are summarized in Table 1. Please see Appendix B for details.

5 EXPERIMENTS
We corroborate our theoretical findings with experiments in learning neural network policies to solve
simulated robot control tasks (CartPole, Hopper, Snake, Reacher3D, and Walker3D) in the DART
environment [39]. We use CartPole to verify some basic properties of PICCOLO and then use the
other environments to study the empirical properties of PICCOLO in solving more complicated
problems. We aim to see if PICCOLO improves the performance a base algorithm under various
settings. We choose several popular first-order algorithms (ADAM [25], natural gradient descent
NATGRAD [40], and trust-region optimizer TRPO [41]). We consider RL problems and compute gn
by GAE [42]. For predictive models, we consider off-policy gradients (with the samples of the last
iteration LAST or a replay buffer REPLAY) and gradients computed through simulations with the true
dynamics model4 (TRUEDYN). Please refer to Appendix I for the details and complete results.

3The convexity assumption is standard, as used in [38, 20, 25, 22], which holds for tabular problems as well
as some special cases, like continuous-time problems (cf. [22]).

4As we focus on studying the properties of PICCOLO, we assume that a good dynamics model is available.

7

0 50 100 150 200 250
Iteration

0

200

400

600

800

1000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
DYNA-RANDOM

PICCOLO-RANDOM

PICCOLO-TRUEDYN

0 25 50 75 100 125 150 175
Iteration

0

1000

2000

3000

4000

5000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

0 25 50 75 100 125 150 175
Iteration

0

1000

2000

3000

4000

5000

6000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

0 100 200 300 400
Iteration

−900

−800

−700

−600

−500

−400

−300

−200

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

0 200 400 600 800
Iteration

0

500

1000

1500

2000

2500

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

0 50 100 150 200 250
Iteration

0

200

400

600

800

1000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
DYNA-ADVERSARIAL

PICCOLO-ADVERSARIAL

PICCOLO-TRUEDYN

(a) Cartpole

0 25 50 75 100 125 150 175
Iteration

0

1000

2000

3000

4000

5000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

(b) Hopper

0 25 50 75 100 125 150 175
Iteration

0

1000

2000

3000

4000

5000

6000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

(c) Snake

0 100 200 300 400
Iteration

−900

−800

−700

−600

−500

−400

−300

−200

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

(d) Reacher3D

0 200 400 600 800
Iteration

0

500

1000

1500

2000

2500

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

(e) Walker3D

Figure 1: The performance of PICCOLO in various tasks. The first column shows PICCOLO and
DYNA with predictive models of different accuracies (upper: random dynamics; lower: adversarial
model) and ADAM as the base algorithm. From the 2nd to the 5th columns we show the performance
of PICCOLO in more difficult environments (the first and the second rows use NATGRAD and TRPO
as the base algorithms, respectively.) The shaded regions account for 0.5 standard deviation.

We use CartPole to study Theorem 4.2, which suggests that PICCOLO is unbiased and improves
the performance when the prediction is accurate. Here we additionally consider two inaccurate
models: RANDOM that predicts gradients using a randomly specified neural network dynamics, and
ADVERSARIAL that predicts the gradients adversarially5. Figure 1(a) illustrates the performance of
PICCOLO and DYNA, when ADAM is chosen as the base algorithm. We observe that PICCOLO
improves the performance when the model is accurate (i.e. TRUEDYN). Moreover, PICCOLO is
robust to modeling errors. It performs closely to the base algorithm (ADAM in this case) when using
RANDOM, converging to the optimal performance; on the other hand, DYNA yields a performance
bias. When the predictive model becomes adversarial, PICCOLO still converges, whereas DYNA
fails completely. Next, in Figure 1 (b)-(e), we study the performance of PICCOLO in a range of
simulated environments using TRPO and NATGRAD as base algorithms. In general, we find that
PICCOLO indeed improves the performance6 of TRPO and NATGRAD, although we also find that the
exact degree of improvement depends on the environment as well as the predictive model used. For
example, REPLAY gives a significant improvement in the difficult Walker3D environment, whereas it
performs similarly to LAST in the other settings. Also, we find that PICCOLOed TRPO has slightly
worse performance than TRPO in Reacher3D7, whereas PICCOLO does improve the performance of
NATGRAD. Finally, we note that TRUEDYN provides improvement in various settings. Although its
computation time might be considered impractical to these simulated problems, it can be valuable in
applications where agent-environment interaction is expensive.

6 CONCLUSION
PICCOLO is a general reduction-based framework for solving predictable online learning problems.
It can be viewed as an automatic strategy for designing new algorithms that can use prediction to
accelerate convergence. Furthermore, PICCOLO uses the Correction Step to recover from the mistake
made in the Prediction Step, so the presence of model errors does not bias convergence, as we show in
both the theory and experiments. The design of PICCOLO opens the question of designing predictive
models. While PICCOLO is robust against modeling error, the accuracy of a predictive model can
affect its effectiveness. PICCOLO only improves the performance when the model makes non-trivial
predictions. In the experiments, we found that off-policy and simulated gradients are often useful, but
they are not perfect. It is interesting to see if a predictive model that is trained to directly minimize
the prediction error can further help policy learning. Also, the current design of PICCOLO takes only
a gradient update in the Prediction Step. An open question is how to adaptively take multiple updates
in the Prediction Step in accordance with the model accuracy, while properly correcting for the bias
in the Correction Step. For example, if the predictive model is exact, an ideal Prediction Step should
completely solve the problem. Finally, we note that, despite the current focus of this paper on policy
optimization, PICCOLO can naturally be applied to other optimization problems.

5We set the adversarial model to predict ĝn+1 = −gn ×maxm=1,...,n ‖gm‖/‖gn‖.
6Different base algorithms are not directly comparable, as further fine-tuning of step sizes is required.
7After an investigation, we found that the prediction errors are larger than the true gradients, i.e. using the

predictive models are worse than predicting zero.

8

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[2] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
deep reinforcement learning for continuous control. In International Conference on Machine
Learning, pages 1329–1338, 2016.

[3] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[4] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv
preprint arXiv:1804.10332, 2018.

[5] David H Jacobson and David Q Mayne. Differential dynamic programming. 1970.
[6] Emanuel Todorov and Weiwei Li. A generalized iterative LQG method for locally-optimal

feedback control of constrained nonlinear stochastic systems. In American Control Conference,
pages 300–306. IEEE, 2005.

[7] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to
policy search. In International Conference on machine learning, pages 465–472, 2011.

[8] Yunpeng Pan and Evangelos Theodorou. Probabilistic differential dynamic programming. In
Advances in Neural Information Processing Systems, pages 1907–1915, 2014.

[9] David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-
end learning and planning. arXiv preprint arXiv:1612.08810, 2016.

[10] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in
Neural Information Processing Systems, pages 6120–6130, 2017.

[11] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
SIGART Bulletin, 2(4):160–163, 1991.

[12] Richard S Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael P Bowling. Dyna-
style planning with linear function approximation and prioritized sweeping. arXiv preprint
arXiv:1206.3285, 2012.

[13] Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien Racanière,
David Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based
planning from scratch. arXiv preprint arXiv:1707.06170, 2017.

[14] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal
planning networks. arXiv preprint arXiv:1804.00645, 2018.

[15] Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, and Sergey
Levine. Combining model-based and model-free updates for trajectory-centric reinforcement
learning. arXiv preprint arXiv:1703.03078, 2017.

[16] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. arXiv preprint
arXiv:1711.00123, 2017.

[17] Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli.
Stochastic variance-reduced policy gradient. arXiv preprint arXiv:1806.05618, 2018.

[18] Geoffrey J Gordon. Regret bounds for prediction problems. In Annual Conference on Computa-
tional Learning Theory, pages 29–40. ACM, 1999.

[19] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In International Conference on Machine Learning, pages 928–936, 2003.

[20] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In International conference on artificial
intelligence and statistics, pages 627–635, 2011.

9

[21] Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive
no-regret learning. arXiv preprint arXiv:1406.5979, 2014.

[22] Ching-An Cheng and Byron Boots. Convergence of value aggregation for imitation learning. In
International Conference on Artificial Intelligence and Statistics, volume 84, pages 1801–1809,
2018.

[23] Ching-An Cheng, Xinyan Yan, Evangelos Theodorou, and Byron Boots. Accelerating imitation
learning with predictive models. arXiv preprint arXiv:1806.04642, 2018.

[24] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. 2013.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[26] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[27] H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex
optimization. arXiv preprint arXiv:1002.4908, 2010.

