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摘要 

近幾年來，工業機器人以及服務機器人的需求正大幅增加，尤其人機互動的

設計尤其受到重視，如機器人和人的偕同工作、用於導覽與居家看護的服務型機

器人，或是能夠增強人類力量或是輔助病人復健的外骨骼機器人。而在人機互動

的設計中，最重要的在於建模和控制，因為好的動態模型代表機器人能夠感測更

多資訊並且能夠執行更精準的動作，而控制則關於安全、穩健的人機互動。為了

下個世代機器人的發展和控制，本論文致力機器人動態學習以及人機互動的控

制，並應用於以下三個主題：使用結構化再生核希爾伯特學習空間機器人動態、

虛擬阻抗控制以及其在安全人機互動的應用、貝氏外骨骼系統。 

為了能夠更準確以及更快速識別系統，結構核空間是一使用機器學習的技巧

進行系統識別的架構。雖然適當的模型可以增加控制的效果，但傳統上，推導參

數模型往往過於複雜，而廣義的機器學習方法則會引進偏差或是變異。因此，我

們希望能夠設計一個方法綜合兩種方法的優點。所提出的核函數隱含了解析解並

且能夠以黑盒子的方式學習，因此可以在不需推導系統的動態之下自動地識別系

統，且所建構出的模型可以收斂至解析解。另外為了在非結構化空間中安全的人

機互動，我們使用虛擬阻抗控制機器人，使得機器人在不論面對何種障礙物都以

達到穩健、圓滑及一致的方式迴避障礙物，因此機器人可以在避免各種的碰撞下

安全地進行它原本的任務。最後主題則是關於貝氏外骨骼系統的設計，運用適應

性的輔助控制讓機器人可以最佳的回應操作者的意念。因此，外骨骼系統能夠同

時兼顧安全以及有效的輔助控制。 

 

關鍵字: 人機互動、系統識別、再生核希爾伯特空間、外骨骼系統、意念估測、

阻抗控制  
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Abstract 

The need of robots in industries or as the service robots grows significantly in 

recent decades. Recently, many researches are devoted in the human-robot 

interactions. For examples, the collaborative working, the service robots for touring or 

attentive home care, or the exoskeletons for augmenting human powers or assisting 

the patient for normal functionalities are of interests. In the human-robot interaction, 

the modeling and the control of the dynamics are essential. With better modeling of 

the dynamical system, the robot can sensor more and provide accurate and precise 

responses, whereas the control scheme ensures the safety robustly and let the robot 

react in a human-friendly way. For better development and the control of the robot in 

the next generation, this thesis is devoted to the robot dynamics learning and the 

control of the human-robot interaction with applications in the three topics: the 

learning of the robot dynamics with the structured kernels, the virtual impedance 

control for safe human-robot interaction, and the Bayesian exoskeleton.  

To model the robot dynamics automatically and accurately, the structured kernel 

concerns the system identification with the machine learning techniques. It is 

well-known that the proper model of the robot can boost the performance of the 

control. The tradition parametric models based on the analytic formulation are often 

too complex for general systems, while the other methods such as the 

autoregressive-moving-average (ARMA) model or the general machine learning 

models introduce either bias or variance in learning. The interest here is how to design 

a general system identification scheme that enjoys the benefits of both. The proposed 

kernels are designed so that not only the structures of the analytic model is implicitly 
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modeled but the system can be identified as the blackbox as in the machine learning 

approaches. In short, the proposed method is a system identification framework that 

learns the system automatically without any derivation of the system dynamics and 

yet converges to analytic model pointwisely as the number observations goes to 

infinity. For the control of the human-robot interaction, the virtual impedance control 

and the Bayesian exoskeleton system are proposed. For the robots with individual 

functionalities, the virtual impedance control is designed for the robust, smooth, and 

consistent collision avoidance that the robot can avoid all the possible collisions 

robustly while trying to accomplish the original task. Therefore, the robots can 

response the human nearby safely and compliantly. As for the robots on the human 

body, the Bayesian exoskeleton system assists human operators with the robust hybrid 

control. In the Bayesian exoskeleton system, the Bayesian estimator inferences the 

human intention adaptively, and the inner assistive torque control can ensure the 

robustness of the system by considering the ability of the operator. Therefore, the 

resultant exoskeleton system can ensure both the safety and the effective assistance.  

 

Keywords: Human-Robot Interaction, System Identification, Reproducing Kernel 

Hilbert Space, Exoskeleton, Human Intention Estimation, Impedance 

Control 
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Chapter 1  Introduction 

1.1 Human-Robot Interaction 

Due to the rising needs of robots in the industries since past decades or as the 

service robots more recently, the control of the robots becomes more and more 

important and challenging. Among all the issues, the human-robot interaction receives 

most focuses nowadays. The key components to control the robot to interact with 

human includes: the modeling of the dynamical system, and the reactive control 

schemes ensuring the safety robustly. 

The model of the robot, especially the dynamics model, can improve the control 

accuracy greatly, e.g. the computed torque control, and be used as the observers to 

detect the exogenous inputs, e.g. the impedance control, since the robot knows itself 

better; the model of the environments describes the environments mathematically, so 

robots can know how to react. In the tradition scenarios, the environment, in which 

the robot operates, is often well defined and controlled. However, the environment 

becomes unstructured and cannot be obtained beforehand in the human-robot 

interaction, such as the service robots, the human-robot collaboration, and the 

exoskeleton systems. In the first two cases, the major concerns are how to interact 

with human safely in terms of collisions while accomplishing some predefined tasks. 

As for the exoskeleton, the unmodeled term is operator’s intention, which is important 

for the comfort and the controllability of the operator.  

For operating in such uncertainties, the control schemes are, therefore, extremely 

critical. The control scheme makes decisions and plans the actions of the robot given 

the sensory information. In the unstructured environments, the sensory information 
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comes with uncertainties due to modeling error and noises, so the system may behave 

unpredictably or even be unstable, which is strictly forbidden especially in the 

interactions with human, if the controller is designed improperly. Therefore, efforts 

should be devoted into design the control schemes that can simultaneously tolerate the 

modeling errors and achieve performance indexes in the human-robot interaction, 

such as the safety, and performing human-friendly motions.  

Modeling of the System Dynamics 

Considering the modeling, the learning of the robot dynamics is essential to 

advanced control schemes for proper models can increase the performance 

significantly. Traditionally, the system dynamics of the robots is based on the rigid 

body assumption, in which each link of the robot is modeled as the rigid body and the 

governing equations of the system are derived from the Euler-Lagrange formulation 

or the iterative Newton-Euler method. We refer these to the analytic methods herein, 

in contrast to the learning methods based on machine learning. For the analytic 

method, the dynamics model can be arranged as a linear regression form, so the 

system identification problem can be solved by the ordinary linear regression on 

nonlinear basis functions. However, this ideal dynamics model does not include any 

frictions, motor dynamics, and elastic joint dynamics etc. To model the unmodeled 

dynamics, some analytical models are modified ad hoc. Besides, another issue is that 

the number of the nonlinear bases often grows in the worst case exponentially with 

the degrees of freedom of the system leading to necessary model simplification in 

practice. 

On the contrary, the learning methods, which include the neural networks, 

support vector machines, Gaussian process regression, etc, treat the whole system as a 
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blackbox and learn directly the mapping between the inputs and the outputs. 

Concerning the system identification, we are interested in the regression methods. Just 

as the analytic method, the learning methods need to control the complexity of the 

model. In the hypothesis space, in which all possible models lie, the regularization 

penalizes the size or the complexity of the hypothesis space to prevent the overfitting 

due to limited observations.  

On this viewpoint, the only difference between the analytic method and the 

learning methods are that whether the structure of the classical mechanics is 

considered. For example, the dynamics model based on the analytic method is 

structured in the sense that it is derived based on the Euler-Lagrange equation. In 

terms of regression, it is only the difference between the choices of bases. Therefore, a 

learning method can behave like the analytic method if similar bases are chosen. Thus, 

it may be possible to design a model that can contain the structure of analytic model 

implicitly and yet treat the system as the blackbox as in the learning model. Once the 

model of the robot is identified or learned, the controller can benefit from it. As a 

consequence, the performance of the whole system can be better. For example, the 

impedance controller and the computed torque control are closely related to the 

inverse dynamics model. On the other hand, a properly designed controller can adapt 

to unstructured scenarios, which may be also learned by the machine learning 

techniques. 

Control of the Safe Human-Robot Interaction 

The most critical factor of the control of the human-robot interaction is safety. 

The robot should ensure the safety first and then achieve other performance indexes 

under this constraint. Otherwise, the human will not be interacted with but hurt. 
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Therefore, the robustness of the safety and therefore the stability should always be 

guaranteed when designing the controller.  

Under the safety constraint, reactive controller can be designed so that the robot 

can know how to response to the sensory information properly. By the reactive control, 

we mean a general control scheme that controls the response of the robot to the 

exogenous stimulus, which can be either physical or virtual like in the vision sensing. 

Therefore, the reactive control is like the model-reference control. Apart from the 

stability and the safety, another design factor is the human-friendly motion. In the 

interaction of human, the robot should behave as human anticipates and desires. The 

user-experience is decisive for the human-robot interaction. A behavior of a good 

reactive controller should be able to be learned intuitively by human, and be 

compliant rather menacing. Therefore, the robot needs to act with sufficient 

smoothness and elegancy. For examples in the collision avoidance, an abruptly 

stopping of the robot when facing the obstacles may terrorize and intimidate the 

human nearby, whereas a robot that circumvents the obstacles naturally is considered 

as friendlier. Another example is the control of the exoskeleton worn on the human 

directly. Because the exoskeleton is linked to the human body directly to assist 

motions or to amplify forces, both the safety and the tactile perception are important. 

The safety means both stability and the limits of the assisting force or the workspace, 

which is a more well-defined problem in the control system, whereas the tactile 

perception is intricate. An (in fact, many) exoskeleton system can be claimed to be 

both safe and stable, but cannot be guaranteed to make the human operator feel 

assisted. Just as in the collision avoidance, the human-friendly motion is the key to 

achieve decent assisting experience, so the exoskeleton should be compliant, 
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band-limited, and be guaranteed to provide the assistance robustly. 

1.2 Thesis Statement and Contributions 

For the development of sophisticated and intelligent robot systems for the 

human-robot interaction, this thesis is aimed to gain benefits from the theorems and 

the techniques developed for the dynamics, the machine learning, and the control 

system.  

To unify the analytic method and the learning method in the system identification, 

we propose two schemes: a structured kernel specially tailored for the robot dynamics 

and a vector-valued kernel that learns the Lagrangian of the system for general 

systems; For the safe human-robot interaction, we designs the virtual impedance 

control by the control Lyapunov function, so that the robot can operates safely in the 

unstructured environment; considering the interaction between human and wearable 

robots, we propose the Bayesian exoskeleton system, in which the Bayesian 

exoskeleton system estimates the human intention optimally and adaptively in the 

Bayesian sense and controls the exoskeleton robustly by considering balancing ability 

of the operator and the dynamics of the robot. 

