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 

Abstract—We study the modeling of Lagrangian systems with 

multiple degrees of freedom. Based on system dynamics, canonical 

parametric models require ad hoc derivations and sometimes 

simplification for a computable solution; on the other hand, due to 

the lack of prior knowledge in the system’s structure, modern 

non-parametric models in machine learning face the curse of 

dimensionality, especially in learning large systems. In this paper, 

we bridge this gap by unifying the theories of Lagrangian systems 

and vector-valued reproducing kernel Hilbert space. We refor-

mulate Lagrangian systems with kernels that embed the govern-

ing Euler-Lagrange equation—the Lagrangian kernels—and 

show that these kernels span a subspace capturing the Lagran-

gian’s projection as inverse dynamics. By such property, our 

model uses only inputs and outputs as in machine learning and 

inherits the structured form as in system dynamics, thereby re-

moving the need for the mundane derivations for new systems as 

well as the generalization problem in learning from scratches. In 

effect, it learns the system’s Lagrangian, a simpler task than di-

rectly learning the dynamics. To demonstrate, we applied the 

proposed kernel to identify the robot inverse dynamics in simula-

tions and experiments. Our results present a competitive novel 

approach to identifying Lagrangian systems, despite using only 

inputs and outputs. 

 

Index Terms— Lagrangian Systems, System Identification, 

Vector-Valued Reproducing Kernel Hilbert Space.  

I. INTRODUCTION 

AGRANGIAN systems constitute an important class of 

dynamical systems, covering various electro/mechanical 

applications. Euler-Lagrange equation, simplifying complicated 

dynamics, governs these systems by the variation of the La-

grangian with respect to the generalized coordinates. Canoni-

cally, Lagrangian systems are approximated with analytic 

models derived by analyzing the system’s energy. However, 

though the analytic models are often linear in unknowns whose 

number is linearly proportional to the system’s degrees of 

freedom (DOF), identifying general systems with analytic 
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models suffers from computational complexity as the DOF 

increases (e.g. general robot dynamics with arbitrary links, 

elasticity, or no prior kinematic information), let alone the 

mundane derivations for each new system.  

Machine learning, on the other hand, has proven as a suc-

cessful and convenient tool in system identification, treating 

dynamical systems as blackbox and learning the mapping from 

inputs to outputs [1-5]. Despite such convenience, however, the 

necessary observations for generalization to unseen data im-

pede learning general dynamical systems, in particular mul-

ti-input-multi-output systems. The curse of dimensionality 

occurs, because most approaches ignore the correlations be-

tween outputs. For a system with N outputs, the approximation 

error of learning N mappings independently can be, in the worst 

case, N times more than that of modeling a single vector-valued 

function. Modeling the correlation, or transfer learning, reduces 

the effective number of mappings to learn. 

We are interested in the link between the analytic models and 

the learning models. In particular, we focus on the kernel 

methods [6-9], the algorithms based on reproducing kernel 

Hilbert space (RKHS), which have become ubiquitous for the 

elegancy and the ability to approximate arbitrary continuous 

functions [10]. Because of the duality between RKHS and 

feature space, these two approaches are equivalent in essence, 

yet with the nuance that the analytic models assume the de-

scription of the system’s Lagrangian to be known. That is, the 

analytic models identify the Lagrangian, whereas the learning 

models identify the dynamics. Therefore, if the given Lagran-

gian formulation approximates well, the analytic models, in-

heriting the structure of Lagrangian systems the learning mod-

els lack, often enjoy better generalization. But still, the analytic 

models reach the bottleneck in computation and derivation 

when modeling large systems. This observation motivates us to 

design learning models that learn the Lagrangian, the truly 

indispensable unknown in a Lagrangian system. 

The Lagrangian kernel is a general framework that unifies 

the theories of RKHS and Lagrangian systems. We reformulate 

Lagrangian systems in RKHS in which a bounded linear oper-

ator representing Euler-Lagrange equation exists, and study the 

geometric relationship between the Lagrangian and inverse 

dynamics (the mapping from generalized coordinates to gen-

eralized forces). We show if such a scalar RKHS
L

exists and 

contains the Lagrangian , then
L

includes the (scalar) in-

verse dynamics of each generalized coordinate as the projection 
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of on the subspace spanned by the scalar Lagrangian kernels 

in
L

. Further, we show that these scalar Lagrangian kernels 

effectually induce a vector-valued Lagrangian kernel that spans 

a RKHS containing inverse dynamics as a vector-valued func-

tion. Finally, we indicate that the Lagrangian kernels model any 

Lagrangian system, because such RKHSs are dense in the 

function space of admissible Lagrangians. In short, our result 

provides a pathway to structure kernels for Lagrangian systems. 

In particular, the vector-valued Lagrangian kernels model the 

correlations between outputs, confining the learning complex-

ity. 

Modeling vector-valued functions has been treated mostly as 

multiple independent scalar problems. To further consider the 

outputs’ correlations, some algorithms are modified to penalize 

the differences between outputs [11-14], controlling the size of 

the hypothesis space; other algorithms, e.g. locally weighted 

projection regression [15], can be intrinsically extended to 

vector-valued problems. Nevertheless, these methods rather 

induce biases or are ad hoc.  

The theory of vector-valued RKHS, on the other hand, pro-

vides a natural extension. However, unlike scalar RKHSs, 

vector-valued RKHS has drawn little attention until last decade, 

though the mathematical studies dates back to earlier studies 

[16, 17]. Recently, because of the increasing need of multi-task 

learning and transfer learning, kernel methods based on scalar 

RKHS and the representer theorem [18] were further general-

ized [10, 19-22]. The designed vector-valued kernels, intrinsi-

cally considering the correlations between outputs, improve the 

performance [19, 23-26]. The characteristics of a kernel impact 

the convergence to the target function as the observations ac-

cumulate: The structure of the modelled function space, namely 

the respective norm in RKHS, controls the effective complexity 

of the hypothesis space, which decides the generalization. 

Therefore, by designing the parameterization of a kernel, the 

outcome can significantly improves, e.g. [27]. 

We demonstrate the Lagrangian kernels with the identifica-

tion of robot inverse dynamics, which is widely used in mod-

el-based controls [28-30]. To investigate, we combine the 

proposed Lagrangian kernels with parametric basis for friction 

in a semi-parametric framework and study the differences be-

tween learning the Lagrangian and directly modeling the dy-

namics. Our results show, the Lagrangian kernels are more 

favorable, because the machine exploits Euler-Lagrange equa-

tion, thereby adopting a smaller hypothesis space. 