[28] Ching-An Cheng, Xinyan Yan, Nolan Wagener, and Byron Boots. Fast policy learning through
imitation and reinforcement. arXiv preprint arXiv:1805.10413, 2018.

[29] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in
Optimization, 2(3-4):157–325, 2016.

[30] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In International Conference on Machine Learning, volume 2, pages 267–274, 2002.

[31] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pages 1008–1014, 2000.

[32] Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.

[33] Nam Ho-Nguyen and Fatma Kilinc-Karzan. Exploiting problem structure in optimization under
uncertainty via online convex optimization. arXiv preprint arXiv:1709.02490, 2017.

[34] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291–307, 2005.

[35] Jelena Diakonikolas and Lorenzo Orecchia. Accelerated extra-gradient descent: A novel
accelerated first-order method. arXiv preprint arXiv:1706.04680, 2017.

[36] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends R© in Optimiza-
tion, 1(3):127–239, 2014.

[37] H Brendan McMahan. A survey of algorithms and analysis for adaptive online learning. The
Journal of Machine Learning Research, 18(1):3117–3166, 2017.

[38] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[39] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[40] Sham M Kakade. A natural policy gradient. In Advances in neural information processing
systems, pages 1531–1538, 2002.

[41] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897,
2015.

[42] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[43] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, pages 1057–1063, 2000.

[44] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

10

[45] Jan Peters, Katharina Mülling, and Yasemin Altun. Relative entropy policy search. In AAAI,
pages 1607–1612. Atlanta, 2010.

[46] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International Conference on Machine Learning,
2014.

[47] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell.
Deeply aggrevated: Differentiable imitation learning for sequential prediction. arXiv preprint
arXiv:1703.01030, 2017.

[48] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):
26–31, 2012.

[49] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[50] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

[51] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):
251–276, 1998.

[52] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

[53] Vineet Gupta, Tomer Koren, and Yoram Singer. A unified approach to adaptive regularization
in online and stochastic optimization. arXiv preprint arXiv:1706.06569, 2017.

[54] Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable
sequences. In Advances in Neural Information Processing Systems, pages 3066–3074, 2013.

[55] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[56] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[57] Jeongseok Lee, Michael X. Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Siddhartha S.
Srinivasa, Mike Stilman, and C. Karen Liu. DART: Dynamic animation and robotics toolkit.
The Journal of Open Source Software, 3(22):500, feb 2018.

11

A Why Does PICCOLO Work?
PICCOLO uses the predicted gradient to take an extra step to accelerate learning. In the meanwhile,
to prevent the error accumulation, it adaptively adjusts the step size (i.e. the regularization) based on
the prediction error and corrects for the bias on the policy right away. To gain some intuition, let us
consider ADAGRAD [38] as a base algorithm8:

Gn = Gn−1 + diag(wngn � wngn)

πn+1 = arg min
π∈Π

〈wngn, π〉+
1

2η
(π − πn)>G1/2

n (π − πn)

where G0 = εI and η, ε > 0, and � denotes element-wise multiplication. With its update and
project defined standardly in (13), its adapt is defined as adapt(h,H, g, w) = G+diag(wg�wg)
which updates the Bregman divergence based on the gradient size.

PICCOLO transforms ADAGRAD into a new algorithm. In the Prediction Step, it performs

πn = arg min
π∈Π

〈wnĝn, π〉+
1

2η
(π − πn−1)>G

1/2
n−1(π − πn−1)

In the Correction Step, it performs

Gn = Gn−1 + diag(wnen � wnen)

π̂n+1 = arg min
π∈Π

〈wnen, π〉+
1

2η
(π − π̂n)>G1/2

n (π − π̂n)

We see that the PICCOLO-ADAGRAD updates Gn proportional to the prediction error en instead of
gn. It takes larger steps when models are accurate, and decreases the step size once the prediction
deviates. As a result, PICCOLO is robust to model quality: it accelerates learning when the model is
informative, and prevents inaccurate (potentially adversarial) models from hurting the policy. We
will further demonstrate this in theories and experiments.

B Theoretical Comparison

Here we provide a discussion of Table 1.

We first consider the common model-free approach [43, 40, 44, 45, 46, 47, 28], i.e. applying the base
algorithm with gn. To make the comparison concrete, suppose ‖E[gn]‖2∗ ≤ G2

g for some constant
Gg, where we recall gn is the sampled true gradient. As the model-free approach is equivalent to
setting ĝn = 0 in PICCOLO, by Theorem 4.1 (with en = gn), the constant CΠ in Theorem 4.2 would
become O(|Π|+G2

g + σ2
g). In other words, PICCOLOing the base algorithm improves the constant

factor from G2
g to σ2

ĝ + EΦ. Therefore, while the model-free approach is bias-free, its convergence
can be further improved by PICCOLO, as long as the models {Φn} are reasonably accurate on
average.9

Next we consider the pure model-based approach with a model that is potentially learned online [5,
6, 7, 8]. As such approach is equivalent to only performing the Prediction Step, its performance
suffers from any modeling error. Specifically, suppose ‖E[ĝn]‖2∗ ≤ G2

ĝ for some constant Gĝ. One
can show that the bound in Theorem 4.2 would become O((|Π|+G2

ĝ +σ2
ĝ)/
√
N +EΦ), introducing

a constant bias in O(EΦ). Note that the above discussion simplifies the model-based planning into a
gradient step along the direction provided by Φn (which is not exactly [5, 6, 7, 8]). Nevertheless, it
captures the important effect of performance bias, which also appears in these multi-step algorithms.

A hybrid heuristic to combine the model-based and model-free updates is DYNA [11, 12], which
interleaves the two steps during policy optimization. This is equivalent to applying gn, instead of
the error en, in the Correction Step of PICCOLO. Following a similar analysis as above, one can
show that the convergence rate in Theorem 4.2 would become O((|Π| + G2 + σ2)/

√
2N + EΦ),

where G2 = 1
2 (G2

g +G2
ĝ) and σ2 = 1

2 (σ2
g + σ2

ĝ). Therefore, DYNA is effectively twice as fast as the

8We provide another example of natural gradient descent in Appendix F.
9It can be shown that if the model is learned online with a no-regret algorithm, it would perform similarly to

the best model in the hindsight (cf. Appendix H.4)

12

pure model-free approach. However, it would eventually suffer from the performance bias due model
error, as reflected in the term EΦ. We will demonstrate this property experimentally in Figure ??.

Finally, we note that the idea of using Φn as control variate [15, 16, 17] is orthogonal to the setups
considered above, and it can be naturally combined with PICCOLO. Specifically, we can use Φn
to compute a better sampled gradient gn with smaller variance (line 6 of Algorithm 1). This would
improve σ2

g in the bounds to a smaller σ̃2
g , the size of reduced variance.

C Proof of Lemma 3.3

Without loss of generality we suppose w1 = 1 and J(π) ≥ 0 for all π. And we assume the weighting
sequence {wn} satisfies, for all n ≥ m ≥ 1 and k ≥ 0, wn+k

wn
≤ wm+k

wm
. This means {wn} is an

non-decreasing sequence and it does not grow faster than exponential (for which wn+k

wn
= wm+k

wm
).

For example, if wn = np with p ≥ 0, it easy to see that

(n+ k)p

np
≤ (m+ k)p

mp
⇐=

n+ k

n
≤ m+ k

m
⇐=

k

n
≤ k

m

For simplicity, let us first consider the case where fn is deterministic. Given this assumption, we
bound the performance in terms of the weighted regret below.