1.3 The Framework of the Thesis 

This thesis is organized as follows. In Chapter 2, the theorems of reproducing 

kernel Hilbert space (RKHS) are reviewed, which consists most of the theoretical 

parts of the thesis. Especially, the relationship between the Green’s function of the 

linear differential operator and the reproducing kernel Hilbert space is summarized. In 

Chapter 3, the system identification methods based on the machine learning are 

presented. We propose two kernels to incorporate the analytic method implicitly. In 
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the first scalar structured kernel, the function space of the robot dynamics is identified 

and modeled as the structured RKHS. Inspired by the results of the first kernel, the 

second kernel generalizes the idea. In contrast to modeling the governing equation of 

the dynamics, the second kernel directly models the Lagrangian of the system, and 

then induces the governing equation implicitly by the vector-valued RKHS. The result 

is the universal kernel that can replace any analytic method based on the Lagrangian, 

since the model converges to the model based on the analytic method pointwisely as 

the sample size goes to infinity. Chapter 4 shows the virtual impedance control 

framework for safe human-robot interaction. In this framework, the robot tries to 

achieve the original goal while avoiding possible collisions robustly and smoothly. To 

eliminate the chattering, a boundary layer on the spectrum of the Jacobian matrix is 

designed. Combined with the visual sensing, the robot successfully accomplishes the 

assigned task while maintaining the safety. In Chapter 5, the Bayesian exoskeleton 

system is proposed. We begin with the underlying robust assistive control loop, which 

is used throughout the chapter, and continue to demonstrate how the estimations of 

different sensors can be combined. Apart from the Bayesian framework, we also show 

another self-learning scheme. Finally, the complete Bayesian exoskeleton system 

based on the graphical model, the Gaussian process regression and the 

aforementioned robust controller is shown.   

Finally, in Chapter 6, we summarize and discuss the contributions of this thesis, 

and give the possible future works to extend the current discoveries. We note that the 

proposed dissertational works are all original and novel in certain aspects compared to 

the literatures, and therefore we will compare them the literatures in the corresponding 

chapters. Also, we will bring up a short reminder of the theorems of RKHS if needed 
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in each section for the integrity and the continuity. For clarity, we show the 

nomenclature that will be used throughout the thesis in NOMENCLATURE. For those 

only used in the specific applications, please refer to the definition in the 

corresponding sections. For the conventions, the lower case denotes all the scalar, 

vector, matrices, and functions; the upper case denotes sets; the calligraphy denotes 

vector spaces, especially Hilbert space; the bold cases denote the variable related to 

empirical observations, or is used to distinguish the matrix from scalar especially in 

Chapter 3; the subscript denotes the entry of a vector or a matrix, or an instance in a 

set. 
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Chapter 2  Reproducing Kernel Hilbert Space 

2.1 Introduction 

This section serves as the surveying purpose, and summarizes the important 

properties of the reproducing kernel Hilbert space (RKHS) in terms of the functional 

analysis. We try to organize the literatures so that theorems of RKHS can be integral, 

but we only remark the properties and theorems that may concern the learning in 

RKHS for the compactness. For interested readers, we recommend [3, 86] and refer 

therein. On the other hand, the readers can omit this chapter without loss of continuity 

if the reader is familiar with RKHS. 

First the RKHS of scalar functions is defined by the reproducing property and the 

representation theorem in the Hilbert space in Section 2.2. In Section 2.3, the 

connection between the quadratic penalty and the scalar RKHS in the dual problem is 

highlighted via the Green’s function. In Section 2.4, a more general theory of RKHS 

of vector-valued functions is introduced. Since the vector-valued RKHS is the 

generalization of scalar RKHS, some theorem are only stated in Section 2.4, such as 

the compostion of kernels. The vector-valued RKHS generalizes the theorems of the 

scalar RKHS and can models the vector-valued functions directly instead of multiple 

independent problems in scalar RKHS. In particular, the vector-valued RKHS will be 

used in Section 3.2 to learn the dynamics of a multi-joint robot by intrinsically 

considering the coupling dynamics of different joints. 

In this thesis, we consider the RKHSs over real filed only both for the 

simplicity and the sufficiency of learning the dynamics in Chapter 5 and Chapter 3. 
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2.2 Reproducing Kernel Hilbert Space of Scalar Functions 

The RKHS formulation of the machine learning problems has gained popularity 

over the other methods due the elegancy and the generality of transforming a learning 

problem into a projection problem in the Hilbert space, and the inference problem 

becomes simply regressing the unknown vector given the projection of the vector in 

some random finite dimensional subspace. This section is partly based on [3, 10, 82, 

86] and reviews the definition and the important properties of the RKHS of scalar 

functions as the reference for the following chapters, especially in Chapter 5 and 

Chapter 3. 

To begin with, we review the definition of the measure space. 

Definition 2.1 

Let X be a set. X is said to be a measure space if there exists a -ring  of subsets 

of X and a nonnegative countably additive set function measure  defined on . In 

addition, if X  , the X is said to be a measurable space. Let :f X  . The 

function f is said to be measurable if the set { | ( ) }x f x a is measurable for every 

real a . 

In this thesis, we consider the reproducing kernel defined in 2 ( , )x for a 

locally compact Hausdorff space with measure x in general. In particular, x is the 

probability measure, i.e. 0 1x  and ( ) 1x  . However, in some cases such as the 

Mercer’s theorem, the RKHS is only property defined on the compact subset X  , 

in which we use the symbol X to highlight the requirement of compactness. 

Otherwise, is used in general. 

Definition 2.2 
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Given a set , a compact kernel :k   is called of positive type if  

 
,

( , ) 0i j i j

i j

c c k x x    (2.1) 

for any  , 1,..,x x  and 1,.., lc c  . 

The kernel is also called positive (definite) kernel or Aronszajn kernel. To be 

clear, we call a kernel is positive definite if it is of positive type and a matrix positive 

definite if the spectrum is strictly positive. A positive kernel in (2.1) can also written 

as Tc Kc , where c and K  is the kernel matrix. If the set 

{ | , }i ix x i  is collected from the empirical observation, it is called the 

empirical kernel matrix denoted by K herein. By Definition 2.2, the kernel matrix K is 

a Grammian matrix, and therefore it represents the inner product of a set of vectors in 

some inner product space [43]. In particular, there is Hilbert space fulfilling this 

property called the reproducing kernel Hilbert space. 

Definition 2.3 

A Hilbert space of functions :f  endowed with the inner product ,  is 

called a reproducing kernel Hilbert space on nonempty set , if x  there exists a 

function xk  satisfying  

 ( ) , ,  xf x f k f   ; (2.2) 

in particular, the reproducing kernel is defined as  

 ( , ) , ( ) ,u x uk x u k k k x x u   .  (2.3) 

We remark the notation that the right argument of ( , )k x u is used as index and the left 

argument is used as the evaluation point of the functional. The requirement of the 

nonempty set X is loose. To be more specific, it only requires to be a subset in a 

locally compact Hausdorff space, not necessarily a Hilbert space. We mention 
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that xk can be also treated also a possible nonlinear map from to , or to some 

isometric feature space , in which the inner product can be defined as (2.3). In 

addition to Definition 2.3, one can also define the RKHS by first defining the 

reproducing kernel as follows. 

Definition 2.4 [3] 

Let be a Hilbert space. The function ( , )k x u of ,x u is called a reproducing 

kernel if for every u , ( ) ( , )uk x k x u is a function of x and belongs to and the 

reproducing property that  

 ( ) , xf x f k  (2.4) 

holds for all f  and x , then is called the reproducing kernel Hilbert space 

with reproducing kernel k . 

Before proceeding, we recall some facts of Hausdorff space and compactness. A 

space is called a Hausdorff space if any two distinct points in it can be separated by 

neighborhoods, and therefore the Hausdorff space is also called separable space. 

is a Hausdroff space iff the limits in are unique. For example, the real line is a 

Hausdroff space. More generally, all metric spaces are Hausdroff, which is used in the 

functional analysis. Therefore, the requirement of being Hausdorff is loose.  

To give the definition of compactness, we follow that: a topological space is 

called compact if each of its open covers has a finite subcover. Roughly speaking, a 

subsequence of an infinite series in the space accumulates at some particular points, 

which is a generalization of finite interval. A space is locally-compact, if every point 

in it has a compact neighborhood. For example, the Euclidean space is locally 

compact but not compact. Further if the space is locally compact and Hausdorff, every 

point in it has a closed compact neighborhood. We note that Hausdorff and local 
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compactness are not the same. For example, the space of rational number is Hausdorff 

but not locally compact, since all its compact subsets all have empty interior and 

therefore are not neighborhood. The example also shows that a subset of a locally 

compact space needs not to be locally compact. Also it can be shown that a Hausdorff 

space is locally compact if and only if it is finite-dimensional (as in the case of 

Euclidean space and Hilbert space). Also we recall that by Alexandroff 

one-point-compactification theorem, any locally compact Hausdorff space can be 

turned into a compact space by adding a single point into it.  

The requirement of being Hausdorff is that evaluation functional (2.2) can be 

unique and identified, and the locally compactness is needed for the convergence. 

Proposition 2.5 [10] 

Let be locally compact Hausdorff space and be a reproducing kernel Hilbert 

space with kernel ( , )k x u , ,x u . The followings are equivalent: 

1. the map :xk  is weakly continuous; 

2. the function ( , )k x u is locally bounded and separately continuous. 

If one of the above condition holds, the inclusion operator 0: ( , )C X  is 

continuous. 

This proposition is important, because it describes the RKHS that can be 

included in 0 ( ; )C , the Banach space of continuous function. If a RKHS is the 

subspace of 0 ( ; )C , more can be said be define the corresponding integral operator 

in the famous Mercer’s theorem. 

Theorem 2.6 (Mercer’s theorem of continuous kernel) [86] 

Let ( , )xX  be a finite measure space, and X is a compact subspace of N . 

Suppose 0( , ) ( ; )xk X C X is a symmetric real-valued function such that the 
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integral operator 

 2 2: ( , ) ( , )X X   

 ( )( ) : ( , ) ( ) x

X

f u k x u f x d   (2.5) 

is positive definite; that is 2( , )xf X     

 2, ( , ) ( ) ( ) 0x u

X X

f f k x u f x f u d d 


  . (2.6) 

Let 2 ( )i X  be the normalized orthogonal eigenfunctions of associated with the 

eigenvalues 0i  , sorted in non-increasing order. Then  

1. 1{ }i i    

2. ( , ) ( ) ( )i i i

i

k x u x u  holds for almost all ,x y X , 

Recall that the integral operator on a compact space has discrete eigenvalues, so the 

compactness assumption is necessary. For the continuous and bounded kernel defined 

on a compact subset X , the Mercer’s theorem characterizes the norm in the RKHS by 

introducing the spectrum of the integral operator . Also, the boundedness and the 

continuity follow from each other on the assumption of the compact set. Since the 

spectrum is discrete, there is an isomorphism in 2 , i.e. 

 2:xk X    

 ( ( )) ,  i i ix x i  . (2.7) 

This 2 space is also called the feature space as mentioned earlier. On the other hand, 

the continuous RKHS is actually a subspace in 2 ( , )xX  as in the next corollary.  