This paper is organized as follows. In Section II, our main 

contribution, we reformulate Lagrangian systems in RKHS and 

design the Lagrangian kernels that embed the correlations and 

structure of inverse dynamics into the inner product of RKHS. 

Then we apply the Lagrangian kernels to identify robot dy-

namics in a semi-parametric framework to approximate sys-

tems that are not totally Lagrangian in Section III, and show the 

results of simulations and experiments in Section IV. Finally, 

we discuss the results and its potential applications in Section V, 

and give a short conclusion in Section VI.  

II. LAGRANGIAN SYSTEMS IN REPRODUCING KERNEL HILBERT 

SPACE AND THE LAGRANGIAN KERNELS 

We reformulate Lagrangian systems in RKHS using the 

Lagrangian kernels. In the following, we first briefly review the 

essence of RKHS theory [10, 20] in Section II-A. Then in 

Section II-B, we show that the inverse dynamics of a particular 

generalized coordinate lies in the subspace spanned by the 

scalar Lagrangian kernels, and unify these relationships into the 

vector-valued Lagrangian kernel. Finally, we illustrate a family 

of Lagrangian kernels that learns arbitrary Lagrangian systems 

with only inputs and outputs in Section II-C. 

A. Reproducing Kernel Hilbert Space[10, 20] 

Let be a metric space with probability measure
x

 and be 

a finite-dimensional real Hilbert space endowed with the inner 

product ,  . denotes the space of functions that maps 

from to , and ( ; )C denotes the Banach space of con-

tinuous functions from to endowed with infinity norm. 

Given two normed linear space A and B , we denote by ( ; )L A B

the Banach space of bounded linear operators from A to B , by

( )L A the bounded linear operators from A to A , and by ( )L A


 

the bounded positive semi-definite operators defined on A . For 

simplicity, we use the convention : {1,..., }
M

M , where M




and


is the set of strictly positive numbers; a matrix N N
A


  

with ( , )i j entry as
ij

A is denoted as ,
( )

Nij i j
A A


 . 

A RKHS is related to a special class of functions, called 

kernels of positive type. 

Definition 1 

Given a metric space and a Hilbert space as defined pre-

viously, a kernel : ( )K L  is said to be of positive 

type, if K is positive semidefinite, i.e. 

 
,

, ( , ) 0

M

i j i i j j

i j

c c y K x x y


 , (1) 

for any M


 , { | }
j M

x j  , { | }
j M

y j  , and

1
,..,

M
c c   . 

In particular, for  , Definition 1 defines the conventional 

scalar kernels :k   , satisfying 

 
,

( , ) 0

M

i j i j

i j

c c k x x


 . (2) 

For a general vector-valued kernel K , (1) can also be treated as 

a scalar kernel ( , )
nm i j

K x x defined on  as 

 
, ,

, ,

( , ) 0

M N

i j i n j m nm i j

i j n m

c c y y K x x
 

    (3) 

in which ( , )
nm i j

K x x is the ( , )n m  entry of the matrix ( , )
i j

K x x

and N is the dimension of . That is, the equivalent matrix 

,
( ( , )) ( )

NM

nm i j in jm
K x x L


 in (3) has the property of Gramian 

matrix, which induces RKHS by inner product. 

Definition 2 

A Hilbert space of functions f  endowed with the inner 
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product ,  and norm  is called a reproducing kernel 

Hilbert space on , if there is a map : ( ; )
x

K L satis-

fying x   

 ( ), , ,  
x

f x y f K y f    . (4) 

In particular, the reproducing kernel : ( )K L  is 

defined as 

 
*

( , ) ,  ,
x u

K x u K K x u   , (5) 

and 

  
*

( ) ,  
x

f x K f f    (6) 

where
*

: ( ; )
x

K L is the adjoint of
x

K . 

We note that : ( )K L  denotes the kernel function 

and : ( ; )
x

K L denotes the feature map, and that

( , )K x u y is equal to ( )( )
u

K y x , where the second argument u is 

used as the index. Therefore, the Hilbert space can be char-

acterized as 

 { | , }
x

span K y x y    (7) 

where the bar denotes the completion, with the following prop-

erties: 

Proposition 1 

1. A reproducing kernel is unique up to isometries. 

2. A bounded reproducing kernel exists if and only if x  ,

( )f x is a continuous linear map of f running through . 

3. ( , )K x u is of positive type ,x u  . 

4. ( ; )C if and only if ( , )K x u is locally bounded and 

x X  ,
x

K is strongly continuous.  

The first and the third propositions are the properties of Hilbert 

space; the second is attributable to (6) and the last results from 

continuity, which is sufficient for modeling dynamics.  

In addition, it can be easily shown that
*

( , ) ( , )K x u K u x and

( , ) ( )K x x L


 , i.e. ( , )K x x is a semi-norm of . In par-

ticular, we have , ,  ,x u y v    

 
1/ 2

( , )
x

K K x x  (8) 

and 

 , ( , ) ,
u x

v K u x y K v K y ; (9) 

By (9), the ( , )n m element in the matrix ( , )K x u ,  

 ( , ) , ( , ) ,
nm n m x n u m

K x u e K x u e K e K e  , (10) 

is the inner product of the images in of canonical basis

,
n m

e e  . Therefore, the kernel ( , )K x u  implicitly encodes 

the correlation between different coordinates in . In short, (6)

generalizes the reproducing property of scalar kernels

( ) ,
x

f x k f from the inner product to the locally bounded 

linear operator
*

x
K . 

Finally, some admissible constructions of RKHSs and the 

generalized representer theorem are reviewed below. 

Proposition 2 

Let ,G K be two reproducing kernels of RKHS as defined pre-

viously.  

1. The sum K G is a reproducing kernel and the corre-

sponding RKHS is the direct sum of the two RKHSs. 

2. The Hadamard product, K G , is a reproducing kernel and 

the corresponding RKHS is the tensor product of the two 

RKHSs. 

3. Let
0
be a compact Hausdorff space,

N
 ,

0
:

p
 

for all
N

p . Given a scalar kernel
0 0

:G   , then 

  
,

( , ) ( , )
N

p q p q
K x u G x u


    (11) 

is a vector-valued reproducing kernel. 

Proposition 3 (Representer Theorem) 

Given a metric space , a Hilbert space , a reproducing 

kernel : ( )K L  of (vector-valued) RKHS , a strictly 

monotonically increasing real-valued function g on[0, ) , an 

arbitrary cost function : ( ) { }
M

c     , and a set of 

samples{( , ) | , }
Mi i i i i

x y x y


  , the minimizer of  

  1 1 1
min (( , , ( ),..., ( , , ( )) ( )

M M M
f

c x y f x x y f x g f


   (12) 

admits a representation of the form 

 
i

l

x i

i

f K 


  . (13) 

where
i

  and 0M  . 