N∑
n=1

wnJ(πn)

=

N∑
n=1

wnJ(πn−1) + wnEdπnEπn [Aπn−1
]

=

N∑
n=1

wnJ(πn−1) + wnfn(πn)

= w1J(π0) +

N−1∑
n=1

wn+1J(πn) +

N∑
n=1

wnfn(πn)

= w1J(π0) +

N−1∑
n=1

wn+1J(πn−1) +

N−1∑
n=1

wn+1fn(πn) +

N∑
n=1

wnfn(πn)

= (w1 + w2)J(π0) +

N−2∑
n=1

wn+2J(πn) +

N−1∑
n=1

wn+1fn(πn) +

N∑
n=1

wnfn(πn)

= w1:NJ(π0) +

(
wNf1(π1) +

2∑
n=1

wn+N−2fn(πn) + · · ·+
N−1∑
n=1

wn+1fn(πn) +

N∑
n=1

wnfn(πn)

)

= w1:NJ(π0) +

(
wNf1(π1) +

2∑
n=1

wn+N−2

wn
wnfn(πn) + · · ·+

N−1∑
n=1

wn+1

wn
wnfn(πn) +

N∑
n=1

wnfn(πn)

)

≤ w1:NJ(π0) +

(
wNf1(π1) +

wN−1

w1

2∑
n=1

wnfn(πn) + · · ·+ w2

w1

N−1∑
n=1

wnfn(πn) +

N∑
n=1

wnfn(πn)

)

= w1:NJ(π0) +

(
wNf1(π1) + wN−1

2∑
n=1

wnfn(πn) + · · ·+ w2

N−1∑
n=1

wnfn(πn) +

N∑
n=1

wnfn(πn)

)

= w1:NJ(π0) +

N∑
n=1

wN−n+1 (regretn(f) + w1:N εn(f))

where the inequality is due to the assumption on the weighting sequence, and the last equality is due
to the definition of regretN and εN . For stochastic problems, because πn does not depends on fn, the

13

above bound applies to the performance in expectation. This proves the statement:

E

[
1

w1:N

N∑
n=1

wnJ(πn)

]
≤ J(π0) +

1

w1:N

N∑
n=1

wN−n+1E [regretn(f) + w1:nεn(f)]

D The Basic Operations of Base Algorithms

In Section 4, we show that the update rule of any base mirror-descent or FTRL algorithm can be
represented in terms of the three basic operations

h← update(h,H, g, w), H ← adapt(h,H, g, w), π ← project(h,H) (11)

and provide explicitly the identifications of update and project: for mirror descent,

update(h,H, g, w) = arg minπ′∈Π 〈wg, π′〉+BH(π||h), project(h,H) = h (13)

and for FTRL,

update(h,H, g, w) = h+ wg, project(h,H) = arg minπ′∈Π 〈h, π′〉+H(π′) (14)

While update and project are defined standardly, the exact definition of adapt depends on the
specific base algorithm. Particularly, adapt may depend also on whether the problem is weighted, as
different base algorithms may handle weighted problems differently. Based on the way weighted
problems are handled, we roughly categorize the algorithms (in both mirror descent and FTRL
families) into two classes: the stationary regularization class and the non-stationary regularization
class. Here we provide more details into the algorithm-dependent adapt operation, through some
commonly used base algorithms as examples.

D.1 Stationary Regularization Class

The adapt operation of these base algorithms features two major functions: 1) a moving-average
adaptation and 2) a step-size adaption. The moving-average adaptation is designed to estimate some
statistics G such that ‖g‖∗ = O(G) (which is an important factor in regret bounds), whereas the
step-size adaptation updates a scalar multiplier η according to the weight w to ensure convergence.

This family of algorithms includes basic mirror descent [26] and FTRL [27, 37] with a scheduled
step size, and adaptive algorithms based on moving average e.g. RMSPROP [48] ADADELTA [49],
ADAM [25], AMSGRAD [50], and the adaptive NATGRAD we used in the experiments. Below we
showcase how adapt is defined using some examples.

D.1.1 Basic mirror descent [26]

We define G to be some constant such that G ≥ sup ‖gn‖∗ and define

ηn =
η

1 + cw1:n/
√
n
, (17)

as a function of the iteration counter n, where η > 0 is a step size multiplier and c > 0 determines
the decaying rate of the step size. The choice of hyperparameters η, c pertains to how far the optimal
solution is from the initial condition, which is related to the size of Π. In implementation, adapt
updates the iteration counter n and updates the multiplier ηn using wn in (17).

Together (n,G, ηn) defines Hn = Rn in the mirror descent update rule (9) through setting Rn =
G
ηn
R, where R is a strongly convex function. That is, we can write (9) equivalently as

πn+1 = arg min
π∈Π

〈wngn, π〉+
G

ηn
BR(π||πn)

= arg min
π∈Π

〈wngn, π〉+BHn(π)

= update(hn, Hn, gn, wn)

When the weight is constant (i.e. wn = 1), we can easily see this update rule is equivalent to the
classical mirror descent with a step size η/G

1+c
√
n

, which is the optimal step size [37]. For general

14

wn = Θ(np) with some p > −1, it can viewed as having an effective step size wnηn
G = O(1

G
√
n

),
which is optimal in the weighted setting. The inclusion of the constant G makes the algorithm
invariant to the scaling of loss functions. But as the same G is used across all the iterations, the basic
mirror descent is conservative.

D.1.2 Basic FTRL [37]

Before discussing adapt in the basic FTRL, we first provide some more details into general FTRL by
explicitly relating its project operation and the update rule in (10). We recall, in the nth iteration,
the definition of hn, Hn, and project of FTRL in (14) are

hn =

n∑
m=1

wmgm, Hn(π) =

n∑
m=1

rm(π||πn), project(h,H) = arg min
π′∈Π

〈h, π′〉+H(π′)

Therefore, we can see that πn+1 = project(hn, Hn) indeed gives the update (10):

πn+1 = project(hn, Hn)

= project(

n∑
m=1

wmgm,

n∑
m=1

rm(π||πn))

= arg min
π∈Π

n∑
m=1

〈wmgm, π〉+ rm(π||πm)

For the basic FTRL, the adapt operator is similar to the basic mirror descent, which uses a constant
G and updates the memory (n, ηn) using (17). The main differences are how (G, ηn) is mapped
to Hn and that the basic FTRL updates Hn also using hn (i.e. πn). Specifically, it performs
Hn ← adapt(hn, Hn−1, gn, wn) through the following:

Hn(·) = Hn−1(·) + rn(·||πn)

where following [37] we set

rn(π||πn) = G(
1

ηn
− 1

ηn−1
)BR(π||πn)

and ηn is updated using some scheduled rule.

One can also show that the choice of ηn scheduling in (17) leads to an optimal regret. When the
problem is uniformly weighted (i.e. wn = 1), this gives exactly the update rule in [37]. For general
wn = Θ(np) with p > −1, a proof of optimality can be found, for example, in the appendix of [23].

D.1.3 ADAM [25] and AMSGRAD [50]

As a representing mirror descent algorithm that uses moving-average estimates, ADAM keeps in the
memory of the statistics of the first-order information that is provided in update and adapt. Here
we first review the standard description of ADAM and then show how it is summarized in

Hn = adapt(hn, Hn−1, gn, wn), hn+1 = update(hn, Hn, gn, wn) (12)

using properly constructed update, adapt, and project operations.

The update rule of ADAM proposed by Kingma and Ba [25] is originally written as, for n ≥ 1,10

mn = β1mn−1 + (1− β1)gn
vn = β2vn−1 + (1− β2)gn � gn
m̂n = mn/(1− βn1)

v̂n = vn/(1− βn2)

πn+1 = πn − ηnm̂n � (
√
v̂n + ε)

(18)

10We shift the iteration index so it conforms with our notation in online learning, in which π1 is the initial
policy before any update.

15

where ηn > 0 is the step size, β1, β2 ∈ [0, 1) (default β1 = 0.9 and β2 = 0.999) are the mixing rate,
and 0 < ε� 1 is some constant for stability (default ε = 10−8), and m0 = v0 = 0. The symbols �
and � denote element-wise multiplication and division, respectively. The third and the forth steps are
designed to remove the 0-bias due to running moving averages starting from 0.

The above update rule can be written in terms of the three basic operations. First, we define the
memories hn = (mn, πn) for policy and (vn, ηn, n) for regularization that is defined as

Hn(π) =
1

2ηn
π>(diag(

√
v̂n) + εI)π (19)

where v̂n is defined in the original ADAM equation in (18).

The adapt operation updates the memory to (vn, ηn, n) in the step
Hn ← adapt(hn, Hn−1, gn, wn)

It updates the iteration counter n and ηn in the same way in the basic mirror descent using (17), and
update vn (which along with n defines v̂n used in (19)) using the original ADAM equation in (18).

For update, we slightly modify the definition of update in (13) (replacing gn with m̂n) to incorpo-
rate the moving average and write

update(hn, Hn, gn, wn) = arg min
π′∈Π

〈wnm̂n, π
′〉+BHn(π′||π) (20)

where mn and m̂n are defined the same as in the original ADAM equations in (18). One can verify
that, with these definitions, the update rule in (12) is equivalent to the update rule (18), when the
weight is uniform (i.e. wn = 1).

Here the
√
v̂n plays the role of G as in the basic mirror descent, which can be viewed as an estimate

of the upper bound of ‖gn‖∗. ADAM achieves a better performance because a coordinate-wise online
estimate is used. With this equivalence in mind, we can easily deduct that using the same scheduling
of ηn as in the basic mirror descent would achieve an optimal regret (cf. [25, 50]). We note that ADAM
may fail to converge in some particular problems due to the moving average [50]. AMSGRAD [50]
modifies the moving average and uses strictly increasing estimates. However in practice AMSGRAD
behaves more conservatively.