Corollary 2.7 

The reproducing kernel Hilbert space in Theorem 2.6 with eigenvectors and 
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eigenvalues{ , }i i i   is the set,  

 
22 0{ | , }f f C f   ,  (2.8) 

where 

 
2

22 1
, j

j j

f f 


  (2.9) 

In particular,  

 
2 2

1
, , , , ,j j j j j

j j j

f g f g f g    


   . (2.10) 

Proof: 

Since { | }xspan k x X  , every f  has the following representation 

 ( ) ( , ) ( ) ( )i i i j j j i

i i j

f x k x x x x        , (2.11) 

for some i  . Define , : /i j ij j    . We then have 

 
,

, ( ) , ( ) ( ) ( ) ( )x i j j i j k k k i j j j i

i j k i j

f k x x x x f x                 

On the other hand,  

 ( ) , ( )j j j

j

f x f x    (2.12) 

Therefore, the inner product with the eigenvectors in 2 and satisfy the following 

equation 

 
2

, ,j j jf f   , (2.13) 

since (2.11) and 

 , ( )j i j i

i

f x   . (2.14) 

The norm of f  is 

 
2

2 22

,

1
( , ) , ,i j j i j j j

i j j j j

f k x x f f   


     ,  (2.15) 
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and the inner product is 

 
2 2

1
, , , , ,j j j j j

j j j

f g f g f g    


    (2.16) 

by using (2.12) and (2.13), which also proves 

 1{ }i i    

in Theorem 2.6. 

  Q.E.D. 

This corollary also suggests the inner product in can be computed by defining 

another integral kernel  

 
1

( , ) ( ) ( )j j

j

Q x u x u 


  (2.17) 

and the operator 

 2 2

1
( )( ) : , ( , ) , ( )j j

j j

f x f Q u x f x 


  , (2.18) 

So the inner product in in terms of ( , )G x u is 

 2, ,f g f g  (2.19) 

from (2.16).  

In summary, the inner product and the induced norm of can be defined in both in 

2 ( , )xX  and or some other isometric Hilbert space. Recall the Mercer’s theorem 

on the compact subset allows the eigen-decomposition of the reproducing kernel 

 ( , ) ( ) ( )i i i

i

k x u x u   

and therefore the norm of in have two representations 

 
2

,

( , )i j j i

i j

f k x x , (2.20) 

and 
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 2

2
,f f f , (2.21) 

which are called the dual representation and the primal representation herein. 

The dual representation is based on the representation theorem of the Hilbert space 

and the weak topology on ; the primal representation is formulated as the normed 

space in 2 ( , )xX  with the quadratic norm (2.21). The two representations are both 

useful to be considered in learning. Especially, the induced norm corresponds to the 

penalty or the prior probability of the underlying function, whereas the dual 

representation shows the clear connection to Representer theorem. The connection 

between (2.20)and (2.21) will be more focused in the next section by introducing the 

Green’s function.  

Before ending this section, we remark some informative properties of the scalar 

RKHS regarding the convergence, the boundedness, and the uniqueness. 

Remark 2.8 [3] 

1. If a reproducing kernel exists it is unique. 

2. A reproducing kernel exists iff x  , ( )f x is a continuous functional of f running 

through the Hilbert space . 

3. ( , )k x u is of positive type. 

4. To every positive definite matrix ( , )k x u , there corresponds one and only one class 

of functions with a uniquely determined quadratic form in it, forming a Hilbert 

space and admitting ( , )k x u as a reproducing kernel.  

5. If the Hilbert space possess a reproducing kernel ( , )k x u , every sequence 

function { }nf , which converges strongly to a function f  , converges also 

pointwisely in ordinary sense, i.e. lim ( ) ( )nf x f x .In particular, this convergence 



CHAPTER 2 REPRODUCING KERNEL HILBERT SPACE 

  18 

is uniform in every subset of in which ( , )k x x is uniformly bounded. 

6. If{ }nf converges to f  weakly, the ( ) ( )nf x f x for every x . However, there 

is in general no increasing sequence of sets 1 2X X X   in 

which{ }nf converges uniformly to f . 

For ( , )xX  , by Remark 2.8, the reproducing kernel exists iff ( )f x is a continuous 

functional of f running through the Hilbert space iff ( , )k x u is continuous and 

locally bounded (which is the same as in [37]). In Mercer’s theorem, ( , )k x u is 

assumed to be uniformly bounded; the RKHS defined in Mercer’s theorem is a 

subspace in 2 ( )X (also C
0
(X) from definition), where X is compact. 

Finally, we give a short note on the convergence just for reminder. We first 

contrast the definition of weak convergence to strong convergence. Let X be 

topological vector space over a topological field, which is assumed to be the field of 

real numbers in throughout this context, and let *X be the dual space of X , which is 

full of linear functions from X to the base field. The weak topology of X is the initial 

topology with respect to *X , which is the coarsest topology such that each elements 

of *X is a continuous function, whereas X is called the strong topology. The strong 

convergence, also known as convergence in norm, is defined with respect to the strong 

topology, that is { }nx x strongly then 0nx x  . On the other hand, 

if { }nx x weakly means that ( ) ( )nx x  for all linear functions *X . Some 

famous examples are given in Hilbert space, e.g. sin(2 )nx converges weakly to 0 but 

not strongly; the orthonormal bases in an infinite dimensional space converges weakly 

to 0. The other types of convergence are the uniform convergence and the pointwise 

convergence. A series converges uniformly if there exists 0N  , such 
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that nx x   for all n N  for any 0  ; on the other hand, a series converges 

pointwisely if given any 0   there exists 0N  depending on  , such 

that nx x   for all n N . The uniform convergence implies pointwise 

convergence and the converse is not true. The uniform convergence can be proved to 

be preserving many properties of the limit, such continuity, differentiability, etc. [82] . 

2.3 Green’s Function and the Dual Formulation 

In this section, we first introduce the Green’s function of the linear differential 

operator and connect the Green’s function to the RKHS. The Green’s function of a 

linear differential operator can be used to induce a quadratic norm in 2 ( , )xX  which 

effectively creates a RKHS via (2.19). Note that X is used here for simplicity; 

otherwise, the spectrum may be continuous defined by the resolvent sets. 

We first give the definition of the Green’s function. 

Definition 2.9 [30] 

For a linear differential operator L defined on a set NX  ,  

 ,  Lg f x X   (2.22) 

with Neumann or Dirchlet boundary condition on the boundary X , the Green’s 

function ( , )G x u of L satisfies  

 
* ( , ) ( ), 

adjoint boundary conditoins, 

uL G x u x x X

x X

  



. (2.23) 

Based on the bilinear identity, we can obtain the representation formula 

For ( ) ( )Lg x f x , 

 *( ) , , , ( , ) ( )u u ug u g g L G f G G x u f x dx      (2.24) 
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That is, the linear integral operator , defined as 

 ( )( ) : ( , ) ( )f u G x u f x dx  , (2.25) 

or 

 : ( , ) ( )u f G x u f x dx  , (2.26) 

is the left inverse of L, satisfying 

 Lg g . (2.27) 

In particular, if :L V V for some vector spaceV , then 

 ( ) , , ( ) ( , ) ( ) ( , ) ( )y yf y f Lf G Lf x G x y dx Lg y L G x y f x dx      . 

For a linear differential equation with forcing term, the solution can be obtained 

by identifying the Green’s function of the operator. We also remark that this property 

is similar to the reproducing property in RKHS. Before proceeding to connect the 

Green’s function and the RKHS, we summarize some important properties of Green’s 

function as follows. 

Remarks 2.10 

1. If the kernel of L is non-trivial, the Green’s function is not unique. 

2. Near the boundary, the Green’s function often behaves badly [30]. 

3. If the operator is translation invariant, then ( , ) ( )G x u G x u  . 

5. (Reciprocity theorem) If the operator L is self-adjoint the Green’s function 

satisfies ( , ) ( , )G x u G u x [30]. 

6. If and solves the eigenvalue problem L  , then
1

 


 as long as 0  . 

7. If L is compact and self-adjoint, then is self-adjoint and{ }i is complete, since the 

eigenvectors of a compact, self-adjoint operator form a complete set. Then 
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 *1
( , ) ( ) ( )i i

i i

G x y x y 


 ; (2.28) 

in particular 

 *( ) ( ) ( )y i i

i

x x y   . (2.29) 

After fully introducing the Green’s function, we are now in the position two 

connect the RKHS and the Green’s function. The key observation is that the inner 

product of two functions in RKHS can be stated as the inner product of the images of 

the two functions via a linear operator, as in the following theorem 

Theorem 2.11 [86] 

For every RKHS  with reproducing kernel k, there exists a linear 

operator :  and a Hilbert space , such that f   

 , ( )xf k f x  

In particular 

 , ( , )u xk k k x u  

Likewise, for every positive definite linear self-adjoint operator :  for which a 

Green’s function exists, there exists a corresponding RKHS  with reproducing kernel 

k, an inner product space , and an operator :  such that the above holds. 

The theorem above shows the existence of the linear operator or the RKHS are 

given from each other. Following the theorem above, given a linear differential 

operator L for which the Green’s function exists, we can define a RKHS  with 

reproducing kernel k by defining the inner product as 

 2, : , ( ) ( )f g Lf Lg Lf x Lg x dx    (2.30) 
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which is equal to 

 22

*, ,f L Lg f g  (2.31) 

where *: L L is self-adjoint and positive definite. That is, the linear operator L can be 

used to induced a inner product space with inner product 2,  in 2 ( , )xX  . We 

recall in (2.19) the integral operator also induce a inner product space in 2 ( , )xX  . 

In fact, and L are connected to each other through this formulation, so are the 

reproducing kernel ( , )k x u and the Green’s function ( , )G x u . We summarize this 

connection in the following theorem, which serves the alternative of Theorem 2.11 . 

Theorem 2.12 

Let ( , )xX  be a compact measurable space with finite measure, and let ( , )k x u be a 

Mercer’s kernel with the integral operator 

 ( )( ) : ( , ) ( ) x

X

f u k x u f x d   

i.e. 

 ( , ) ( ) ( )i i i

i

k x u x u  ,  

where i , 0i  for all i is the normalized eigenvectors and the eigenvalues 

of in 2 ( , )xX   . Let ( , )G x u be the Green’s function of the linear differential 

operator L , and define the integral operator  

 ( )( ) : ( , ) ( ) xf u G x u f x d  , 

and assume L admits a set of complete eigenvectors i with eigenvalues i ,i.e. 

 
1

( , ) ( ) ( )i i

i i

G x u x u 


 , 

in which i are normalized in 2 ( , )xX  . Both ( , )k x u and ( , )G x u define the same 
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RKHS, i.e. 