B. Lagrangian Systems: A Reproducing Kernel Hilbert Space 

Formulation 

Consider an N-DOF Lagrangian system. Let
N

q be the 

generalized coordinates and N  be the generalized forces. 

Define { ( , , ) | }x q q q x


    as the set of all the possible 

states with the probability measure
x

 , 
N

 as the space of 

generalized forces, and the subset {( , ) | , }X q q q q  . For 

simplicity, with the abuse of notations, we write, for example,

q , x X , or x . 

The system is governed by the variation of the Lagrangian in 

Euler-Lagrange equation [31]:  

 ( ) ( , , )
n

n n

d
q q t

dt q q


 
 

 
, (14) 

in which
K P

E E  is the Lagrangian with kinematic energy

K
E and potential energy

P
E , and

N
n . For (14), the choice of 

the Lagrangian is not unique; for example,  

 '( , , ) ( , , ) ( , ) /q q t q q t dF q t dt   (15) 

is also a valid Lagrangian, in which ( , )F q t  is a differentiable 

function. 

To formulate (14) in RKHS, first, we exploit the reproducing 

property (4) to show that the differential operator (14) is 

equivalent to a bounded linear operator in RKHS, if the La-

grangian is implicit in time, i.e. ( , , ) ( , )q q t q q . 
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Proposition 4 

Assume ( , , ) ( , )q q t q q . There exists a scalar RKHS
L

endowed with map
,

:
L x L

k X   such that
L

 satisfying 

 ,
( , , ) ,

L
n n L x

q q q T k  , (16) 

in which ( )
n L

T L is defined as  

 
,

, : ( ) ( , )
L

n L x

n n

d
f T k f q q

dt q q

 
 

 
 (17) 

for all
L

f  .  

Proof: Shown in Appendix A.    

Next, by Proposition 4, we show
,n L x

T k spans a subspace in

L
on which

n
 is the projection of .  

Proposition 5 

Define  

 
, ,

:
Tn x n L x

k T k , (18) 

 , ,
: { | }

T n Tn x
span k x   (19) 

and 

 
,

:
N

T T n
n

  . (20) 

Under the assumption in Proposition 4, 

1. The admissible Lagrangians of (14) form an affine space 

in
L

, i.e.
p h

  , where
p T
 and \

h L T
 . 

2. 
,T n L
 is a RKHS with kernel

, ,
:

Tn x T n
k  such that 

unique
,n T n

  exists satisfying 

 
,

,
( ) ,

T n
n n Tn x

x k  , x  ; (21) 

3. 
,n T n

  is the projection of on the
,T n

. 

Proof: Shown in Appendix A.    

In the following, we use
,n L x

T k when emphasizing
L

and
,Tn x

k

when emphasizing
,T n

.  

Using the above results, we show our main result: the scalar 

RKHSs
,T n

induces a vector-valued RKHS
vT

that contains 

the inverse dynamics ( )
Nn n

 


 as a vector-valued function. 

Theorem 1  

Let
L

be defined previously, and define 

  , ,
,

K ( , ) : ,
L

N

T m L u n L x
n m

x u T k T k


   (22) 

The reproducing kernel K ( , ) : ( )
N

T
x u L  defines a 

vector-valued RKHS
vT

such that there exists
vT

  satisfy-

ing
*

,
( )

T x
x K  for all x . In particular, for ,x u   

2

K ( , ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

T T

T xu L xu L

x

T T

xu L xu L

u x u

x u x d u
x u k k

q q q dt q

x d u x d u
k k

q dt q q dt dt q

   
   

   

   
   
   

 (23) 

in which
2

,
: ( / )

Nxu L L n m n m
k k x u


     and /

x
d dt is the time 

derivative with respect to the variable x .  

Proof: By Proposition 2, the construction of K
T

in (22) is a valid 

vector-valued reproducing kernel. To prove
vT

  , by repre-

senter theorem, let 

 
,

( )

N

p n n L u

n

u T k du


    (24) 

for some
n

 , and rewrite (16) as 

, ,
( ) , ( )K ( , )

L
N

n p n L x n T nm

m

x T k u x u du 


    . (25) 

Then, from Definition 2, (25) can be collected in vector form as 

 *

, ,
( ) ( ( ) )

T x T u
x K K u du    (26) 

in which
*

,
:

N

T x vT
K  is the evaluation map and 

( ) : ( ( ))
Nn n

u u 


 . Therefore, defining 

 ,
: ( )

T u
K u du   , (27) 

we have
vT

  satisfying
*

,
( )

T x
x K   for all x .  

To derive the exact formulation of K ( , )
vT

x u from ( , )
L

k x u , 

we first see from definition in (17), 

, ,
, ( ) ( ) ( , )

L
m L u n L x x u L

n n m m

d d
T k T k k x u

dt q q dt q q

   
  

   
 

 (28) 

Second, since ( , , )x q q q fulfilling ( ) 0
nq

d x  , we have 

( ) ( , ) ( )L L

x L

n n x n n

k kd d x x
k x u

dt q q dt x q x q

    
  

     
. (29) 

Finally, combining (28) and (29), and using chain rule of devi-

ation, we arrive at the equation (23).  

We call (18), or its equivalence 

 , ,
( , ) ,

L
Tn n L u n L x

k x u T k T k  (30) 

the scalar Lagrangian kernel of the nth generalized coordinate 

associated with
L

and (22) the vector-valued Lagrangian ker-

nel associated with
L

. The Lagrangian kernels, induced from

L
satisfying (16), provide the reproducing properties

,
,

( ) ,
T n

n n Tn x
x k  and

*

,
( )

T x
x K  . As such, the Lagrangian 

kernels reformulate an N-DOF Lagrangian system into the fol-

lowing representation:  

 ,
( , ) ( , ) ( ) ( )

N

p n n L u

n

q q q q u T k x du


    , (31) 

 ,
( , , ) ( ) ( )

T u
q q q K x u du    (32) 

for some :
n

  and ( )
Nn n

 


 , or 

 ,
( , , ) ( ) ( )

n Tn u
q q q k x u du    (33) 

for some :
n

  , in which by (17) 

 ,
( ) : ( ) ( , )

n L u u L

n n

d
T k x k u x

dt q q

 
 

 
, (34) 

,
( )

T u
K x ,and ,

( )
Tn u

k x are defined in (30), and (22), respectively.  
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Fig. 1.  The relationship between L and ,T n for an N-DOF Lagrangian 

system with the Lagrangian . For a scalar RKHS L with kernel ,L xk

such that  , the inverse dynamics of the nth generalized coordinate

,n T n  is the projection of on ,T n , in which ,T n L is spanned by

,n L xT k , :n L LT  is the bounded linear operator due to the Eu-

ler-Lagrange equation, and , Nn m .  