For weighted problems, we note one important nuance in our definition above: it separates the weight
wn from the moving average and considers wn as part of the ηn update, because the growth of wn in
general can be much faster than the rate the moving average converges. In other words, the moving
average can only be used to estimate a stationary property, not a time-varying one like wn. Hence,
we call this class of algorithms, the stationary regularization class.

D.1.4 Adaptive NATGRAD

Given first-order information gn and weight wn, we consider an update rule based on Fisher informa-
tion matrix:

πn+1 = arg min
π∈Π

〈wngn, π〉+

√
Ĝn

2ηn
(π − πn)>Fn(π − πn) (21)

where Fn is the Fisher information matrix of policy πn [51] and Ĝn is an adaptive multiplier for
the step size which we will describe. When Ĝn = 1, the update in (21) gives the standard natural
gradient descent update with step size ηn [40] .

The role of Ĝn is to adaptively and slowly changes the step size to minimize
∑N
n=1

ηn√
Gn
‖gn‖2Fn,∗,

which plays an important part in the regret bound (see Section 4.3, Appendix G, and e.g. [37] for
details). Following the idea in ADAM, we update Ĝn by setting (with G0 = 0)

Gn = β2Gn + (1− β2)
1

2
g>n F

−1
n gn

Ĝn = Gn/(1− βn2)

(22)

similar to the concept of updating vn and v̂n in ADAM in (18), and update ηn in the same way as in
the basic mirror descent using (17). Consequently, this would also lead to a regret like ADAM but in
terms of a different local norm.

The update operation of adaptive NATGRAD is defined standardly in (9) (as used in the experiments).
The adapt operation updates n and ηn like in ADAM and updates Gn through (22).

16

D.2 Non-Stationary Regularization Class

The algorithms in the non-stationary regularization class maintains a regularization that is increasing
over the number of iterations. Notable examples of this class include ADAGRAD [38] and ONLINE
NEWTON STEP [52], and its regularization function is updated by applying BTL in a secondary
online learning problem whose loss is an upper bound of the original regret (see [53] for details).
Therefore, compared with the previous stationary regularization class, the adaption property of ηn and
Gn exchanges: ηn here becomes constant and Gn becomes time-varying. This will be shown more
clearly in the ADAGRAD example below. We note while these algorithms are designed to be optimal
in the convex, they are often too conservative (e.g. decaying the step size too fast) for non-convex
problems.

D.2.1 ADAGRAD

The update rule of the diagonal version of ADAGRAD in [38] is given as

Gn = Gn−1 + diag(gn � gn)

πn+1 = arg min
π∈Π

〈gn, π〉+
1

2η
(π − πn)>(εI +Gn)1/2(π − πn)

(23)

where G0 = 0 and η > 0 is a constant. ADAGRAD is designed to be optimal for online linear
optimization problems. Above we provide the update equations of its mirror descent formulation
in (23); a similar FTRL is also available (again the difference only happens when Π is constrained).

In terms of our notation, its update and project are defined standardly as in (13), i.e.

update(hn, Hn, gn, wn) = arg minπ′∈Π 〈wngn, π′〉+BHn(π′||πn) (24)

and its adapt essentially only updates Gn:

adapt(hn, Hn−1, gn, wn) : Gn = Gn−1 + diag(wngn � wngn)

where the regularization is defined the updated Gn and the constant η as

Hn(π) =
1

2η
π>(εI +Gn)1/2π.

One can simply verify the above definitions of update and adapt agrees with (23).

E A Practical Variation of PICCOLO

In Section 4.2, we show that, given a base algorithm in mirror descent/FTRL, PICCOLO generates a
new first-order update rule by recomposing the three basic operations into

hn = update(ĥn, Hn−1, ĝn, wn) [Prediction] (15)

Hn = adapt(hn, Hn−1, en, wn)

ĥn+1 = update(hn, Hn, en, wn)
[Correction] (16)

where en = gn − ĝn and ĝn is an estimate of gn given by a predictive model Φn.

Here we propose a slight variation which introduces another operation shift inside the Prediction
Step. This leads to the new set of update rules:

Ĥn = shift(ĥn, Hn−1)

hn = update(ĥn, Ĥn, ĝn, wn)
[Prediction] (25)

Hn = adapt(hn, Ĥn, en, wn)

ĥn+1 = update(hn, Hn, en, wn)
[Correction] (26)

The new shift operator additionally changes the regularization based on ĥn the current representa-
tion of the policy in the Prediction Step, independent of the predicted gradient ĝn and weight wn.

17

The main purpose of including this additional step is to deal with numerical difficulties, such as
singularity of Hn. For example, in natural gradient descent, the Fisher information of some policy
can be close to being singular along the direction of the gradients that are evaluated at different
policies. As a result, in the original Prediction Step of PICCOLO, Hn−1 which is evaluated at πn−1

might be singular in the direction of ĝn which is evaluated π̂n.

The new operator shift brings in an extra degree of freedom to account for such issue. Although
from a theoretical point of view (cf. Appendix G) the use of shift would only increase regrets and
should be avoided if possible, in practice, its merits in handling numerical difficulties can out weight
the drawback. Because shift does not depend on the size of ĝn and wn, the extra regrets would only
be proportional to O(

∑N
n=1 ‖πn − π̂n‖n), which can be smaller than other terms in the regret bound

(see Appendix G).

In the experiments of NATGRAD and TRPO, Ĥn is defined by the Fisher information matrix evaluated
at π̂n and Hn is the average of the Fisher information matrices at π̂n and πn. But we note that the
scalar multiplier that defines magnitude of the regularization is only updated in the Correction Step
using gn and wn.

F Example: PICCOLOing Natural Gradient Descent

We give an alternative example to illustrate how one can use the above procedure to “PICCOLO” a
base algorithm into a new algorithm. Here we consider the adaptive natural gradient descent rule in
Appendix D as the base algorithm, which (given first-order information gn and weight wn) updates
the policy through

πn+1 = arg minπ∈Π 〈wngn, π〉+

√
Ĝn

2ηn
(π − πn)>Fn(π − πn) (27)

where Fn is the Fisher information matrix of policy πn [51], ηn a scheduled learning rate, and Ĝn is
an adaptive multiplier for the step size which we will shortly describe. When Ĝn = 1, the update
in (27) gives the standard natural gradient descent update with step size ηn [40] .

The role of Ĝn is to adaptively and slowly changes the step size to minimize
∑N
n=1

ηn√
Gn
‖gn‖2Fn,∗,

which plays an important part in the regret bound (see Section 4.3, Appendix G, and e.g. [37] for
details). To this end, we update Ĝn by setting (with G0 = 0)

Gn = β2Gn−1 + (1− β2) 1
2g
>
n F
−1
n gn, Ĝn = Gn/(1− βn2) (28)

similar to the moving average update rule in ADAM, and update ηn in the same way as in the basic
mirror descent algorithm (e.g. ηn = O(1/

√
n)). As a result, this leads to a similar regret like ADAM

with β1 = 0, but in terms of a local norm specified by the Fisher information matrix.

Now, let’s see how to PICCOLO the adaptive natural gradient descent rule above. (For simplicity, we
ignore potential singularities and consider the basic version in (15) and (16)). First, it is easy to see
that the adaptive natural gradient descent rule is an instance of mirror descent (with hn = πn and

Hn(g) =

√
Ĝn

2ηn
g>Fng), so the update and project operations are defined in the standard way, as

in Section 4.2. The adapt operation updates the iteration counter n, the learning rate ηn, and updates
Ĝn through (28).

To be more specific, let us explicitly write out the Prediction Step and the Correction Step of the
PICCOLOed adaptive natural gradient descent rule in closed form as below: e.g. if ηn = 1√

n
, then

we can write them as

[Prediction] πn = arg minπ∈Π 〈wnĝn, π〉+

√
Ĝn−1

2ηn−1
(π − π̂n)>Fn−1(π − π̂n)

[Correction]

ηn = 1/
√
n

Gn = β2Gn−1 + (1− β2) 1
2g
>
n F
−1
n gn

Ĝn = Gn/(1− βn2)

π̂n+1 = arg minπ∈Π 〈wnen, π〉+

√
Ĝn

2ηn
(π − πn)>Fn(π − πn)

18

G Regret Analysis of PICCOLO

The main idea of PICCOLO is to achieve optimal performance in predictable online learning problems
by reusing existing adaptive, optimal first-order algorithms that are designed for adversarial online
learning problems. This is realized by the reduction techniques presented in this section.