 2 2 2

1
, , , ,j j

j j

f g Lf Lg f g 


  , (2.32) 

If and only if the following holds: 

1. i i  2 0i i   , for all i 

2. Let the integral kernel
1

( , ) ( ) ( ) j j

j

Q x u x u 


 and the corresponding integral 

operator 2: , ( , )f Q u  , .Then 

 2 2, , ,f g f g Lf Lg  ; (2.33) 

in particular,  

 2( , ) , ,u x u xk x u k k G G   (2.34) 

and 

 ( , ) ( , )G x u Lk x u . (2.35) 

Proof: 

  

From (2.32), we have 

 22
, , ,f g f g Lf Lg  , 

where
*L L . On the other hand, 

 2 2 2
( , ) , , , ,u x u x y x y xk x u k k Lk Lk k Lk G    , (2.36) 

so 

 ( , ) ( , )G x u Lk x u ,   

In particular,  

  2( , ) ( , ) ( , ) ,u xk x u G s x G s u ds G G   (2.37) 
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by applying on both sides of (2.35).  

Rewriting (2.32) as 

 
2 2 2 2

2 1
, , , , ,j j j j j

j j j

f g f g f g    


    

and substitute ,j if g   , we have for all i, j. 

 
2 2

2 1
, ,j i j j i

i

    


 . (2.38) 

Let i j in (2.38), we have 2 0i i   , and  

 
2 2

, ,
j

i j j i

i


   


 . 

For general i , we have
2

,j i ij   and therefore i i  . Thus, *L L . 

  

If i i  2 0i i   , for all i, then 

 
2 2 2 2

2 1
, , , , ,j j j j j

j j j

f g f g f g    


   . 

  Q.E.D. 

From Theorem 2.12, it is clear the norm that Green’s function induced with the 

eigenvalues of the differential linear operator is the inverse of that of the integral 

operator. Therefore, if we treat (2.31) as the regularization term in a learning 

algorithm, e.g. penalizing the terms of higher derivatives, the reproducing kernel will 

be dominated by the eigenfunction with less penalties. 

Corollary 2.13 

Let :  be a regularization on a function space defined on a compact set X , 

i.e. for all f   

 2( ) ,f f f , 
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where is the integral operator with the kernel  

 
1

( , ) ( ) ( )j j

j j

Q x u x u 


  

where 0j  . Then defines a RKHS with the inner product 2, ,     , and 

the reproducing kernel  

 ( , ) ( ) ( )u j j j

j

k k x u x u     

such that { | }xspan k x X  . In particular, if ( ) ( , )i i

i

f x k x x for some i , 

then 2

2

,

( , ) , .i j i j

i j

f k x x f f   

Theorem 2.12 and Corollary 2.13 shows that a quadratic norm defined in 

2 ( , )xX  defines an effective RKHS, which is very useful to analyzing a learning 

algorithm, since most of the algorithms use quadratic norm to regularize the 

complexity of the hypothesis space. Finally, we give an example of Laplacian 

regularization to end this section. 

Example 2.14 

Let be a compact manifold with or without boundary and 

 2 0{ | ( ) ( ), ( )},f f C f  1  

where ( )1 denotes the space of constant function on the manifold. 

Let
2

2
:  

i ix


  


 be the Laplace-Beltrami operator on . Then   and  defines a 

RKHS such that for  ( ) ( , )i i

i

f x k x x , 

 2

2

( )
, T

H
f f f K      

where is the vector of i , K is the kernel matrix. In particular, K can be computed as 

the pseudoinverse of . 
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2.4 Reproducing Kernel Hilbert Space of Vector-Valued 

Functions 

In this section, we introduce the RKHS of vector-valued functions, denoted by 

vector-valued RKHS herein. The vector-valued RKHS generalize the theorem of the 

scalar RKHS so that it contains the vector-valued function intrinsically. Recently, the 

formal studies of RKHS generalizing the Mercer’s theorem and the feature space [8, 

11, 12, 31], and theory of convergence of learning in RKHS are established [9]. In this 

section, we shall follow these studies, especially [8], to give the definition and the 

properties of the vector-valued RKHS. 

We try to parallel the scalar RKHS in this section so that the intricate differences 

can be contrasted, but we first begin with some notations for clarity. Let be a locally 

compact Hausdorff topological space, and be a separable Hilbert space endowed 

with the inner product ,   . We restrict our attention to the case when is of finite 

dimensionality and defined over the real field hereafter, both for the need of the 

application and the simplicity. denotes the space of functions that maps 

from to , and ( ; )C  the Banach space of continuous functions 

from to endowed with the infinity norm. Let ( ) be the 

Borel -algebra of and : ( ) [0,+ ]   be a Borel measure on , which 

is -additive and finite on compact sets. For1 p  , ( , ; )p  denotes the Banach 

space of measurable functions f  such that 
p

f is -integrable , with 

norm ( ) ( )
p

p
f f x d x  . Also, given two nonempty sets A and B , we denote 

by ( ; )L A B the Banach space of bounded linear operators form A to B , in which ( )L A  
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is subspace of bounded linear operators from A to A . ( )L A denotes the bounded 

positive semidefinite operator.  Finally, for a linear operator T , *T denotes its 

adjoint; denotes both the tensor product of spaces and the Kronecker product, 

between which the discrimination will not be made if there is no ambiguity; denotes 

the direction sum of vector spaces. 

Definition 2.15  

Given a locally compact Hausdorff space and a Hilbert space as defined 

previously, a kernel : ( )K L  is said to be of positive-type, if K is positive 

semidefinite, i.e. 

 
,

, ( , ) 0
l

i j i i j j

i j

c c y K x x y  , 

for any l ,{ | }j lx j  ,{ | }j ly j  ,and 1,.., lc c  . 

This definition generalizes the notation of positive-type in the scalar RKHS 

where   in Definition 2.1. Also, one can think that a vector-valued RKHS is 

actually a scalar RKHS defined on the space  , be treating both the input 

space and the output space as the indexes, i.e. ( , ) , ( , )y i j i i j jk x x y K x x y , 

wheredenotes the Cartesian product.   

Definition 2.16 

A Hilbert space of functions f  endowed with the inner product ,
K

  and 

norm
K

 is called a reproducing kernel Hilbert space on , if x  there exists a 

map :xK  satisfying 

 ( ), , ,  x K
f x y f K y f   . 

In particular, the reproducing kernel : ( )K L  is defined as 
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 *( , ) ,  ,x uK x u K K x u   , 

and 

  *( ) ,  x kf x K f f    

where * :xK  is the adjoint of xK . 

In contrast to the scalar RKHS, the reproducing kernel of the vector-valued RKHS is a 

bounded linear operator ( )L , or can be viewed as the mapping 

from to K and *

xK is a linear operator from back 

to
, ,

, ( , ) , 0
i j

l l

i j i i j j i j x i x jY
i j i j

c c y K x x y c c K y K y   . In the second viewpoint 

vector space can be more easily understood. If we treat xK y as a function of 

both ,x y , i.e. :xK y X Y  , the vector-valued RKHS is a then vector space 

defined by 

 { | , }xspan K y x y   . 

In other words, if dim( ) is finite, is an isomorphism 

of dim( ) and dim( ) dim( )

xK  . Therefore, xK y is a vector in in the column space 

of xK and combined by y . On the other hand, * dim( ) dim( )

xK  as the evaluation 

matrix to map a vector in to multiple values in . In short, a vector-valued 

function f is a vector in , the value of the function is the image of linear map *

xK . 

See [11, 31] for an alternative argument, but they define by first defining multiple 

scalar RKHSs so that should be at least large enough to contain all the scalar 

RKHSs. However, we define directly the vector-valued RKHS, and therefore the 

vector-valued RKHS may be smaller than that required in [31] as long as 
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proper xK can be identified. 

The following theorem is the replica of that of the scalar RKHS. 

Remark 2.17 

1. A reproducing kernel is unique up to isometries. 

2. A bounded reproducing kernel exists if and only if x  , ( )f x is a continuous 

linear map of f running through the Hilbert space  . 

3. ( , )K x u is of positive type ,x u  . 

4. ( ; )C if and only if ( , )K x u is locally bounded and x X  , xK is strongly 

continuous.  

5. The uniform (weak) convergence of the series{ }if  implies the uniform (locally) 

boundedness of the kernel K as in the scalar case. In particular,{ }if converges 

pointwisely to f. [3] 

6. The set { | , }xK y x X y Y  is total in , that is, ( Im ) {0}x X xK 

  .[11] 

In Remark 2.172, * *( ) x xf x K f K f  from the definition. On the other 

hand, if ( )f x is continuous, then by the general theory of Hilbert space there exist a 

linear operator xG such that ( ) xf x G f . In addition, since xG is linear and 

continuous, xG is bounded. In Remark 2.173, it is equivalent to 

 
, ,

, ( , ) , 0
i j

l l

i j i i j j i j x i x jY
i j i j

c c y K x x y c c K y K y   ,  

where jc  .If we treat ( , ) ( )( )uK x u y K y x , we can have a similar argument 

in
2( ; )x y   . Moreover, ( , )K x x is positive definite for all x X iff is 

normal. We recall that a space is normal if given two disjoint sets, there are open 

neighborhoods that are also disjoint a nd that all metric space are normal Hausdorff. 
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Indeed, this is a direct result of positive type. By taking l=1, we 

have
dim( ),

( , ) 0
Y

i j ij

i j

y y K x x


 , which implies ( , ) ( )K x x L Y , and the positive 

definiteness follows from the definition of normal. In Remark 2.176, as in the scalar 

case, we can define another Hilbert space alternatively that is partially isometry 

to [11] (p. 6), which is sometimes called the feature space. Also, 

for 2 0( ; ) ( ; )f X Y C X Y , see chapter 6 in [11] for the Mercer’s theorem of the 

vector-valued functions generalized to non-convex space X. 

Note that we emphasize ( , ) ( )( )uK x u y K y x , where the second argument is used 

as the index.  Also, it can be shown that ( , ) ( , )TK x u K u x and ( , ) ( )K x x L , i.e. 

( , )K x x is a semi-norm of k . In particular,  

 
1/2

( , )xK K x x  

 , ( , ) , ,  , ,  ,u xv K u x y K v K y x u y v     

The next proposition is parallel to Proposition 2.5. 

Proposition 2.18 [11]  

Let be locally compact space, be a Hilbert space, and be a reproducing kernel 

Hilbert space with kernel ( , )K x y . The followings are equivalent: 

1. the elements of are continuous functions; 

2. the kernel ( , )K x y is locally bounded and, for all x X , the map xK is strongly 

continuous. 

If one of the above condition holds, the inclusion operator : ( ; )C X Y  is 

continuous. 

In this thesis, we consider the case ( ; )C . To end this section, we 
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summarize some useful admissible constructions of a vector-valued RKHS, and the 

generalized representer theorem for vector-valued RKHS. 

Proposition 2.19 

Let ,G K be two reproducing kernels of vector-valued RKHS as defined previously.  

1. The sum K G is a reproducing kernel and the corresponding RKHS is the direct 

sum of the two RKHSs. 

2. Hadamard (Schur) product, K G , is a reproducing kernel and the corresponding 

RKHS is the tensor product of the two RKHSs. 

3. Let 0 be a compact Hausdorff space, N , 0:p  for all Np . Given a 

scalar kernel 0 0:G   , then 

  
,

( , ) ( , )
N

p q p q
K x u G x u


    

is a vector-valued reproducing kernel. 