In particular, we note that , , ,
( ) ,

L
n L u n L u L x

T k x T k k is not a 

kernel, as opposed to , , ,
( ) ,

L
Tn u n L u n L x

k x T k T k which is valid 

kernel. The representations (31)–(33) converge pointwisely to 

the true functions, in which the summation over N is due to (20); 

though the coefficients
n

 ,
n

 may not be unique, (31)–(33) are 

unique. Finally, we note that 
L

k is defined on X , whereas the 

Lagrangian kernels
Tn

k and
T

K are defined on , including 

acceleration q . This results from being the RKHS for
n

 , be-

cause dynamics involves position, velocity, and acceleration of 

the generalized coordinates. 

Based on the reproducing property, a set of scalar Lagran-

gian kernels { | }
Tn N

k n associated with a common
L

in-

duces a vector-valued Lagrangian kernel K
T

which models the 

correlations between different joints as indicated in the (m, n) 

entry of (22). Therefore the matrix function K ( , )
T

x u is diago-

nal if and only if
, ,T n T m
 for n m , which depends on the 

choice of
L

. Similarly, as long as only dynamics are con-

cerned, we can generalize this concept to a set of scalar kernels 

with
nL , or its equivalent vector-valued kernel, as  

 
, ,

( , ) ,
n n

Ln

T nm nm n L u n L x
K x u T k T k , (35) 

in which different RKHSs are used to derive the scalar Lagran-

gian kernel for each coordinate and
nm

 is Kronecker delta. The 

scalar Lagrangian kernels (30) and (35) preserve the structure 

due to Euler-Lagrange equation, and the vector-valued Lagran-

gian kernels (22) further encode the correlations between dif-

ferent coordinates. 

C. Interpretation of Lagrangian Kernel 

The RKHS formulation of Euler-Lagrange equation provides 

geometric insights into the relationship between the Lagrangian 

and inverse dynamics, as summarized in Fig. 1. Firstly, given a 

RKHS
L

in which the differential operator
n

T in Eu-

ler-Lagrange equation can be defined (i.e. the kernel
L

k of
L

is 

at least second-order differentiable), the admissible Lagrangi-

ans form an affine space
p h
 whose projection on

,T n
, 

the span of the Lagrangian kernel
,Tn u

k , defines the inverse 

dynamics
n

 . In addition, it identifies the solution of system 

identification. Because other solutions with nonzero
h

cannot 

be discriminated insofar as only dynamics are measured, only 

the minimum norm solution p is tractable. Finally, other 

functions in
L

 satisfy (16) (e.g., a trivial choice p h
 ), but 

the choice of ,n T n
  inherits nice properties from the repre-

senter theorem, providing a unified view of the Lagrangian and 

inverse dynamics. 

A simple illustration of the Lagrangian kernels is the robot 

dynamics model based on known kinematics parameters. If the 

kinematic parameters of a robot are completely known, the 

Lagrangian is linear in the inertial parameters [32] admitting 

the form ( , ) ,
x

q q    ,where
10N

x
  is the function of 

the kinematics and states, and 10 N  is a constant vector of 

the inertial parameters to be identified. That is, in our new 

RKHS formulation, 
10N

L
 and

,L x x
k  , and the scalar 

Lagrangian kernels
,Tn x n x

k T  . Let
1 , ,

( ) : [ ... ]
N

T

T x T x
x k k  . The 

induced vector-valued Lagrangian kernel is then

( , ) ( ) ( )
T

T
K x u x u   . Using the representation, the inverse 

dynamics can be written linearly as ( ) ( )x x   , identical to 

the conventional result [33] derived from the Newton-Euler 

method.  

D. Universal Lagrangian Kernels 

The requirement that
L

k is second-order differentiable is not 

restrictive, as universal analytic kernels exist, uniformly ap-

proximating any continuous functions on compact support [10]. 

To approximate arbitrary Lagrangian functions, we consider a 

family of radial basis function (rbf) kernels with different fea-

ture maps as candidates for
L

k . 

Corollary 1 

Let 1:
dN  and 2:

dN  be diffeomorphisms such 

that ( ) / 0d dt  , and define : ( , )
x x

x   with ( )
x x

q  and

( )
x x

q  for x X . Let 

 

2 2

( , )= exp( )
2

x u x u

L
k x u

     
  (36) 

be the reproducing kernel of
L

for ,x u X . Then the associ-

ated vector-valued reproducing kernel K
T

of 
vT

is 

 
1 2 3 4

K ( , ) (K K K K )
T L

x u k    , (37) 

in which  
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1
[ ( )( ) ]

T T

x x u x u u
K I            

2
[ ( )( ) ( ( ) ( ) )]

T T T T

x x x u x u x x u x u x u
K c                   

3
[ ( )( ) ( ( ) ( ) )]

T T T T

x u x u x u u x u x u u u
K c                   





4
[( )( ) ] ( )

[ ( ) ( ) ] [ ( ) ( ) ]

T T T T

x xu x u x u u x x u

T T T T

x u x u x u u y x x u x u x u

K c I

c c

        

            

      

        
 

( )
T

x
c x u x  , ( )

T

y
c x u u  , ( )

T

xu x y
c c c x u  , N N

I


 is 

the identity matrix, and  denotes partial derivative / x  . 

The proof is only technical by applying Theorem 1, so we omit 

it here.  

Despite the requirement ( ) / 0d dt  , (36) includes a wide 

range of kernels useful in modeling dynamics. For example, 

choosing 

 

1/ 2

1/ 2

( )

( )
q

q q

q c q

 

 





 




 (38) 

(36) gives the standard rbf kernel with scaling factor 0  and 

normalization constant
q

c . Or for modeling robots with rotary 

joints, an alternative could be 

 

1/ 2

1/ 2

( ) (cos( ), sin( ))

( )
q

q q q

q c q

 

 





 




 (39) 

which considers the trigonometric functions.  