Here we prove the performance of PICCOLO in general predictable online learning problems,
independent of the context of policy optimization. In Appendix G.1, we first show an elegant
reduction from predictable problems to adversarial problems. Then we prove Theorem 4.1 in
Appendix G.2, showing how the optimal regret bound for predictable linear problems can be achieved
by PICCOLOing mirror descent and FTRL algorithms. Note that we will abuse the notation ln to
denote the per-round costs in this general setting.

G.1 Reduction from Predictable Online Learning to Adversarial Online Learning

Consider a predictable online learning problem with per-round loss ln. Suppose in round n, before
playing πn and revealing n, we have access to some prediction of ln, called l̂n. Running an (adaptive)
online learning algorithm designed for the general adversarial setting is not optimal here, as its regret
would be in O(

∑N
n=1 ‖∇ln‖2n,∗), where ‖ · ‖n is some local norm chosen by the algorithm and

‖ · ‖n,∗ is its dual norm. Ideally, we would only want to pay for the information that is unpredictable.
Specifically, we wish to achieve an optimal regret in O(

∑N
n=1 ‖∇ln −∇l̂n‖2n,∗) instead [24].

To achieve the optimal regret bound yet without referring to specialized, nested two-step algo-
rithms (e.g. mirror-prox [32], optimistic mirror descent [54], FTRL-prediction [24]), we consider
decomposing a predictable problem with N rounds into an adversarial problem with 2N rounds:

N∑
n=1

ln(πn) =

N∑
n=1

l̂n(πn) + en(πn) (29)

Therefore, we can treat the predictable problem as a new adversarial online learning problem with a
loss sequence l̂1, e1, l̂2, e2, . . . , l̂N , eN and consider solving this new problem with some standard
online learning algorithm designed for the adversarial setting.

Before analysis, we first introduce a new decision variable π̂n and denote the decision sequence in
this new problem as π̂1, π1, π̂2, π2, . . . , π̂N , πN , so the definition of the variables are consistent with
that in the problem before. Because this new problem is unpredictable, the optimal regret of this new
decision sequence is

N∑
n=1

l̂n(π̂n) + en(πn)−min
π∈Π

N∑
n=1

l̂n(π) + en(π) = O(

N∑
n=1

‖∇l̂n‖2n,∗ + ‖∇en‖2n+1/2,∗) (30)

where the subscript n+ 1/2 denotes the extra round due to the reduction.

At first glance, our reduction does not meet the expectation of achieving regret in O(
∑N
n=1 ‖∇ln −

∇l̂n‖2n,∗) = O(
∑N
n=1 ‖∇en‖2n,∗). However, we note that the regret for the new problem is too loose

for the regret of the original problem, which is

N∑
n=1

l̂n(πn) + en(πn)−min
π∈Π

N∑
n=1

l̂n(π) + en(π)

where the main difference is that originally we care about l̂n(πn) rather than l̂n(π̂n). Specifically, we
can write

N∑
n=1

ln(πn) =

N∑
n=1

l̂n(πn) + en(πn)

=

(
N∑
n=1

l̂n(π̂n) + en(πn)

)
+

(
N∑
n=1

l̂n(πn)− l̂n(π̂n)

)

19

Therefore, if the update rule for generating the decision sequence π̂1, π1, π̂2, π2, . . . , π̂N , πN con-
tributes sufficient negativity in the term l̂n(πn) − l̂n(π̂n) compared with the regret of the new
adversarial problem, then the regret of the original problem can be smaller than (30). This is poten-
tially possible, as πn is made after l̂n is revealed. In particular, in the next section, we show that when
the base algorithm, which is adopted to solve the new adversarial problem given by the reduction, is
in the family of mirror descent and FTRL. Then the regret bound of PICCOLO with respect to the
original predictable problem is optimal.

G.2 Optimal Regret Bounds for Predictable Problems

We show that if the base algorithm of PICCOLO belongs to the family of optimal mirror descent
and FTRL designed for adversarial problems, then PICCOLO can achieve the optimal regret of
predictable problems. In this subsection, we assume the loss sequence is linear, i.e. ln(π) = 〈∇ln, π〉,
and the results are summarized as Theorem 4.1 in the main paper (in a slightly different notation).

G.2.1 Mirror Descent

First, we consider the case where the base algorithm is mirror descent. In this case, when can write
the PICCOLO update rule as

πn = arg min
π∈Π

〈
∇l̂n, x

〉
+BHn−1

(π||π̂n) [Prediction]

π̂n+1 = arg min
π∈Π

〈∇en, π〉+BHn(π||πn) [Correction]

where Hn can be updated based on ∇en = ∇ln(πn)−∇l̂n(π̂n). Notice that in the Prediction Step,
PICCOLO uses the regularization from the previous Correction Step.

To analyze the performance, we use a lemma of the mirror descent’s properties. The proof is a
straightforward application of the optimality condition of the proximal map [55]. We provide a proof
here for completeness.
Lemma G.1. Let K be a convex set. Suppose R is 1-strongly convex with respect to norm ‖ · ‖. Let g
be a vector in some Euclidean space and let

y = arg min
z∈K

〈g, z〉+
1

η
BR(z||x)

Then for all z ∈ K
η 〈g, y − z〉 ≤ BR(z||x)−BR(z||y)−BR(y||x) (31)

which implies

η 〈g, x− z〉 ≤ BR(z||x)−BR(z||y) +
η2

2
‖g‖2∗ (32)

Proof. Recall the definition BR(z||x) = R(z) − R(x) − 〈∇R(x), z − x〉. The optimality of the
proximal map can be written as

〈ηg +∇R(y)−∇R(x), y − z〉 ≤ 0, ∀z ∈ K
By rearranging the terms, we can rewrite the above inequality in terms Bregman divergences as
follows and derive the first inequality (31):
〈ηg, y − z〉 ≤ 〈∇R(x)−∇R(y), y − z〉

= BR(z||x)−BR(z||y) + 〈∇R(x)−∇R(y), y〉 − 〈∇R(x), x〉+ 〈∇R(y), y〉+R(x)−R(y)

= BR(z||x)−BR(z||y) + 〈∇R(x), y − x〉+R(x)−R(y)

= BR(z||x)−BR(z||y)−BR(y||x)

The second inequality is the consequence of (31). First, we rewrite (31) as
〈ηg, x− z〉 = BR(z||x)−BR(z||y)−BR(y||x) + 〈ηg, x− y〉

Then we use the fact that BR is 1-strongly convex with respect to ‖ · ‖, which implies

−BR(y||x) + 〈ηg, x− y〉 ≤ −1

2
‖x− y‖2 + 〈ηg, x− y〉 ≤ η2

2
‖g‖2∗

Combining the two inequalities yields (32). �

20

Lemma G.1 is usually stated with (32), which concerns the decision made before seeing the per-round
loss (as in the standard adversarial online learning setting). Here, we additionally concern l̂n(πn),
which is the decision made after seeing l̂n, so we need a tighter bound (31).

Now we show that the regret bound of PICCOLO in the predictable linear problems when the base
algorithm is mirror descent.
Proposition G.1. Assume the base algorithm of PICCOLO is mirror descent satisfying the Assump-
tion 4.1. Then it holds that, for any π ∈ Π,

N∑
n=1

wn 〈∇ln, πn − π〉 ≤MN +

N∑
n=1

w2
n

2
‖∇en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

Proof. Suppose Rn, which is defined by Hn, is 1-strongly convex with respect to ‖ · ‖n. Then by
Lemma G.1, we can write, for all π ∈ Π,

wn 〈∇ln, πn − π〉 = wn

〈
∇l̂n, πn − π

〉
+ wn 〈∇en, πn − π〉

≤ BRn−1
(π||π̂n)−BRn−1

(π||πn)−BRn−1
(πn||π̂n)

+BRn(π||πn)−BRn(π||π̂n+1) +
w2
n

2
‖∇en‖2∗,n (33)

where we use (31) for the loss l̂n and (32) for the loss en.