These constructions are mostly commonly used to construct a new kernel. Please see 

[5] and therein for a complete survey of admissible constructions. Finally, we show 

the representer theorem for the vector-valued RKHS generalized from [85] for scalar 

RKHS, which can also apply to scalar RKHS. 

Theorem 2.20 (Representer Theorem) 

Given a locally compact Hausdorff space  and a Hilbert space , a reproducing 

kernel : ( )K L  of the vector-valued RKHS K , a strictly monotonically 

increasing real-valued function g on [0, ) , and an arbitrary cost 

function 2: ( ) { }lc    , a set of samples {( , ) | , }
li i i i ix y x y   , the 

minimizer of  

  1 1 1min (( , , ( ),..., ( , , ( )) ( )
K

l l l Kf
c x y f x x y f x g f


   
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admits a representation of the form 

 
i

l

x i

i

f K 


 .  

for some dim( )

i  .
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Chapter 3 Learning the Robot Dynamics with 

Structured Kernels 

A precise model often means accurate control and more. For a multi-joint robot, 

the general model, however, is not trivial. In this chapter, we discuss the learning of 

general robot dynamics in reproducing kernel Hilbert space (RKHS). The RKHS in 

Chapter 2 is a nonparametric framework of machine learning in the dual space, in 

which the learning problem becomes the inference problem given the projection in 

certain random subspace. Despite the generality, the choice of RKHS is often an open 

and critical question, and may depend of the prior knowledge of the specific problem. 

Most importantly, the structure of the RKHS determines the generalization of the 

learning. For example, a quadratic kernel can capture quickly the quadratic 

characteristics, or a cosine kernel learns a sinusoidal function almost trivially if the 

frequency is known. Therefore, a structured kernel has good generalization on the 

dissimilar data, compared to the general kernels such as radial basis kernel, or the 

spline kernel.  

In this chapter, we propose two different approaches to model the robot dynamics. 

In Section 3.1, a structured scalar RKHS is designed to capture the specific function 

space of the robot inverse dynamics. Although the kernel is derived under the 

assumption that all the joints are rotary, the kernel can be generalized to those with 

prismatic joints trivially. In addition, the universal radial basis kernel is introduced to 

model the friction and the unmodeled nonlinear terms. By the direct sum of the two 

spaces, the model can learn the inverse dynamics of the general robot more efficiently. 

In Section 3.2, the learning framework based on the vector-valued RKHS in proposed 
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to simultaneously model the coupling between different generalized coordinates. 

Compared to the previous approach, this framework considers the dynamics of a 

N-DOF robot as a single problem instead of N independent problems. Not limited to 

the robot dynamics, this framework is aimed to model general dynamical systems, and 

is believed to be even able to be generalized to those in the field, e.g. electro-magnetic 

dynamics, or fluid system, as long as the generalized coordinates and the generalized 

force can be measured. As previously, the universal scalar radial basis is introduced to 

model the unmodeled terms in the probably approximately correct learning 

framework, and the weighting of the kernels can be automatically tuned for the 

optimal combination. 

For the ideal systems, we note that the proposed kernel based on vector-valued 

RKHS is at best as good as the models based on the energy criterion, especially the 

Euler-Lagrange equation, or the Hamilton principles. The difference is that no analytic 

derivation of the Lagrangian or the Hamiltonian is needed, since the proposed kernel 

implicitly models the coupling of the different coordinates in the vector-valued RKHS. 

This can be very helpful, especially in the complex system as long as the generalized 

force and the generalized coordinates can be properly measured. In addition, the 

proposed kernel can model any types of Lagrangian. That is, the unmodeled terms in 

the traditional analytic approach can also be considered as long as they are related to 

the measurements. 

This chapter is partly based on the contributed works in conferences or journals 

[15] and [13]. 
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3.1 A Structured Kernel for Learning Robot Inverse 

Dynamics 

The inverse dynamics model of robots is often the key for accurate control. 

Especially in the computed torque control, the nonlinearity and the friction can be 

compensated leading better tracking or force control. The inverse models, however, is 

not trivial. The traditional Euler-Lagrange model based on the rigid body assumption 

often underfits in the presence of friction and requires tedious derivation for each new 

robot; the learning-based model needs larger training data set, since the structure of 

the dynamics is not considered. To overcome the aforementioned issues, we propose a 

structured kernel to replace the rigid body model and combine it with the universal 

radial basis kernel by direct sum. The proposed structured kernel asymptotically has 

the same convergence rate as the traditional model, and is general regardless of the 

configuration of the robot. Therefore, no analytic derivation is needed. Together with 

the universal radial basis kernel, the proposed approach enjoys the advantages of both 

the conventional and the learning-based models. To verify the proposed method, both 

simulations and experiments are conducted to investigate the performance in terms of 

the prediction errors and the tracking errors with the feedforward compensation.  

3.1.1 Introduction 

It is well known that a control loop that includes the inverse dynamics as the 

feed-forward compensation achieves better performance in tracking and force control 

[18]. In particular, the impedance control of robotics requires the inverse dynamics 

model to perform the desired dynamics [73], or the prediction of human intention in 

the exoskeleton control [44]. Despite the appealing success of the inverse dynamics 
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model, the application is limited in general due to the modeling difficulties. 

Traditionally, the dynamics model of the robotics is derived based on Newton-Euler 

method or Euler-Lagrange formulation [96], and we refer them as the rigid body 

model hereafter. Assuming that each link of the robot is a rigid body and the friction 

can be neglected, the unknowns in the dynamics model consists of the kinematic 

parameters and the dynamics parameters, in which the kinematic parameters are 

referred to those specifying the traditional Denavit-Hartenberg model, whereas the 

dynamics parameters consists of the inertia matrix, and the position and the mass of 

the center of mass for each link. Traditionally, the calibration of the dynamics model 

can be categorized into two approaches according to the formulation. In the 

Newton-Euler method, the kinematic parameters is first calibrated using laser [70] or 

camera [102], and the dynamics parameters are identified joint by joint iteratively [92]. 

This approach restricts the calibration to be carried only in offline, and the most 

importantly, the uncertainty of the former links passes to the following links. An 

alternative solution is based on the Euler-Lagrange formulation [92]. This approach 

explores all the unknown terms in the dynamics model in terms of the nonlinear bases, 

and therefore the identification problem becomes an ordinary linear regression 

problem, which is then solved by least-squares. While the Euler-Lagrange based 

approach is popular especially in the adaptive control community [79], the number of 

expanded terms of the dynamics model grows, however, in the worst case 

exponentially with the degrees of freedom of the robot. As a result, the computational 

burden may become intractable, which limits the usage for complex systems, e.g. 

robotics manipulators with arbitrary Denavit-Hartenberg parameters. Also, although 

the model converges to the underlying parameters in the L2 sense, the factorization of 
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the learned parameters into physically plausible kinematic and dynamic parameters is 

not guaranteed, so additional constraints on the unknowns are used empirically [100]. 

Finally, none of the models above consider directly frictions and the other nonlinear 

coupling effects such as the joint flexibility of the robot. 

Considering the structured uncertainties due to frictions, damping, joint 

flexibility, and manufacturing errors, the machine learning based inverse dynamics 

models haves been proposed [19, 24, 26, 27, 36, 56, 67, 107]. See [25, 93] for the 

recent surveys of the dynamics learning. The learning of the dynamics can be long 

dated back to the neural networks, and the following machines based on the 

reproducing kernel Hilbert space (RKHS), e.g. support vector machine and Gaussian 

process regression, etc. Despite the universality of these methods, the curse of 

dimensionality and the ability of generalization to the unseen data remain as the major 

issues. First, since the complexity of the underlying problem grows exponentially with 

the degrees of freedom of the robot, how to choose a proper kernel space and the 

regularization is the key to prevent the overfitting. Second, along with the curse of the 

dimensionality, the definition of sufficient rich data for a machine learning model in 

this learning the dynamics may vary and depend on the application. In the iterative 

learning control, the desired reference trajectory may be fixed from time to time, so 

there is no danger of overfitting; in the impedance control, the reference trajectory, 

however, is calculated in real time and cannot be known beforehand, or in the high 

speed position tracking, the training data of the high speed trajectory too cannot be 

acquired without the compensating feedforward term that is to be learned.  

The popular radial basis kernel and those kernels that decay as the distance 

metric between the seen and the unseen data increases often fails to generalize well to 
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the unseen data in learning the inverse dynamics. More specifically, they often 

underestimate the predicted torque. Since theses kernels are essentially based on the 

interpolation of the acquired training data, the sufficiently rich training data should 

cover all the frequencies and the magnitudes, or should be at least sufficiently rich in 

the space of possible reference trajectories so that the identically independently 

distributed (i.i.d.) sampling assumption holds. On the other hand, the rigid body 

model can generalize well, if the effect of the unmodeled dynamics is limited and 

negligible. Since it captures the polynomial tendency of the generalized force with 

respect to the accelerations and the velocities, the sufficiently rich data do not require 

the trajectories of all frequencies and magnitudes. That is, the model can predict for 

the high-speed trajectory with large magnitude well even with limited training data. 

Compared to the models with the radial basis kernel, the properly identified rigid 

body model is therefore more suited in the impedance control and the high-speed 

position control as long as the flexibility and the friction of the robot can be ignored. 

Recently, Duy et al.[26] showed that the prediction and the control is more 

accurate by incorporating both the rigid body model and the radial basis kernel 

compared to the model used only either of them alone, in which the rigid body model 

is derived based on the Euler-Lagrange method. Along with this trend, we too propose 

to use the fusion the two models here. Compared to [26], no explicit derivation of the 

rigid body model is needed here.  By formulating the proper RKHS, we can directly 

model the rigid body dynamics without referring to the Euler-Lagrange method, 

which is often tedious even with the symbolic mathematics toolbox, by giving the 

explicit form of the inner product in the RKHS. Also, we introduce an additional 

parameter to control the complexity of the overall model, so the model can regularize 
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the learning in the presence of the curse of the dimensionality as the degrees of 

freedom increase. Since the proposed RKHS is radically the rigid body dynamics, it 

too captures the polynomial characteristics of the dynamics, i.e. it models the same 

space of that of the Euler-Lagrange method. 

In summary, we introduce the new structured reproducing kernel as the main 

contribution of this work, and further, in a multiple kernel fashion, incorporate it with 

the universal radial basis kernel, which is used to model the nonlinear dynamics and 

the frictions. To verify the proposed kernel, we test the ability both in the simulations 

and the experiments. 

For the rest of this section, it is organized as follows. In Section 3.1.2, we give 

the definition and some properties of RKHS for the further derivation of the proposed 

space. Section 3.1.3 shows the main result of this work, the explicit formulation of the 

kernel space, and Section 3.1.4 shows how the multiple kernels is formulated to learn 

the inverse dynamics model with the standard kernel methods, such as support vector 

regression and kernel ridge regression. In Section 3.1.5 the simulation results are 

presented. Finally, we shall discuss the result and give a short conclusion in Section 

3.1.6. 