III. APPLICATION TO IDENTIFYING ROBOT INVERSE DYNAMICS 

A. A Semi-parametric Framework 

As an application of the Lagrangian kernels, we identify the 

inverse dynamics for general holonomic rigid-body robots with 

frictions, and link it to the identification of general Lagrangian 

systems. Let the generalized force in the dynamics equation (14)

 be separated into  

 a f
     (40), 

where
N

a
  denotes the actuator force and

N

f
  denotes 

friction and unmodelled dynamics. The inverse model useful in 

control is the mapping :
N

  which approximates
a

 from 

the states of the robot. Under rigid-body assumption, ( , , )q q q

is well defined, but
f

 may not be a proper function on . Such 

setting is similar to the Lagrangian systems in which external 

forces enter. 

Given M observations, 

 {( , ) | , , }
i i i i M

Z x y x y i     (41) 

we solve the regularized least-square approximation in [34],  

2 2 21
min ( ) ((1 ) )

dyn fri
dyn fri

M

i i
f

i

f x y f f
M

  
 



     

i.e. 

 
2 21

min ( )
dyn fri

dyn fri
M

i i
f

i

f x y f
M


 



   (42) 

in which
dyn

with
dyn

K is the RKHS to model Lagrangian sys-

tems , 
fri

with
fri

K is the RKHSs to model
f

 , and 0  is the 

regularized parameter. The scheme (42) uses the effective ker-

nel of
dyn fri

 , 

 
1 1

(1 )
dyn fri dyn fri

K K K  


    (43) 

and 0 1  to approximate the semi-parametric problem  

 
2 2

,

1
min ( ) ( )

B dyn
dyn

M

i i i
f b

i

f x x b y f
M


 



     (44) 

with the solution  

 1
( ) (1 ) ( , ) ( )

M

dyn i i i

i

f x K x x a x b 



  z
, (45) 

in which 

 1
( )

M

T

i i

i

b x a 



  ,  (46) 

N B
 is the basis for modelling friction satisfying 

 
T

( , ) ( ) ( )
fri

K x u x u   , (47) 

dim dim
fri dyn

B   and B   , and
i

a are the unknowns 

to be solved in (42). The relaxation in (43) approximates the 

solution with 0  , so off-the-shelf kernel methods can be 

directly used, yet still give the semi-parametric solution (45).We 

chose (42) for simplicity, and the least-square regularization in 

(42) can be replaced with any cost function satisfying (12) (e.g. 

support vector regression).  

We formulate the problem in vector-valued kernels, which 

also includes scalar kernels, because a set of scalar kernels

{ ( , ) | }
n N

k x u n for N outputs equals to the vector-valued 

kernel ,
( ( , ))

Nnm n n m
k x u

 as in (35). In addition, the framework 

(42) is a discriminative model based on the approximation 

theory, whereas a similar generative model based on the 

Bayesian theorem was presented in [35]. Therefore, the para-

metric rigid-body models [32, 33] can also be incorporated as

 in (44).  

This framework can also be used for the holonomic robots 

with structures, e.g. closed-loop robot, without referring to the 

exact independent coordinates. By virtue of virtual work and 

splitting the robots into tree subsystems [36] whose generalized 

coordinates are accessible, the dynamics can be written as 

 [ ( , ) ] ( ) ( )
T

T
G K x u G u du x     , (48) 

where /
tr a

G q q  is the Jacobian matrix due to kinematic 

constraints, ( )x  is the parametric model, e.g. the spatial 

force due to the platform or loads, 
a

q is the active coordinates, 

and
tr

q is the accessible generalized coordinates of the subsys-

tems. As a result,
T

T
G K G form the new vector-valued Lagran-

gian kernel, with which the inverse dynamics problem can be 

solved in (42); the constrained dynamics of general Lagrangian 

systems yield a similar form [37].  

B. Convergence  

The learning with the proposed Lagrangian kernels in (42) is 

consistent, because it follows the framework of learning in 
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RKHS. Without specifying
L

k , we qualitatively present the 

convergence of (42). 

Theorem 2 

 Let
a f

y      . Assume ,
a f

    , 
L

is chosen so 

that
L

 ,
L

p
  , and

n
T is bounded. Let

dyn L
 be 

the RKHS with the Lagrangian kernels. There exists
*

0   

such that the estimator f
z
in (45) by solving (42) with

*
0   

converges to a solution 

 
2 2

,
: arg min ( )

dyn fri
dyn fri

x
f

f f x y d f   
 

   (49) 

satisfying  

 
22

,
( ) min ( )

fri

x f x
f

f x y d f x d    


      (50) 

as M  with probability 1.  

Proof: Shown in Appendix B.    

Theorem 2 shows that the quality of the semi-parametric 

framework (42) in learning the dynamics depends on the qual-

ity of function space used to model friction and unmodeled 

dynamics. Specifically, with
*

0    , the algorithm is con-

sistent and converges to the solution that is at least as good as 

how
f

models the unmodeled terms.  

IV. SIMULATIONS AND EXPERIMENTS OF ROBOT INVERSE 

DYNAMICS IDENTIFICATION 

To demonstrate, we apply the Lagrangian kernels derived 

from rbf kernels in (36) with the least-square regularization in 

(42) to identify robot inverse dynamics in simulations and 

experiments. For friction, we adopt  

, ,

, ,

, ,

( , ) ( tanh( ) tanh( ) 1)
x n u n

fri nm nm x n u n

f n f n

q q
K x u q q

 
   , (51) 

which is diagonal and corresponds to a block-diagonal basis
3

( )
N N

x


  , to model the coulomb and the viscous frictions.  

In order to compare the proposed Lagrangian kernels and the 

state-of-the-art kernels, we test the identification using only 

inputs and outputs. For traditional kernels, the rbf kernel  

 

2

( , ):= exp( ),  ,
2

rbf

x u
k x u x u




   (52) 

and the rbf kernel with the trigonometric map for rotary joints 

 

2 2

( ) ( )
( , ) : exp( )

2

x u x u x u

rbfs

q q q q q q
k x u

 



    
   (53) 

are denoted by rbf and rbfs, respectively, in which
2

:
N N  , ( ) (cos ,sin )q q q  . For the Lagrangian ker-

nels, we denote them by the prefix based on the construction (s- 

(35) or v-(22)) and the postfix based on the choice of
L

k ( -rbf 

(38) or -rbfs(39)) as srbf, vrbf, srbfs,and vrbfs. We omit (30) 

because it is a particular case of (35). The kernels rbf and rbfs 

are chosen to resemble kernels srbf and vrbf, srbfs and svrbfs, 

respectively, which use the same form of rbf kernels to model 

the Lagrangian. In addition, for benchmark, we implement the 

finite-dimensional kernel pol in [34] and the simple inde-

pendent joint model motor in the form  

 
1 2n n

c q c q  (54) 

for joint n, where
1

c  and
2

c are the unknowns to be identified. 