To show the regret bound of the original (predictable) problem, we first notice that

N∑
n=1

BRn−1(π||π̂n)−BRn−1(π||πn) +BRn(π||πn)−BRn(π||π̂n+1)

= BR0
(π||π̂1)−BRN (π||π̂N+1) +

N∑
n=1

BRn−1
(π||π̂n)−BRn−1

(π||πn) +BRn(π||πn)−BRn−1
(π||π̂n)

= BR0
(π||π̂1)−BRN (π||π̂N+1) +

N∑
n=1

BRn(π||πn)−BRn−1
(π||πn) ≤MN

where the last inequality follows from the assumption on the base algorithm. Therefore, by telescoping
the inequality in (33) and using the strong convexity of Rn, we get

N∑
n=1

wn 〈∇ln, πn − π〉 ≤MN +

N∑
n=1

w2
n

2
‖∇en‖2∗,n −BRn−1

(πn||π̂n)

≤MN +

N∑
n=1

w2
n

2
‖∇en‖2∗,n −

1

2
‖πn − π̂n‖2n−1 �

G.2.2 Follow-the-Regularized-Leader

We consider another type of base algorithm, FTRL, which is mainly different from mirror descent
in the way that constrained decision sets are handled [37]. In this case, the exact update rule of
PICCOLO can be written as

πn = arg min
π∈Π

〈
wn∇l̂n, π

〉
+

n−1∑
m=1

〈wm∇lm, π〉+Brm(π||πm) [Prediction]

π̂n+1 = arg min
π∈Π

n∑
m=1

〈wm∇lm, π〉+Brm(π||πm) [Correction]

From the above equations, we verify that MOBIL [23] is indeed a special case of PICCOLO, when
the base algorithm is FTRL.

We show PICCOLO with FTRL has the following guarantee.

21

Proposition G.2. Assume the base algorithm of PICCOLO is FTRL satisfying the Assumption 4.1.
Then it holds that, for any π ∈ Π,

N∑
n=1

wn 〈∇ln, πn − π〉 ≤MN +

N∑
n=1

w2
n

2
‖∇en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

We show the above results of PICCOLO using a different technique from [23]. Instead of developing
a specialized proof like they do, we simply use the properties of FTRL on the 2N -step new adversarial
problem!

To do so, we recall some facts of the base algorithm FTRL. First, FTRL in (10) is equivalent to
Follow-the-Leader (FTL) on a surrogate problem with the per-round loss is 〈gn, π〉+Brn(π||πn).
Therefore, the regret of FTRL can be bounded by the regret of FTL in the surrogate problem plus the
size of the additional regularization Brn(π||πn). Second, we recall a standard techniques in proving
FTL, called Strong FTL Lemma (see e.g. [37]), which is proposed for adversarial online learning.
Lemma G.2 (Strong FTL Lemma [37]). For any sequence {πn ∈ Π} and {ln},

regretN (l) :=

N∑
n=1

ln(πn)−min
π∈Π

N∑
n=1

ln(π) ≤
N∑
n=1

l1:n(πn)− l1:n(π?n)

where π?n ∈ arg minπ∈Π l1:n(π).

Using the decomposition idea above, we show the performance of PICCOLO following sketch
below: first, we show a bound on the regret in the surrogate predictable problem with per-round
loss 〈∇ln, π〉+Brn(π||πn); second, we derive the bound for the original predictable problem with
per-round loss 〈∇ln, π〉 by considering the effects of Brn(π||πn). We will prove the first step by
applying FTL on the transformed 2N -step adversarial problem of the original N -step predictable
surrogate problem and then showing that PICCOLO achieves the optimal regret in the original N -step
predictable surrogate problem. Interestingly, we recover the bound in the stronger FTL Lemma
(Lemma G.3) by Cheng et al. [23], which they suggest is necessary for proving the improved regret
bound of their FTRL-prediction algorithm (MOBIL).
Lemma G.3 (Stronger FTL Lemma [23]). For any sequence {πn} and {ln},

regretN (l) =

N∑
n=1

l1:n(πn)− l1:n(π?n)−∆n

where ∆n+1 := l1:n(πn+1)− l1:n(π?n) ≥ 0 and π?n ∈ arg minπ∈Π l1:n(π).

Our new reduction-based regret bound is presented below.

Proposition G.3. Let {ln} be a predictable loss sequence with predictable information {l̂n}. Suppose
the decision sequence π̂1, π1, π̂2, . . . , π̂N , πN is generated by running FTL on the transformed
adversarial loss sequence l̂1, e1, l̂2, . . . , l̂N , eN , then the bound in the Stonger FTL Lemma holds.
That is, regretN (l) ≤∑N

n=1 l1:n(πn)− l1:n(π?n)−∆n, where ∆n+1 := l1:n(πn+1)− l1:n(π?n) ≥ 0
and π?n ∈ arg minπ∈Π l1:n(π).

Proof. First, we transform the loss sequence and write
N∑
n=1

ln(πn) =

N∑
n=1

l̂n(πn) + en(πn) =

(
N∑
n=1

l̂n(π̂n) + en(πn)

)
+

(
N∑
n=1

l̂n(πn)− l̂n(π̂n)

)
Then we apply standard Strong FTL Lemma on the new adversarial problem in the left term.
N∑
n=1

l̂n(π̂n) + en(πn)

≤
N∑
n=1

(l̂ + e)1:n(πn)−min
π∈Π

(l̂ + e)1:n(π) +

N∑
n=1

((l̂ + e)1:n−1 + l̂n)(π̂n)−min
π∈Π

((l̂ + e)1:n−1 + l̂n)(π)

=

N∑
n=1

l1:n(πn)−min
π∈Π

l1:n(π) +

N∑
n=1

(l1:n−1 + l̂n)(π̂n)− (l1:n−1 + l̂n)(πn)

22

where the first inequality is due to Strong FTL Lemma and the second equality is because FTL update
assumption.

Now we observe that if we add the second term above and
∑N
n=1 l̂n(πn)− l̂n(π̂n) together, we have

N∑
n=1

(l1:n−1 + l̂n)(π̂n)− (l1:n−1 + l̂n)(πn) + (l̂n(πn)− l̂n(π̂n))

=

N∑
n=1

(l1:n−1)(π̂n)− l1:n−1(πn) = ∆n

Thus, combing previous two inequalities, we have the bound in the Stronger FTL Lemma:

N∑
n=1

ln(πn) ≤
N∑
n=1

l1:n(πn)−min
π∈Π

l1:n(π)−∆n �

Using Proposition G.3, we can now bound the regret of PICCOLO in Proposition G.2 easily.

Proof of Proposition G.2. Suppose
∑n
m=1Brm(·||πm) is 1-strongly convex with respect to some

norm ‖ · ‖n. Let fn = 〈wn∇ln, πn〉+Brn(π||πm)11. Then by a simple convexity analysis (see e.g.
see [37]) and Proposition G.3, we can derive

regretN (f) ≤
N∑
n=1

(f1:n(πn)−min
π∈Π

f1:n(π))− (f1:n−1(πn)− f1:n−1(π̂n))

≤
N∑
n=1

w2
n

2
‖∇en‖2n,∗ −

1

2
‖πn − π̂n‖2n−1

Finally, because rn is proximal (i.e. Brn(πn||πn) = 0), we can bound the original regret: for any
π ∈ Π, it satisfies that

N∑
n=1

wn 〈∇ln, πn − π〉 ≤
N∑
n=1

fn(πn)− fn(π) +Brn(π||πn)

≤MN +

N∑
n=1

w2
n

2
‖∇en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

where we use Assumption 4.1 and the bound of regretN (f) in the second inequality. �

H Policy Optimization Analysis of PICCOLO

In this section, we discuss how to interpret the bound given in Theorem 4.1

N∑
n=1

wn 〈gn, πn − π〉 ≤MN +

N∑
n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

in the context of policy optimization and show exactly how the optimal bound

E

[
N∑
n=1

〈wngn, πn − π〉
]
≤ O(1) + CΠ,Φ

w1:N√
N

(34)

is derived. We will discuss how model learning can further help minimize the regret bound later in
Appendix H.4.

11Again we overload the notation; fn does not refer to the per-round loss in (7).

23

H.1 Assumptions

We introduce some assumptions to characterize the sampled gradient gn. Recall gn = ∇h̃n(πn) for
IL and gn = ∇f̃n(πn) for RL.
Assumption H.1. ‖E[gn]‖2∗ ≤ G2

g and ‖gn − E[gn]‖2∗ ≤ σ2
g for some finite constants Gg and σg .

Similarly, we consider properties of the predictive model Φn that is used to estimate the gradient of
the next per-round loss. Let P denote the class of these models (i.e. Φn ∈ P), which can potentially
be stochastic. We make assumptions on the size of ĝn and its variance.
Assumption H.2. ‖E[ĝn]‖2∗ ≤ G2

ĝ and E[‖ĝn − E[ĝn]‖2∗] ≤ σ2
ĝ for some finite constants Gĝ and σĝ .

Additionally, we assume these models are Lipschitz continuous.
Assumption H.3. There is a constant L ∈ [0,∞) such that, for any instantaneous cost ψ and any
Φ ∈ P , it satisfies ‖E[Φ(π, ψ)]− E[Φ(π′, ψ)]‖∗ ≤ L‖π − π′‖.