3.1.2 Reproducing Kernel Hilbert Space Revisited 

In this section, we give the formal definition of RKHS and some important 

properties that will be used in the next section. For the application of identifying the 

inverse dynamics, we concern here only the RKHS in the field of real numbers. In the 

following, we assume X be a nonempty set in a locally compact Hausdorff space, 

andY  . Most of the works here follow [3, 10]. 

Definition 3.1. 
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Given a nonempty set X , a compact kernel :k X X  is called of positive type, if  

 
,

( , ) 0
l

i j i j

i j

c c k x x   

for any l , 1,.., lx x X and 1,.., lc c  . 

Such kernel is also called positive kernel or Aronszajn kernel. To be clear, we 

call a kernel positive definite if it is of positive type and a matrix positive definite if 

the spectrum is strictly positive. 

Definition 3.2. 

A Hilbert space of functions :f X  endowed with the inner product ,  is 

called a reproducing kernel Hilbert space on a nonempty set X, if x X  there exists a 

function xk  satisfying  

 ( ) , ,  xf x f k f   ; 

in particular, the reproducing kernel is defined as  

 ( , ) , ( ) ,x y xk y x k k k y x y   .  

Here we follow the convention that the first argument of ( , )k y x is the evaluation 

point of the functional and the second argument is used as index of the function.  

Also, one can also treat xk as a possibly nonlinear map from X to 2 , which also called 

the feature space, since all the Hilbert spaces of same dimensionality are isometric 

isomorphism. We note here the requirement of X in a locally compact Hausdorff space 

is satisfied in the learning of inverse dynamics. 

The next proposition shows that can be included continuously into the space of 

continuous functions 0 ( , )C X . 

Proposition 3.3. 
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The following arguments are equivalent: 

1. the map xk is weakly continuous. 

2. the function ( , )k y x is locally bounded and separately continuous. 

Proposition 3.4.. 

A reproducing kernel ( , )k y x exists if and only if ( )f x is a continuous linear 

functional of f  running through . 

These are all derivable from Definition 3.2, and  is unique up to isometric 

isomorphism. Finally we summarize some operations combining multiple RKHSs. 

Proposition 3.5. 

Let 1 and 2 be two RKHS. Then the following compositions show to be a proper 

RKHS 

 1. 1 2  , 

 2. 1 2  , 

where and denote the direct sum and the tensor product of two vector spaces, 

respectively. 

3.1.3 Reproducing Kernel Hilbert Space of Rigid Body Dynamics 

This section presents the main work of Section 3.1. The derivation follows from 

the Euler-Lagrange formulation of the rigid body dynamics. By identifying the 

structure of the function space, we can derive the corresponding RKHS. The objective 

is to identify the smallest RKHS in the sense of dimensionality that can include the 

function space of the inverse dynamics. We assume the robot is holonomic and serial 

with all rotary joints. This framework can be easily extended to the cases with 

prismatic joints accordingly. We omitted here for the compactness. Also, we mention 

that the models of all the joints are learned independently. 
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A. The Euler-Lagrange Method 

We begin with analyzing the Euler-Lagrange formulation of the dynamics of the 

robot. For a N-DOF robot, let Nq be the generalized coordinates, and let 

 
1

( , ) ( )
2

TT q q q M q q  (3.1) 

 
1

1
( ) ( ) ( ) ( ) ( ) ( )

2 i i i i

N
T T T T

i v v i i i

i

q m J q J q J q R q R q J q q 


    

 
1

( ) ( )
N

T

i ci

i

U q m g r q


   (3.2) 

be the kinematic energy and the potential energy, where im is the mass, cir is the 

position of the center of the mass, i is the inertia tensor matrix,
ivJ is the Jacobian 

matrix of linear velocity, 
i

J is the Jacobian matrix of angular velocity, iR is the 

rotational matrix between the inertial frame to joint frame of link i, and g is the 

gravitational acceleration vector, and ( ) N NM q  is the generalized inertia matrix of 

the whole robot defined as in (3.1). With the kinematic energy and the potential 

energy, we define the Lagrangian as 

 :L T U  . (3.3) 

The Euler-Lagrange equation shows the generalized force is actually the image 

of the Lagrangian under a linear map, i.e. 

 ( ) n

n n

d
L

dt q q


 
 

 
, (3.4) 

where nq is the nth generalized coordinate, and n is the nth generalized force. Or we 

can write it more compactly in matrix form 

 ( ) ( , ) ( )M q q C q q q G q    , (3.5) 

where ( , ) N NC q q  is the Coriolis/centrifugal matrix, ( ) NG q  is the gravitational 

term, N  is the vector of generalized forces.  
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In the context of robotics, (3.5) are referred to the dynamics of Euler-Lagrange 

method, in contrast to the iterative Newton-Euler method. It can be shown that the 

unknowns in (3.5) including both the kinematic and dynamic parameters can be 

arranged in a linear regressor form, so they can be identified by the ordinary linear 

regression offline, or by the canonical adaptive law online. However, the number of 

the unknowns in the worst case grows exponentially with N, if there is no cancellation 

due to the zero terms in the kinematic parameters, i.e. the Denavit-Hartenberg (DH) 

parameters. Also, the derivation of the exact formulation of (3.5) is actually intricate 

and tedious, and in most of the cases, can only be solved by the symbolic mathematics 

toolbox under some model simplifications. 

B. Reproducing Kernel Hilbert Space of Rigid Body Dynamics 

Let be the set of all possible states ( , , )q q q of the robot, and with the abuse of 

notation we may write, for example, q for simplicity. Since is a bounded and 

closed subset in the Euclidean space, and (3.4) is a bounded and continuous functional 

on , there exists at least one RKHS containing (3.4) according to Proposition 3.4.  

The objective is to find a particular RKHS that is large enough to contain (3.4) 

and yet small enough to prevent overfitting given finite observations. Also the RKHS 

should be endowed with computationally efficient reproducing kernel. We 

denote L the RKHS that contains (3.4) with such characteristics. Now we shall derive 

the analytic form of the reproducing kernel of L . First, we define the following 

RKHSs, 

 
1

{ | }q span q q
N

   (3.6) 

 
1 1

{ | }q q span q q q
N N

     (3.7) 
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 { ( ) | }span q q   , (3.8) 

where the nonlinear map 

 

3:

( , , ) (cos ,sin ,1)

N

N

n n
n

x q q q q q







  
 

the bar denotes the completion of a metric space, and N is introduced as a 

normalization factor. Namely, q contains the linear functions of q , 

and q q contains the quadratic functions of q , and so on.  

Proposition 3.6. 

The kinematic energy and the potential energy of the rigid body dynamics lie in the 

following RKHS, 

 :q q TT      , 

 : UU   ; 

Proof: 

Since the Jacobian matrices can be shown to be 

 
1

[ ... ]
i

ci ci
v

N

r r
J

q q

 


 
, 

 1 0 1[ ... ]
i N NJ z z    , 

where 

 
0, if joint  prismatic

1, if joint  rotary
n

n

n



 


 

1nz  is the axis of the nth generalized coordinate, and Nn . We note that the order of 

the subscript follows the traditional Denavit-Hartenberg convention, in which the 

frame i-1 is defined with respect to link i, and the two endpoints of link i are joint i 
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and joint i+1. Although we assume all the joints are rotary, the derivation for 

prismatic joints is simpler and can be done in the same fashion. To claim Proposition 

3.6, it is sufficient to show 
ivJ , ( ) ( )

i

T

iR q J q  , where it is obvious 

that
ivJ  since cir  and the linear operator / nq  maps all the elements in  to 

the subspace in  . For the angular velocity, we have 

 0 0 1

1 1 3 3( ) ( ) ( ) = ( )T T i

i n n n i n n nR q z R q R q e R q e   

  , 

where 3

3e  is the standard basis, and therefore it is in  .  As for the potential 

energy, the derivation is similar. 

  Q.E.D. 

After identifying the RKHSs of the kinematic energy and the potential energy, 

the RKHS L should contains the image of T U under the linear map (3.4). 

Theorem 3.7. 

Let Im( )T U n be the image of T U under the linear map,  

 : ( )n

n n

d
T

dt q q

 
 

 
, Nn . 

Then Im( )T U n can be included in the following RKHS 

 1:=( ) ( ) \L q q q       , 

for all Nn , where 1 is the space of constant function. 

Proof:  

Let 1 2 3 ( )q qL L L L          . Define 

 2( ) : ( )( )q q     

and ( )nq such that ( ) ( )
N

n
n

q q 


  . Since T and U are the composition of some 
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simple RKHSs (3.6), (3.7), and (3.8), in which the reproducing kernels can be 

explicitly written. For joint n, we can calculate the image of the linear operator nT by 

using the reproducing property, i.e. 

 

1 2 2 3

( ) ( , ) , ( , )

[ , , , ]

T U
n n x

n n

n

d
L q q T L k q q

dt q q

T L q q L L



 



 
  

 

  

. 

Here we also use as the Kronecker product when considering vectors in finite 

dimensional space, and we do not particularly distinguish it with the tensor product 

unless the clearness is lost. 

We first see that 

 

1 2 2 3

1 2 2 1 2 2

( ) ( )

[ , , , ]

= , , + , ,

n n

n n

a b

d L d
L q q L L

dt q dt q

d d
L q q L L q q L

dt q q dt

 

 

 
  

 

 
 

 

 

Since 

 =( ) ( )n n

n

d
q q q e e q

dt q


   


 

and  

 2 2 1 3 3 2 2( ) ... [ ] ( ) ... ( )
N

i i N

i

d
q q D I I D q q

dt
   



         

we have 

1 2 2( ) , ( ) ,n N N na L e I I e q L      

1

2 2 1 3 3 2 2

( )= ,[ ( )]  

             , ( ) ... [ ] ( ) ... ( )

N

T

i n n n n

i

i N

b L e e I I e q q

L q D I I D q q  



    

      


 

where 
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 3 3

0 1 0

: 1 0 0

0 0 0

D 

 
 

 
 
  

. 

On the other hand,  

 1 2 2 3

( ) ( )

, , ,
n n n

c d

L
L q q L L

q q q
 

  
  

  
. 

Following the similar arguments, we have 

1

2 2 1 3 3 2 2

( ) ,

       , ( ) ... [ ] ( ) ... ( )n N

c L q q

L q D I I D q q  

 

      

3 1( ) , ( ) ... ( ) ... ( )n Nd L q D q q        

Combining (a), (b), (c), and (d), it is clear that for all Nn  

 1 2 3 2 4( , , ) , ,n n n n nq q q           

for some vectors 1n , 2n , 3n , and 4n , which can be defined using the adjoint of the 

operators in (a), (b), (c), and (d). That is n is in 

 ( ) ( )q q q        

with the reproducing kernel 

 2( , , ) ( )xk q q q q q q       . 

In addition, since the differentiation operator projects out the space of constant 

function, n  for all Nn . 

  Q.E.D. 