We omit the general Euler-Lagrange model, because it could be 

exponentially complex for general robots when without kine-

matic knowledge. 

In the semi-parametric framework with the kernel fri defined 

in (51), the symbol + is used to combine two kernels in the form 

of (43), in which the left and the right arguments are
dyn

and

fri
, respectively. For example, rbf stands for using (52) alone, 

and rbf+fri denotes the semi-parametric scheme.  

In implementation, we take 1q

 1q


 . For rbf and rbfs, 

the normalization is pre-computed before evaluating (52) and 

(53), whereas, for Lagrangian kernels, the normalization is 

implemented as
q

c in (38) and (39). 

A. Simulations 

We show prediction error with respect to the complexity of 

the underlying model (i.e. the DOF) in two scenarios: with or 

without measurement noise and friction. For each DOF, 100 

different serial rotary robots with random kinematic and inertial 

parameters, gear ratios, and friction magnitude are used as 

reference models, in which the generalized coordinates are the 

joints of the robot, and the parameters are sampled according to 

a bounded uniform probability distribution such that all the 

parameters are physically feasible. For example, the inertia 

matrix is always positive definite.  

For each robot, 500M  training data and 15000
val

M 

validating data, with the angular positions, velocities, and ac-

celerations uniformly sampled from a bounded set, were gen-

erated using Newton-Euler method; the torque was normal-

ized to satisfy 1

 for comparison. The adopted noise was 

additive zero-mean Gaussian with standard variation 0.05 in the 

same unit as the normalized torque; the viscous and the Cou-

lomb friction were independently modeled for each joint as the 

force linear to the joint velocity and the sign function, respec-

tively.  

To evaluate performance, the prediction error over all of the 

generalized coordinates was defined by root-mean-square 

(RMS), 
1/ 2

( )
i i

N y f x



z , over

val
M validation samples. For 

the least-square semi-parametric framework (42), the optimal 

parameters  , ,f n
 , and   were chosen by 5-fold 

cross-validation, if not particularly specified;  was fixed as 

3
10 ( ) / ( )

dyn fri
trace trace


K K , where ,

NM NM

dyn fri


K K are the 

empirical kernel matrices. We remark that for the scalar kernels 

(rbf, rbfs, svrbf and svrbfs) N independent scalar regression 

problems are solved. 

Fig.2 shows the RMS errors of prediction of ideal robot 

dynamics without friction and noises, in which 
12

10 
 and 

the parameter is determined by cross-validation. The kernels 
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Fig. 4.  The 6-DOF NTU robot arm.  

 
(a) 

 
(b) 

Fig. 3.  RMS error of torque prediction in learning ideal robot inverse 

dynamics with simulated friction and Gaussian measurement noise. (a) 

mean (b) variance. The lines are the linear interpolations of the simulation 
results. 

 
(a) 

 
(b) 

Fig. 2.  RMS error of prediction in learning inverse dynamics of ideal 

rigid-body robot. (a) mean (b) variance. The lines are the linear interpola-

tions of the simulation results. 

with the trigonometric map (rbfs, svrbfs, vrbfs) outperform that 

without one (e.g. rbf, svrbf, svrbfs), because the characteristics 

of rotary joints are better captured. In addition, the performance 

increases as the structure of Lagrangian systems are better 

modeled (e.g. from rbf, srbf, to vrbf). Compared with rbf and 

rbfs, the Lagrangian kernels consistently perform better, among 

which the vector-valued kernels vrbf and vrbfs are superior due 

to the modeled correlations.  

Fig.3 shows the RMS errors of prediction of ideal robot 

dynamic s with friction and noises, in which the Coulomb and 

viscous friction are modeled as described with random size. 

Compared with Fig.2, the Lagrangian kernels (svrbf, vrbf, 

svrbfs, and vrbfs) perform arbitrarily worse when friction is 

large as with robots with small DOF, because these kernels only 

model Lagrangian systems. However, by incorporating friction 

model fri, these hybrid kernels (svrbf+fri, vrbf+fri, svrbfs+fri, 

and vrbfs+fri) perform as without the presence of friction in 

Fig.2. In addition, as the DOF increases, fri becomes less nec-

essary. Because the size of friction is independent of DOF in 

the simulations, for robots with large DOFs, friction becomes 

relatively smaller in
a

 and therefore the learning of Lagrangian 

part dominates the performance.  

B. Experiments 

The models were empirically verified with the NTU robot 

arm (NTU Robotics Laboratory, National Taiwan University). 

Shown in Fig. 4, the NTU robot arm is a 6-DOF robotic ma-

nipulator driven by DC-micromotors with a high gear ratio. 

With current sensor, the robot arm is fed back by 10-kHz inner 

torque PI-controllers and outer 250-Hz position PD-controllers, 

and can be fed forward with additional torque commands. The 

joint position and current measurements were sampled at 500 

Hz. To compute q and q , the sampled trajectories were filtered 

with a 3rd-order Butterworth filter with bandwidth 25 Hz and 

then differentiated. The joint torque was then obtained through 

the current measurement. To synchronize the measurements of 

the states and the joint torque, the joint torque was filtered by 

the same 3rd-order Butterworth filter. 

To evaluate the performance, we used 10 trajectories (in-

terpolated by a 5th-order polynomial spline) of different speeds, 

which randomly and smoothly traverses the whole work space 

for approximately 30–40 seconds.  
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Fig. 6.  RMS error of position tracking in experiments, evaluated on the 
remaining 2/3 of collected data. The lines are the linear interpolations of 

the experimental results. 

 
Fig. 7.  RMS error of torque prediction in experiments of the weighted 
robot, evaluated on the remaining 2/3 of collected data. The lines are the 

linear interpolations of the experimental results. 

 

 
Fig. 5.  RMS error of torque prediction in experiments, evaluated on the 

remaining 2/3 of collected data. The lines are the linear interpolations of 

the experimental results. 

Given that identically independently distributed (i.i.d.) as-

sumption requires that the validating data (including positions, 

velocities, and accelerations) are sampled according to the 

same probability distribution as the training data, the i.i.d. 

assumption is not generally satisfied due to the time-domain 

dependency in dynamics; the learning-based methods often fail 

to choose the correct parameters and tend to overfit, if standard 

cross-validation is employed.  

We therefore adopted blocked cross-validation [38], com-

monly used in time-series prediction. Blocking the training data 

in time domain into equal-sized groups, the optimal parameters 

were determined by performing the conventional cross- 

validation in accordance with the groups, because i.i.d. as-

sumption is more likely to hold in terms of groups if the block is 

large enough. 