Lastly, as PICCOLO is agnostic to the base algorithm, we assume the local norm ‖ · ‖n chosen by
the base algorithm at round n satisfies ‖ · ‖2n ≥ αn‖ · ‖2 for some αn > 0. This condition implies
that ‖ · ‖2n,∗ ≤ 1

αn
‖ · ‖2∗. In addition, we assume αn is non-decreasing so that MN = O(αN) in

Assumption 4.1, where the leading constant in the bound O(αN) is proportional to |Π|, as commonly
chosen in online convex optimization.

H.2 A Useful Lemma

We study the bound in Theorem 4.1 under the assumptions made in the previous section. We first
derive a basic inequality, following the idea in [23, Lemma 4.3].
Lemma H.1. Under Assumptions H.1, H.2, and H.3, it holds

E[‖en‖2∗,n] = E[‖gn − ĝn‖2∗,n] ≤ 4

αn

(
σ2
g + σ2

ĝ + L2
n‖πn − π̂n‖2n + En(Φn)

)
where En(Φn) = ‖E[gn]− E[Φn(πn, ψn)]‖2∗ is the prediction error of model Φn.

Proof. Recall ĝn = Φn(π̂n, ψn). Using the triangular inequality, we can simply derive

E[‖gn − ĝn‖2∗,n]

≤ 4
(
E[‖gn − E[gn]‖2∗,n] + ‖E[gn]− E[Φn(πn, ψn)]‖2∗,n + ‖E[Φn(πn, ψn)]− E[ĝn]‖2∗,n + E[‖E[ĝn]− ĝn‖2∗,n]

)
= 4

(
E[‖gn − E[gn]‖2∗,n] + ‖E[gn]− E[Φn(πn, ψn)]‖2∗,n + ‖E[Φn(πn, ψn)]− E[Φn(π̂n, ψn)]‖2∗,n + E[‖E[ĝn]− ĝn‖2∗,n]

)
≤ 4

(
1

αn
σ2
g +

1

αn
En(Φn) + ‖E[Φn(πn, ψn)]− E[Φn(π̂n, ψn)]‖2∗,n +

1

αn
σ2
ĝ

)
≤ 4

αn

(
σ2
g + σ2

ĝ + L2‖πn − π̂n‖2n + En(Φn)
)

where the last inequality is due to Assumption H.3. �

H.3 Optimal Regret Bounds

We now analyze the regret bound in Theorem 4.1
N∑
n=1

wn 〈gn, πn − π〉 ≤MN +

N∑
n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1 (35)

We first gain some intuition about the size of

MN + E

[
N∑
n=1

w2
n

2
‖en‖2∗,n

]
. (36)

Because when adapt(hn, Hn−1, en, wn) is called in the Correction Step in (16) with the error
gradient en as input, an optimal base algorithm (e.g. all the base algorithms listed in Appendix D)

24

would choose a local norm sequence ‖ · ‖n such that (36) is optimal. For example, suppose ‖en‖2∗ =
O(1) and wn = np for some p > −1. If the base algorithm is basic mirror descent (cf. Appendix D),
then αn = O(w1:n√

n
). By our assumption that MN = O(αN), it implies (36) can be upper bounded

by

MN + E

[
N∑
n=1

w2
n

2
‖en‖2∗,n

]
≤ O

(
w1:N√
N

)
+

[
N∑
n=1

w2
n

√
n

2w1:n
‖en‖2∗

]

≤ O
(
w1:N√
N

+

N∑
n=1

w2
n

√
n

w1:n

)
= O

(
Np+1/2

)
which will lead to an optimal weighted average regret in O(1√

N
).

PICCOLO actually has a better regret than the simplified case discussed above, because of the
negative term − 1

2‖πn − π̂n‖2n−1 in (35). To see its effects, we combine Lemma H.1 with (35) to
reveal some insights:

E

[
N∑
n=1

wn 〈gn, πn − π〉
]

≤ O(αN) + E

[
N∑
n=1

w2
n

2
‖en‖2∗,n −

1

2
‖πn − π̂n‖2n−1

]
(37)

≤ O(αN) + E

[
N∑
n=1

2w2
n

αn

(
σ2
g + σ2

ĝ + L2‖πn − π̂n‖2n + En(Φn)
)
− αn−1

2
‖πn − π̂n‖2

]

=

(
O(αN) + E

[
N∑
n=1

2w2
n

αn

(
σ2
g + σ2

ĝ + En(Φn)
)])

+

(
E

[
N∑
n=1

(
2w2

n

αn
L2 − αn−1

2
)‖πn − π̂n‖2

])
(38)

The first term in (38) plays the same role as (36); when the base algorithm has an optimal adapt
operation and wn = np for some p > −1, it would be in O

(
Np+1/2

)
. Here we see that the constant

factor in this bound is proportional to σ2
g + σ2

ĝ + En(Φn). Therefore, if the variances σ2
g , σ2

ĝ of the
gradients are small, the regret would mainly depend on the prediction error En(Φn) of Φn. In the
next section (Appendix H.4), we will show that when Φn is learned online (as the authors in [23]
suggest), on average the regret is close to the regret of using the best model in the hindsight. The
second term in (38) contributes to O(1) in the regret, when the base algorithm adapts properly to wn.
For example, when αn = Θ(w1:n√

n
) and wn = np for some p > −1, then

N∑
n=1

2w2
n

αn
L2 − αn−1

2
=

N∑
n=1

O(np−1/2 − np+1/2) = O(1)

In addition, because ‖πn−π̂n‖would converge to zero, the effects of the second term in (38) becomes
even minor.

In summary, for a reasonable base algorithm and wn = np with p > −1, running PICCOLO has the
regret bound

E

[
N∑
n=1

wn 〈gn, πn − π〉
]

= O(αN) +O

(
w1:N√
N

(σ2
g + σ2

ĝ)

)
+O(1) + E

[
N∑
n=1

2w2
n

αn
En(Φn)

]
(39)

Suppose αn = Θ(|Π|w1:n√
n

) and wn = np for some p > −1, This implies the inequality

E

[
N∑
n=1

〈wngn, πn − π〉
]
≤ O(1) + CΠ,Φ

w1:N√
N

(34)

25

where CΠ,Φ = O(|Π|+ σ2
g + σ2

ĝ + supnEn(Φn)). The use of non-uniform weights can lead to a
faster on average decay of the standing O(1) term in the final weighted average regret bound, i.e.

1

w1:N
E

[
N∑
n=1

〈wngn, πn − π〉
]
≤ O

(
1

w1:N

)
+
CΠ,Φ√
N

In general, the authors in [28, 23] recommend using p� N (e.g. in the range of [0, 5]) to remove the
undesirable constant factor, yet without introducing large multiplicative constant factor.

H.4 Model Learning

The regret bound in (39) reveals an important factor that is due to the prediction error
E
[∑N

n=1
2w2

n

αn
En(Φn)

]
, where we recall En(Φn) = ‖E[gn]− E[Φn(πn, ψn)]‖2∗. Cheng et al. [23]

show that, to minimize this error sum through model learning, a secondary online learning problem
with per-round loss En(·) can be considered. Note that this is a standard weighted adversarial online
learning problem (weighted by 2w2

n

αn
), because En(·) is revealed after one commits to using model

Φn.

While in implementation the exact function En(·) is unavailable (as it requires infinite data), we
can adopt an unbiased upper bound. For example, Cheng et al. [23] show that En(·) can be upper
bounded by the single- or multi-step prediction error of a transition dynamics model. More generally,
we can learn a neural network to minimize the gradient prediction error directly. As long as this
secondary online learning problem is solved by a no-regret algorithm, the error due to online model
learning would contribute a term in O(w1:N εP,N/

√
N) + o(w1:N/

√
N) in (39), where εP,N is the

minimal error achieved by the best model in the model class P (see [23] for details).

I Experimental Details

I.1 Algorithms

Base Algorithms In the experiments, we consider three commonly used first-order online learning
algorithms: ADAM, NATGRAD, and TRPO, all of which adapt the regularization online to alleviate
the burden of learning rate tuning. We provide the decomposition of ADAM into the basic three
operations in Appendix D, and that of NATGRAD in Appendix F. In particular, the adaptivity of
NATGRAD is achieved by adjusting the step size based on a moving average of the dual norm of the
gradient. TRPO adjusts the step size to minimize a given cost function (here it is a linear function
defined by the first-order oracle) within a pre-specified KL divergence centered at the current decision.
While greedily changing the step size in every iteration makes TRPO an inappropriate candidate for
adversarial online learning. Nonetheless, it can still be written in the form of mirror descent and
allows a decomposition using the three basic operators; its adapt operator can be defined as the
process of finding the maximal scalar step along the natural gradient direction such that the updated
decision stays within the trust region. For all the algorithms, a decaying step size multiplier in the
form η/(1 + α

√
n) is also used; for TRPO, it is used to specify the size of trust regions. The values

chosen for the hyperparameters η and α can be found in Table 2. To the best of our knowledge, the
conversion of these approaches into unbiased model-based algorithms is novel.