The RKHS L is indeed computationally efficient and can model the inverse 

dynamics. In fact, it is only slightly larger than the smallest RKHS possible by 

observing that the smallest RKHS to contain n  for all Nn is of size N times 
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larger than Im( )T U n . However, such a RKHS may loss the easily manipulated 

reproducing kernel function, whereas in L the reproducing kernel has a simple closed 

form 

 

2
2

, ,

, ,

ˆ ( , ) ( , , ) (cos( ) 1)

                 (cos( ) 1) 1

L

N

N

y x y x x i y i

i

x i y i

i

k x y q q q q q q

q q





   

   




, (3.9) 

in which we use the trigonometric identity. 

To this end, if (3.9) is used unreservedly, the curse of dimensionality may occur. 

We can observe that 2dim( ) (6 )N

L N , and therefore the limited size of training 

data can never catch up the size of the hypothesis space. This obstruction can be 

circumvented by introducing an additional regularization parameter  , and by 

scaling L , we can obtain a new reproducing kernel 

 
2

2( , ) ( , , ) ( , ) ( , ) 1
L y x y x x y x yk x y q q q q k q q k q q      (3.10) 

where 

 
, ,(cos( ) )

( , ) : ( ) 1
1 1

N

x i y i N

x y

i

q q
k q q

 

 

 
  

 
 . 

In this scaled L , the contributions of high-order terms are penalized, though the 

overall dimensionality is the same. The additional parameter , selected by validation, 

can guide the machine to bias to the correct parameterization.  One can observe that 

the high-order terms in (3.4) are those without the cancellation due to the DH 

parameters, which shows the parameterization in (3.10) is a good prior knowledge to 

learn the inverse dynamics. Finally, we remark that L is essentially the same as the 

rigid body dynamics, but no derivation of nonlinear bases in (3.5) is needed anymore. 
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3.1.4 Learning the Inverse Dynamics in Multiple-Kernel Formulation 

By learning the inverse dynamics, we mean learning the mapping from the states 

of the dynamics and the actuation force a , that is : ( , , ) aq q q   such that 

 
, ,( ) n a n f n

n n

d
L

dt q q
  

 
   

 
 

holds for all Nn , where f is the force due to frictions and other unmodeled 

dynamics, and the subscript denotes the nth component. In the presence of f , the 

inverse map  is not in general well defined, whereas the inverse map 

between ( , , )q q q and n always exists. Let x be the probability measure on , the 

learning of inverse dynamics is aimed to find the actuation force ˆ
a  such that, 

 
2

,

2

, , , ( , )
ˆ arg min

xa n
a n a n f n n 
   


    (3.11) 

for all Nn , where is the hypothesis space. 

As mentioned earlier and evidenced in [26], the combination of the rigid body 

dynamics and the radial basis kernel can model the dynamics better, since the rigid 

body dynamics captures quickly the structured component while the radial basis 

kernel can approximate universally any function. Therefore, to model the inverse 

dynamics we combine the proposed kernel (3.10) with a general radial basis kernel 

 2 2 2 2

cos( ) cos( ) sin( ) sin( )
exp( )

2

( , )

x y x y x y x y

rbfs

q q q q q q q q

k x y



      




 (3.12) 

where the trigonometric mappings are introduced to better model the effect of the 

rotary joints, in contrast to the traditionally used radial basis kernel 

 

2 2 2

( , ) exp( )
2

x y x y x y

rbf

q q q q q q
k x y



    
  . (3.13) 

In terms of (3.11), it is equivalent to 
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 L rbfs  , (3.14) 

where rbfs is the RKHS with reproducing kernel (3.12). Since n L  and rbfs is 

universal, we can have  

 
2

,

2

,

2

, , ( , )

2

, , ,( , )

min

min { }

xa n

xf n rbfs

a n f n n

f n f n x f nVar





  

  





 

  

 

That is, the modeling error is due to the variance of f with respect to the probability 

measure x  as the number of observations goes to infinity.  

In implementation, the inverse dynamics is learned by the combination of kernels 

(3.10) and (3.12), 

 (1 )
Lmkl rbfsk k k    , (3.15) 

where [0,1]  and 
L

k and rbfsk are normalized so that the traces of the empirical 

kernel matrices are the same, and solved by the kernel ridge regression or the support 

vector regression . 

3.1.5 Simulations 

In this section, the simulation results are presented. We want to compare the 

generalization of the proposed kernels (3.10) and (3.15), and the traditional 

learning-based approaches (3.12) and (3.13). In each of the following simulations, we 

show the testing error with respect to the complexity of the underlying model, i.e. the 

degrees of freedom of the robot, in different scenarios: perfect rigid-body dynamics, 

the presence of measurement noise, and nonlinear frictions. In the following, for each 

of degree of freedoms, five different robots with random kinematic and dynamic 

parameters are used as the plant to be learned. We remark that the parameters are 
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sampled from a bounded uniform distribution so that all the parameters are physically 

feasible, e.g. the inertia matrix are always positive definite. For each of the robot, 

5000 training data and 5000 testing data with angular positions, angular velocities, 

and angular accelerations generated from the uniform distribution are used for 

validation. Given the uniformly random states, the kinematic and the dynamic 

parameters, the generalized forces are computed using Newton-Euler method 

iteratively. Therefore, the data of the ideal robot dynamics can be obtained. As for the 

unmodeled dynamics, the adopted noise is the zero-mean Gaussian noise, the viscous 

friction is modeled by the force linear to the generalized velocity, and the Coulomb 

friction is modeled as the sign function of the generalized velocity. To learn the 

unknown model, we use the least-square regularized learning, i.e. the kernel ridge 

regression, and the kernel parameters and the parameter that controls the tradeoff 

between the complexity of the space and the fitting error all chosen by the 3-fold 

cross-validation, in which a small set of training data are used to find the optimal 

parameter. The optimal parameters is chosen to be the combination of parameters that 

minimize the empirically expected prediction error, and the whole training data set is 

used to retrain the final model with the optimal parameter. 

Finally, to verify the result, the performances are shown in terms of prediction 

errors overall all the generalized coordinates both in root mean square (RMS) and the 

peak error (PE). Also, we note that all the generalized force in the simulation are 

normalized within [-1,1] for comparison. In the following, the proposed kernel (3.10) 

is denoted by pol, (3.13) is denoted by rbf, (3.12) is denoted by rbfs, and (3.15) is 

denoted by mkl. 
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A. Simulation Results with Ideal Robot Dynamics 

This section shows the simulation results of the robot dynamics without any 

friction. The results compose of two parts according to the presence of the 

measurement noise. Fig. 3-1 (a) and (b) shows the prediction error of the normalized 

generalized force in terms of RMS and PE with respect to the complexity of the model. 

We remark here that the dimensionality of the proposed kernel is actually analytic 

 
1

dim( ) ( ( 1))6 3 1
2

N N

L N N N     , (3.16) 

which is the upper bound of possible terms in a general Euler-Lagrange model. Since 

5000 training data is sufficient to cover the whole space in terms of the dimensionality 

for a robot with 3N  , we can see a clear boundary on 3N  in pol. On the other hand, 

5000 training data no longer covers the whole hypothesis space for robot with 3N  . 

In this situation, the performance of the kernel depends on the quality of the 

regularized parameters, i.e. in each kernel function. As mentioned (3.16), the size of 

the training data may never catch up the dimensionality of the underlying model, so 

the performance of different models become close especially when 26NN .  Also, 

we can observe rbfs outperforms the traditional rbf, since the characteristics of the 

rotary joints are better captured. Comparing all the models, the proposed pol 

consistently shows better performance, which is expected since it is radically the 

Euler-Lagrange model. 

Fig. 3-2 (a) and (b) shows the prediction error of the normalized generalized 

force in terms of RMS and PE with respect to the complexity of the model. The 

standard deviation of the zero-mean noise model is chosen to be 0.05 so that 95 % of 

the noise is bounded by 0.1, which is the upper bound of the prediction error of the 

perfect model as shown in Fig. 3-1. The prediction results is similar to that without 
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noise, since the least-square regularized is aimed for the Gaussian noise model.  

B. Simulation Results with Ideal Robot Model and Frictions 

Similar to the setting in the previous section, the performances with and without 

measurement noises are compared. The Coulomb frictions and the viscous frictions 

are modeled as mentioned previously with the magnitude chosen randomly, and the 

noise is the zero-mean Gaussian noise with standard deviation 0.05. To show how the 

size of the friction affects the learning, we chose two different uniform probability 

distributions to generate the friction, denoted as SMALL and LARGE. In SMALL, 

the size of the friction is bounded one over five times the order of the generalized 

force due to the perfect model, whereas in LARGE the size of the friction is in the 

same order of the ideal generalized forces. For mkl, the weighting parameter in (3.15) 

is chosen by the cross-validation as the other parameters. Fig. 3-3 and Fig. 3-4 show 

the result of the ideal dynamics model with SMALL friction. In the presence of the 

friction, the pure pol learns badly, since it does not include the model of the friction. 

On the other hand, rbf, rbfs and mkl can model arbitrary friction, so the results are 

similar to that without friction. In particular, mkl captures partly the structure of the 

dynamics, and therefore the performance is consistently better than rbf and rbfs. 

Another feature is that all the models seem to learn similarly as N increases. This is 

because the effect of the friction is neglectable when the training data is too scarce 

compared to the size of the space. In particular, pol learns as without friction and is 

better than both rbf and rbfs. In Fig. 3-4, the measurement noise makes the 

performance of pol worse, but pol becomes better as N increase due to the previous 

argument. Fig. 3-5 and Fig. 3-6 shows the simulation results with LARGE friction 

model. Compared to Fig. 3-3 and Fig. 3-4 with SMALL model, the LARGE friction 
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still contributed to the generalized force even when N is large, since it is of the same 

order the generalized force in the ideal dynamics. Therefore, pol is consistently worse 

than the other three models regardless of the measurement noise. The mkl model, on 

the contrary, performs better than the others regardless of the condition of frictions 

and noises. Still, one can observe that the discrepancy between mkl and rbfs becomes 

less obvious in LARGE noise, since the contribution of the frictions increases. Finally, 

we show the computational time of evaluating 5000 testing samples given the model 

spanned by 5000 training samples in Fig. 3-7 implemented in a standard PC with CPU 

i5-750 and ram 8GB. To predict a single instance, the computational time is bounded 

below 5ms, and therefore a real-time computation is possible. 
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Fig. 3-1. Prediction error of the ideal model without measurement noise. 

 (a) prediction error (b) prediction error shown in dB 
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Fig. 3-2. Prediction error of the ideal model with measurement noise. 

 (a) prediction error (b) prediction error shown in dB 
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(b) 

Fig. 3-3. Prediction error of the ideal model with SMALL friction. 

 (a) prediction error (b) prediction error shown in dB 
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Fig. 3-4. Prediction error of the ideal model with SMALL friction and measurement noise. 

 (a) prediction error (b) prediction error shown in dB 
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(b) 

Fig. 3-5. Prediction error of the ideal model with LARGE friction. 

 (a) prediction error (b) prediction error shown in dB 
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(b) 

Fig. 3-6. Prediction error of the ideal model with LARGE friction and measurement noise. 