We compare torque error in prediction and position tracking 

error in pre-computed torque control (i.e. feedforward dynam-

ics compensation [39]) with the learned models to track the full 

trajectory used in generating the training data. We choose 

pre-computed torque control to limit the controller’s effect on 

the outcome. In order to provide an unbiased estimation of the 

performance, we used only 500 samples from the first 1/3 of the 

collected trajectory in time domain in training with 5-fold 

3-second blocked cross-validation, and used the remaining 2/3 

as the validation set to evaluate the performance index. 

Therefore, the score reflects more faithfully and unbiasedly 

how a model may perform in applications.  

Fig. 5 shows the RMS error of prediction of inverse dy-

namics with respect to the average norm of velocity of the 

trajectory. The performance is greatly improved by introducing 

fri in the semi-parametric framework. Because the friction in 

the NTU robot arm is large, using a single kernel rbf or rbfs 

standalone results in unsatisfactory results, while the simple 

independent joint model motor+fri fits well. However, as the 

speed increases, motor+fri fails, because the magnitude of the 

Coriolis/centrifugal forces increases. Compared to the simula-

tion results, Fig. 5 is consistent with Fig. 3, showing that the 

Lagrangian kernels are the most competent among all the can-

didates. In particular, svrbfs and vrbfs are the optimal choices, 

because of the consideration of rotary joints in designing
L

. 

Fig. 6 shows the RMS error of tracking with pre-computed 

torque control, where the estimated torque required for the 

reference trajectory is computed offline by the model as the 

feedforward compensation. The results in Fig. 6 provide a 

rather qualitatively description, because the factors, such as the 

torque limits of actuator or accumulated errors, affect the 

tracking performance. But still the results can be discriminated 

into three groups: without the feedforward, with the feedfor-

ward but without the friction model, and with both the feed-

forward and the friction model. This verifies the effectiveness 

of the feedforward term and the necessity of the friction model.  

Finally, similar to Fig. 5, Fig. 7 shows the prediction result of 

the NTU robot arm with additional loads of 2.5 kg and 1 kg on 

the first and the second link, respectively, where the links are 

ordered increasingly from the base to the end-effector. In this 

configuration, the relative size of friction in
a

 effectively de-

creases. Therefore, the discrepancy between the Lagrangian 

kernels and the traditional approach becomes more obvious. 

Especially, the accuracy of motor+fri deteriorates much faster 

than that in Fig. 5 as the speed increases.  

V. DISCUSSIONS 

In the simulations and experiments, two main factors dom-

inate the performance: the kernel and the parametric model. 

First, a kernel’s quality depends on both the structure of func-

tion space and the modeled correlations. Comparing rbf and 

srbf (or rbfs and srbfs), though both are scalar kernels modeling 

each joint independently, we see that srbf outperforms rbf due 

to the structure inherited from Euler-Lagrange equation. In 
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addition, the structure results from the choice of
L

 as well. 

The performances of svrbf and vrbf are far different from those 

of svrbfs and vrbfs, though the only difference is
L

k (similar is 

the case of rbf and rbfs). Therefore, better models are possible 

by better parameterizing
L

. On the other hand, the modeled 

correlation affects the performance by incorporating more 

information. For kernels derived from the same
L

, we can 

observe the vector-valued kernels (22) (vrbf and vrbfs) are 

better than their scalar versions (35) (srbf and srbfs), because 

the vector-valued Lagrangian kernels effectively learn the 

system’s Lagrangian with MN observations. Second, for sys-

tems with large friction, additional parametric models can boost 

the learning, as these bases are small in dimensionality com-

pared with the models for dynamics. Similarly, further adopting 

the parametric rigid-body models [32, 33] as the parametric 

basis (e.g. [35]) in the semi-parametric framework would im-

prove the performance; in this setting, the Lagrangian kernels 

correct the error due to the parameterized Lagrangian. In 

summary, we can analyze the learning by separating a system 

into two parts: the Lagrangian system and the unmodeled dy-

namics. Lagrangian kernels improve the learning of Lagrangian 

systems; additional bases or kernels are necessary if the un-

modeled dynamics are large. 

The results show that the Lagrangian kernels are competitive 

with the analytic and the learning approaches. Although we did 

not implement the rigid-body model in the experiments because 

our scenario concerns the modeling with only inputs and out-

puts, this argument can be concluded by comparing the per-

formance of motor+fri and that of the Lagrangian kernels. 

Because the independent joint model approximates robot dy-

namics well at low speed for robots with large gear ratio (e.g. 

the NTU robot arm) we can posit that the performance of the 

rigid body models from these experiments: the Lagrangian 

kernels using only inputs and outputs performed nearly as good 

or even superior.  

In addition to inverse dynamics, the model by the Lagrangian 

kernels can derive forward dynamics as well. As a result of 

Euler-Lagrange equation, by (23), the models in (32) and (33) 

are linear in the generalized acceleration, which can therefore 

be recovered by matrix inverse. This form also motivates us to 

consider additional constraints in learning in future works, such 

imposing a positive resultant inertia.  

The Lagrangian kernels, however, face a tradeoff between 

learning rate and computational complexity in solving for the 

unknowns. For the dense vector-valued kernel (22), we can 

expect the learning rate to be faster than that of the diagonal 

kernels (i.e. scalar kernels), because it considers the depend-

ency of coordinates. As shown in (B.5), if adopted, (42) effec-

tively identifies the Lagrangian of the system by the projections 

on { | , }
in x N M

T k n i  . Compared with independently 

modeling N outputs with the same observations, the learning 

with the kernel (42) has N times more observations and takes 

place in a smaller hypothesis space, because the Lagrangian 

consists of 2N variables, instead of 3N variables in dynamics. 

That is, it models with MN samples. Therefore, although the 

result also depends on the distribution
x

 and the exact infor-

mation provided by the coupling in
T

K (which is related to the 

definition of 
L

k ), we can posit that the transfer learning be-

tween different coordinates increases the convergence rate. 

However, the increased convergence rate is at the expense of 

computational complexity. Because kernel methods generally 

have a computational complexity ( )
c

O M for1 3c  , with the 

dense vector-valued kernels, the complexity becomes

( )
c c

O N M . By contrast, the scalar Lagrangian kernels, e.g. (30) 

and (35), have the computational complexity ( )
c

O NM , because 

it can be decomposed into N independent scalar regressions. 

Therefore, the kernels (30) and (35) may be more favorable for 

large N from a computational viewpoint, though they model the 

dynamics{ | }
n N

n  independently and therefore may not be 

integrable to give a Lagrangian. Finally, we remark that though 

an effective N MN kernel matrix was used in the experiments, 

this matrix can be further subsampled in column by exploring 

the inner product property RKHS [40-42]. Especially, if many 

samples are correlated, such unsupervised low-rank sparsifica-

tion can often preserve most accuracy and drastically improve 

computational speed both in training and evaluation. 