Reinforcement Learning Per-round Loss In iteration n, in order to compute the online gradi-
ent (7), GAE [42] is used to estimate the advantage function Aπn−1

. More concretely, this advantage
estimate utilizes an estimate of value function Vπn−1

(which we denote V̂πn−1
) and on-policy samples.

We chosen λ = 0.98 in GAE to reduce influence of the error in Vπn−1
, which can be catastrophic.

Importance sampling can be used to estimate Aπn−1
in order to leverage data that are collected

on-policy by running πn. However, since we select a large λ, importance sampling can lead to
vanishing importance weights, making the gradient extremely noisy. Therefore, in the experiments,
importance sampling is not applied.

Gradient Computation and Control Variate The gradients are computed using likelihood-ratio
trick and the associated advantage function estimates described above. A scalar control variate is

26

0 50 100 150 200 250
Iteration

0

200

400

600

800

1000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
DYNA-RANDOM

PICCOLO-RANDOM

PICCOLO-TRUEDYN

(a) Random dynamics

0 50 100 150 200 250
Iteration

0

200

400

600

800

1000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
DYNA-ADVERSARIAL

PICCOLO-ADVERSARIAL

PICCOLO-TRUEDYN

(b) Adversarial model

0 50 100 150 200 250
Iteration

0

200

400

600

800

1000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
DYNA-RANDOM

PICCOLO-RANDOM

PICCOLO-TRUEDYN

(c) Random dynamics

0 50 100 150 200 250
Iteration

0

200

400

600

800

1000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
DYNA-ADVERSARIAL

PICCOLO-ADVERSARIAL

PICCOLO-TRUEDYN

(d) Adversarial model

Figure 2: Performance of PICCOLO and DYNA with predictive models of different accuracies.
NATGRAD (left two plots) and TRPO (right two plots) are used as base algorithms. The shaded regions
are 0.5 standard deviation.

0 25 50 75 100 125 150 175
Iteration

0

1000

2000

3000

4000

5000

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

(a) Hopper

0 25 50 75 100 125 150 175
Iteration

0

1000

2000

3000

4000

5000

6000

M
ea

nS
um

O
fR

ew
ar

ds
Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

(b) Snake

0 100 200 300 400
Iteration

−900

−800

−700

−600

−500

−400

−300

−200

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

(c) Reacher3D

0 200 400 600 800
Iteration

0

500

1000

1500

2000

2500

M
ea

nS
um

O
fR

ew
ar

ds

Base Algorithm
PICCOLO-LAST

PICCOLO-REPLAY

PICCOLO-TRUEDYN

(d) Walker3D

Figure 3: The performance of PICCOLO in various tasks. ADAM is used as the base algorithms. The
shaded regions account for 0.5 standard deviation.

further used to reduce the variance of the sampled gradient, which is set to the mean of the advantage
estimates evaluated on newly collected data.

Policies and Value Networks Simple feed-forward neural networks are used to construct all of the
function approximators (policy and value function) in the tasks. They have 1 hidden layer with 32
tanh units for all policy networks, and have 2 hidden layers with 64 tanh units for value function
networks. Gaussian stochastic policies are considered, i.e., for any state s ∈ S, πs is Gaussian, and
the mean of πs is modeled by the policy network, whereas the diagonal covariance matrix is state
independent (which is also learned). After the policy update, a new value function estimate V̂πn
is computed by minimizing the mean of squared difference between V̂πn and V̂πn−1

+ Âπn , where
Âπn is the GAE estimate using V̂πn−1

and λ = 0.98, through ADAM with batch size 128, number of
batches 2048, and learning rate 0.001.

I.2 Tasks

The robotic control tasks that are considered in the experiments are CartPole, Hopper, Snake,
Reacher3D, and Walker3D from OpenAI Gym [56] with the DART physics engine [57]12. CartPole
is a classic control problem, and its goal is to keep a pole balanced in a upright posture, by only
applying force to the cart. Hopper, Snake, and Walker3D are locomotion tasks, of which the goal
is to control an agent to move forward as quickly as possible without falling down (for Hopper and
Walker3D) or deviating too much from moving forward (for Snake). Hopper is monopedal and
Walker3D is bipedal, and both of them are subjected to significant contact discontinuities that are
hard or even impossible to predict. The Reacher3D task is about controlling a 5 degrees-of-freedom
manipulator to reach a random target position in a 3D space.

I.3 Complete Experimental Results

Here we provide additional experimental results where the performance is measured by the accumu-
lated rewards. We note that, when reading these figures, we should only compare the PICCOLOed
algorithm with the base algorithm. The purpose of these experiments is to validate whether PICCOLO,
as a meta-algorithm, can improve the original approach.

12The environments are defined in DartEnv, hosted at https://github.com/DartEnv.

27

In general, we see PICCOLO improves the base algorithm, but the exact amount depends on the
specific setting. This trend is similar to trend of the experiments presented in the main paper. However,
we note the followings. First, we find that ADAM does not work well in Hopper and Walker3D,
even the base algorithm. While PICCOLO does improve its performance in these two tasks, ADAM
is still inferior to NATGRAD and TRPO. This might be due to that ADAM only has a diagonal
regularization, which may be insufficient to capture the nonlinearity in these tasks. Second, we
find that PICCOLO with TRPO has not yet converged under the adversarial setting. This might be
because 1) the convergence is slow and would take more iterations 2) TRPO as a base algorithm is
not designed for the adversarial setting (as mentioned above). We suspect the latter may be the cause,
as TRPO changes the regularization size greedily for every iteration, which could incur a linear regret
in adversarial online learning. A further investigation into this issue and robustifying TRPO are left as
future work.

CartPole Hopper Snake Reacher3D Walker3D

Observation space dimension 4 11 17 21 41
Action space dimension 1 3 6 5 15
State space dimension 4 12 18 10 42
Number of samples from env. per iteration 4k 16k 16k 16k 16k
Number of samples from model dyn. per iteration 4k 48k 16k 48k 48k
Length of horizon 1,000 1,000 1,000 500 1,000
Number of iterations 100 200 200 500 1,000
Number of seeds 12 4 6 4 4
α 13 0.1 0.01 0.01 0.01 0.01
η in ADAM 0.01 0.03 0.005 0.01 0.01
η in NATGRAD 0.1 0.1 0.06 0.1 0.2
η in TRPO 0.003 0.004 0.002 0.002 0.008
β1 in ADAM 0 0.9 0.9 0.9 0.9

Table 2: Tasks specifics and hyperparameters. β2 = 0.999 is set for NATGRAD and ADAM.

13α, and η appear in the decaying step size multiplier for all the algorithms in the form η/(1 + α
√
n).

28

	Introduction
	Problem Definition
	IL and RL as Predictable Online Learning
	IL as Online Learning
	RL as Online Learning
	Predictability

	A PREDICTOR-CORRECTOR LEARNING FRAMEWORK
	Building Blocks
	The Meta-Algorithm PicCoLO
	Base Algorithms
	The PicCoLOed Algorithm

	THEORETICAL ANALYSIS
	Convergence Properties
	Comparison

	EXPERIMENTS
	CONCLUSION
	Why Does PicCoLO Work?
	Theoretical Comparison
	Proof of Lemma 3.3
	The Basic Operations of Base Algorithms
	Stationary Regularization Class
	Basic mirror descent beck2003mirror
	Basic FTRL mcmahan2017survey
	Adam kingma2014adam and AMSGrad reddi2018convergence
	Adaptive Natgrad

	Non-Stationary Regularization Class
	Adagrad

	A Practical Variation of PicCoLO
	Example: PicCoLOing Natural Gradient Descent
	Regret Analysis of PicCoLO
	Reduction from Predictable Online Learning to Adversarial Online Learning
	Optimal Regret Bounds for Predictable Problems
	Mirror Descent
	Follow-the-Regularized-Leader

	Policy Optimization Analysis of PicCoLO
	Assumptions
	A Useful Lemma
	Optimal Regret Bounds
	Model Learning

	Experimental Details
	Algorithms
	Tasks
	Complete Experimental Results