The Lagrangian kernels motivate kernel design from a new 

perspective. For identifying robot dynamics, kernels other than 

(38) and (39) can be adopted as
L

k , for example, the fi-

nite-dimensional kernel used to model the Lagrangian of pol 

[34], which includes assumption on rigid-body robots and 

therefore can achieve a learning rate for general holonomic 

robots even faster than vrbfs. For Lagrangian systems, it con-

verges to dynamics in a rate faster than general schemes, given 

that a set of inputs and outputs which contributes to the sys-

tem’s energy can be measured. More generally, it helps identify 

system by indirectly learning the mapping between inputs and 

outputs in a higher, abstracter level, or a smaller space which 

shares the common knowledge of all coordinates. Given with a 

linear map (e.g. differential operator from domain knowledge 

or mappings learned by machine learning) that links the two 

spaces, new kernels can be designed to consider such correla-

tions or identify abstracter notions of a system, such as identi-

fying the energy through learning gradient fields.  

VI. CONCLUSION 

We reformulate Lagrangian systems in RKHS. By treating 

Euler-Lagrange method as a bounded linear operator in the 

RKHS where the Lagrangian lies, we derive a family of La-

grangian kernels which capture inverse dynamics as the La-

grangian’s projection. In application to identifying robot in-

verse dynamics, we incorporated the Lagrangian kernels in a 

semi-parametric framework; the results show that the Lagran-

gian kernels are competitive despite using only inputs and 

outputs. In essence, the Lagrangian kernels mean modelling 

systems by indirectly learning an abstracter notion.  
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APPENDIX A 

Proof of Proposition 4: Equation (14) implies ( , )q q is sec-

ond-order differentiable. Therefore, choosing a second-order 

differentiable
,L x

k , we have  

 
,

( , , ) ( ) ,
L

n L x

n n

d
q q q k

dt q q


 
 

 
 (A.1) 

by the reproducing property (4). Next, we show there exists 

,n L x L
T k  satisfying (17). Consider a function

,
( )

n L x
T k u de-

fined as 

 
, ,

( ) : ( ) ( )
n L x x L u

n n

d
T k u k x

dt q q

 
 

 
 (A.2) 

in which the subscript denotes the respective variable the de-

rivative takes. Because  

 
, , ,

( ) ( , ) , ( ) ( )
L

L u L L u L x i i

i

k x k x u k k x u     (A.3) 

for some mappings :
i

X  , substituting (A.3) into (A.2), 

we have
,

( ) ( )
n L x i i

i

T k u c u , in which ( ) ( )
i x i

n n

d
c x

dt q q


 
 

 
.  

Therefore, , , ,
( ) ,

L
n L x n L x L u

T k u T k k , i.e.
,n L x L

T k  . Fi-

nally, by representer theorem, for
L

f  , let

,
( ) ( )

u L u
X

f x k x du  for some
u

 ; we have 

, , ,

,

, , ,

( ) ( ) ( ) ( )

L L L
n L x n L x n L x u u

x u L u x

n n n n

f T k T k f T k k du

d d
k x du f x

dt q q dt q q





 

   
   

   




 (A.4) 

Therefore, by the choice of
,L x

k , ( )
n L

T L satisfying (16) can 

be defined by (17).   

 

Proof of Proposition 5: By construction
,

,
T n T L

 . For the 

first part, because the equations of (16) are linear in
L

 , its 

solution admits the representation p h
  :

p
is the mini-

mum norm solution such that (16) holds, for all
N

n ;
h

is 

the null space solution, which has no effect on the evaluation of

( , , )
n

q q q . And by construction of (20), 
p T
 and

\
h L T
 . For the second part, endow

,T n
with

,

, : ,
T n L

     ; then
,T n

is a RKHS with
, ,

:
Tn x T n

k  by 

Definition 2 and (21) follows from (16) by property of RKHS. 

For the last part, because the projection of p on ,T n satisfies 

(16) and the uniqueness of
n

 ,
n

 equals to the projection of 

on the ,T n .   

APPENDIX B 

The convergence of the regularized framework can be 

proved by the compactness of the hypothesis space [43]: there 

is ( )R  , a non-increasing function of  , such that the solution 

of (42) equals to the solution of  

 
21

min ( )  . . 
dyn fri

dyn fri
m

i i
f

i

f x y s t f R
M  



  ; (B.1) 

if 0  , then R   . That is, (B.1) minimizes the cost function 

in a compact convex hypothesis space with a unique solution.  

Consider a hypothesis
dyn fri dyn fri

g g g    , where 

 
2

: arg min ( )
fri

fri f x
Xf

g f x d 


   (B.2) 

 
2

: arg min ( )
dyn

dyn x
Xf

g f x d 


  . (B.3) 

First, we prove
dyn fri

g


  . Because 

 
2 22

(1 )
dyn fri dyn fri

dyn fri
g g g 


   , (B.4) 

it is sufficient to bound 
dyn

dyn
g and

fri
fri

g . For (22), by (32)

we have 

, ,
( ) ( )

dyn Ldyn
N

L

dyn T u n n L u p

n

g K u du u T k du 


       

  (B.5) 

For (30), because (42) can be decoupled into N independent 

scalar regressions in the space
,T n L
 learning the projection 

of on
,T n

as in Proposition 5, 

 
,

max
T ndyn LN

dyn n p
n

g N N


    ;  (B.6) 

for(35), because the spaces
,T n

are derived from
,L n

, similar 

results can be obtained. On the other hand,
fri

fri
g   , be-

cause
f

   , dim( )
fri

  , and the covering ball in fi-

nite-dimensional space is finite [43]. Thus, there is *
0 R  

such that *

dyn fri

g R


 . 

Let
* 1 *

( )R R 
 . Then for 

*
0    , the error function of

, , , , ,dyn fri
f f f       can be bounded by 

2

,

2 2

, , , , , , , ,

2 2

, ,

2 ,

2 ,

a x
X

dyn fri f dyn fri f x
X

dyn fri f dyn fri f x
X

f d

f f f f d

g g g g d

 

       

 

 

    

    



      

      






2

, fri f x
X

g d


     (B.7) 

since ,
f  is the minimizer of (B.1) for

*
( )R  and ,dyn

g con-

verges to pointwisely. Thus, by the law of large numbers and 

the monotonicity of  , the rest of the theorem follows.   
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