 (a) prediction error (b) prediction error shown in dB 
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3.1.6 Discussions 

In the simulation of ideal robot dynamics, the proposed pol kernel shows better 

generalization compared to the general learning kernel, since it captures the structure 

of the dynamics of the robot as the Euler-Lagrange model. However, pol may give 

unsatisfactory results when the friction cannot be neglected. To learn the unmodeled 

dynamics as well, we propose mkl to combine pol with rbfs by direct sum, where the 

weighting between two kernels is chosen by validation instead of using the general 

multiple-kernel learning that automatically tunes the weighting for the following two 

reasons. First, the multiple-kernel learning sometimes tends to overfit when quality of 

the training data is poor or the size of the training data is small, since the 

multiple-learning is actually an expectation maximization routine. Second, the precise 
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Fig. 3-7. Computational time of evaluating 5000 testing samples given a model spanned by 5000 

training samples. 
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value of unknown parameter in our experiments tends not to be decisive, so only a 

small set of parameters are needed to be tested in the cross-validation. The results 

show that mkl predicts better compared to the general kernels rbf, rbfs and the 

structured kernel pol used alone. In comparison with [26], the proposed mkl is 

expected to give a similar result, since regularized-least square is essentially the 

Gaussian regression without the predicting variance. However, one may expect that 

mkl may be worse than the fusion kernel in [26], since they use the explicit 

Euler-Lagrange model compared to the proposed pol. This is the necessary tradeoff 

between the size of the hypothesis space and the generality. Since pol is general to all 

the rigid body dynamics, pol uses larger hypothesis space than the Euler-Lagrange 

model given specific kinematic parameters. On the contrary, pol does not need any 

derivation, and can calibrate the kinematic parameters as well. Thus, we regard mkl as 

an efficient alternative, since they shared the same asymptotical learning rate. 

In Section 3.1, we demonstrate how to design a reproducing kernel that naturally 

models the function space of the robot dynamics. The experimental results show that 

the learning can indeed benefit from the structure of the unknown functions, which is 

evidenced both in pol and rbfs. In designing pol, we analyze the function space of the 

robot dynamics and then use the Euler-Lagrange method to derive the reproducing 

kernel of the inverse dynamics. This formulation actually shows an interesting yet 

well-known fact – the dynamics model is based on the Lagrangian of the system. 

Therefore, if we can model the Lagrangian, we know the dynamics. Inspired by this 

finding, we propose a dynamics learning scheme with the vector-valued RKHS in 

next section. In addition to modeling the structure of dynamics of a particular 

generalized coordinate as in pol, the learning scheme in Section 3.2 models the 
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correlation between different generalized coordinates as well, so better learning rate 

can be expected. Finally, we note that the nominal plant of the robot dynamics can be 

included trivially in this framework. In many applications, the nominal model of the 

robot dynamics can be obtained in the design of the mechanism, e.g. the dynamics 

parameters computed in the SolidWorks
TM

. In this case, we can compute the nominal 

torque by iterative Newton-Euler method and use it as the bias term in our framework. 

That is, the nonparametric kernel only learns the error dynamics. If the norm of the 

error dynamics is smaller than that of the unknown dynamics in the RKHS, better 

generalization can be foreseen, since the kernel method favors the small norm 

solution.  

3.2 Learning the Dynamics of General Systems with the 

Vector-Valued Kernel 

The identification of dynamical system is critical both in modeling and control. 

Despite the success of the machine learning for the universality, most of the machine 

learning algorithms, however, fail to model the coupling of the outputs for a 

multi-output system, and therefore the curse of dimensionality occurs. To address this 

issue, we first propose a learning scheme with the vector-valued reproducing kernel 

that exploits the structure of the dynamics of the holonomic and monogenic system. 

By modeling the Euler-Lagrange equation implicitly, the proposed method effectively 

learns the Lagrangian of the system. Therefore, for a system with N outputs, the 

convergence rate can be increased by N-times observations compared to the 

traditional approach. To model general system, a multiple kernel framework is posed 

in the probably approximately correct learning. To demonstrate and verify the effects 
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of the proposed scheme, the dynamics of a N-DOF serial robot is investigated both in 

simulation and experiments. 

3.2.1 Introduction 

The machine learning techniques have played a successful role in system 

identifications through the past decades. Notable for the ability to model any 

nonlinear function, the machine learning can treat the whole system as a black-box 

function and model the dynamics by learning the mapping between the inputs and the 

outputs. In this paper, we put our focus particularly on the machine learning 

algorithms based on the reproducing kernel Hilbert space (RKHS) and refer them as 

kernel methods hereafter. Among the modern learning algorithm, the kernel methods, 

such as support vector machine and Gaussian process regression, have become 

ubiquitous, because the learning can be simply treated as a sampling problem in 

RKHS. Compared to other parametric machine learning methods such as neural 

networks, the kernel methods can be proved to converge to the underlying function 

pointwisely if the universal kernels are used, and the optimization in training the 

model is convex, so the best model given finite observations can be easily computed. 

By defining a RKHS as the hypothesis space, the kernel method infers the best 

hypothesis in the RKHS given the projection of the target function in a subspace of 

finite dimensionality. For simplicity, assume the target function to be learned or 

approximated is in ( )p X , where X is a nonempty set in a locally compact Hausdorff 

space so that the RKHS on X is well defined. If the chosen RKHS space on X is dense 

in ( )p X , a good approximation can be expected as the sample size goes to infinity. In 

particular, the radial basis kernel is one of such universal kernels [12].  

Despite such simplicity in modeling, the only question lies on the necessary 
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number of observations and the generalization ability to the unseen data. That is, how 

efficiently a machine learning algorithm can learn. By efficiency, we mean here the 

ability to generalization with limited observations. Especially in learning the 

multi-output dynamics system, the curse of dimensionality occurs, since the 

traditional approach does not consider the correlation between the outputs but model 

them independently instead. Let N be the number of the outputs. The expected 

learning error is multiplied N times if all the outputs are modeled disjointly. Therefore, 

for better generalization, efforts have been put into the regularization on the 

hypothesis following Occam’s razor, e.g. searching the simplest yet complex enough 

hypothesis space by cross-validation. These methods are effective but rather 

restrictive. 

The learning can be more efficient if the correlations between the outputs are 

considered. Instead of using the RKHSs of scalar value, the vector-valued RKHS can 

gain more insights into the coupling of the system. In the vector-valued RKHS, the 

learning becomes approximate not N but one target function, or the number of 

observation is multiplied by N. Therefore, given the same number of observations, the 

learning of the multi-output system becomes more efficient than that of the system 

with single output, which is on the converse when traditional independent approach is 

adopted. 

In this section, we propose a novel learning scheme with the vector-valued 

RKHS K for learning the dynamical system. In particular, we consider the dynamical 

system with exogenous force inputs, and we are interested in the relationship between 

the generalized coordinates and the generalized force. For a holonomic and 

monogenic system with exogenous force inputs, the relation is completely 
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characterized by the Euler-Lagrange equation of the system, from which different 

generalized coordinates are coupled. By exploiting such structure with the proposed 

kernel, the dynamics is identified by effectively learning the Lagrangian of the system. 

Therefore, the learning can be more efficiency. In addition, since not all the systems 

satisfy the requirement of being holonomic and monogenic, we propose a 

multiple-kernel framework for learning the dynamics of general systems in probably 

approximately correct learning.  

The section is organized as follows. Section 3.2.2 reviews the essentials of the 

vector-valued RKHS. For more, readers can refer to Chapter 2. In Section 3.2.3, the 

main contribution of this section is presented. Inspired by the finding in Section 3.1, 

the proposed scheme models the Euler-Lagrange method implicitly in the 

vector-valued RKHS. As the demonstration, the dynamics of serial robots is 

investigated in simulation in Section 3.2.5. Finally, we close this section by giving the 

discussion and a short conclusion in Section 3.2.6. 

3.2.2 Vector-Valued Reproducing Kernel Hilbert Space Revisited 

As the space of vector-valued functions, the vector-valued RKHS is the 

generalization of the scalar RKHS, in which the elements are scalar function. In 

contrast to the well-studied scalar RKHS, the vector-valued RKHS has drawn few 

attentions until the last decade, although the mathematical studies can be dated back 

to [7, 76]. Due to the increasing needs in the multi-task learning and the transfer 

learning, the vector-valued RKHS is aimed to generalize the algorithms based on the 

scalar RKHS and the representer theorem [85] for the learning of vector-valued 

functions  

Traditionally, the learning of the vector-valued functions is done by the multiple 
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independent scalar learners. To further consider the correlations between different 

outputs, most of the algorithms are modified in order to penalize error due the 

difference between outputs [83, 103, 105, 111], although some algorithms e.g. locally 

weighted projection regression [106] can intrinsically be extended to vector-valued 

problems. Nevertheless, these methods rather induce biases or are ad hoc. On the 

contrary, the theory of vector-valued RKHS is general and the correlations between 

different outputs are considered intrinsically. Therefore, the learning [31, 78] can 

gained from modeling the dependencies in the vector-valued RKHS directly. 

Recently, the formal studies of RKHS generalizing the Mercer’s theorem and the 

feature space [8, 11, 12, 31], and theory of convergence of learning in RKHS are 

established [9]. In this section, we shall follow these studies, especially [8], to give the 

definition and the properties of the vector-valued RKHS, which will be used to model 

the relationship between the generalized coordinates and the generalized forces in the 

next section. For more information and the reference, please refer to Chapter 2, [8, 11] 

and therein.  

We first begin with some notations. Let be a locally compact Hausdorff 

topological space, and be a separable Hilbert space endowed with the inner product 

,   . We restrict our attention to the case when is of finite dimensionality and 

defined over the real field hereafter, both for the need of the application and the 

simplicity.  denotes the space of functions that maps from to , and ( ; )C  

the Banach space of continuous functions from to endowed with the infinity norm. 

Let ( ) be the Borel -algebra of and : ( ) [0,+ ]   be a Borel measure on , 

which is -additive and finite on compact sets. For1 p  , ( , ; )p  denotes the 
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Banach space of measurable functions f  such that 
p

f is -integrable , with 

norm ( ) ( )
p

p
f f x d x  . Also, given two nonempty sets A and B , we denote 

by ( ; )L A B the Banach space of bounded linear operators form A to B , in which ( )L A  

is subspace of bounded linear operators from A to A . ( )L A denotes the bounded 

positive semidefinite operator.  Finally, for a linear operator T , *T denotes its 

adjoint; denotes both the tensor product of spaces and the Kronecker product, 

between which the discrimination will not be made if there is no ambiguity; denotes 

the direction sum of vector spaces;  For simplicity, the convention {1,..., }M M is 

used, where M  .   

Definition 3.8.  

Given a locally compact Hausdorff space  and a Hilbert space as defined 

previously, a kernel : ( )K L  is said to be of positive-type, if K is positive 

semidefinite, i.e. 

 
,

, ( , ) 0
l

i j i i j j

i j

c c y K x x y  , 

for any l ,
{ | }j lx j 

,
{ | }j ly j 

,and 1,.., lc c  . 

This definition generalizes the notation of positive-type in the scalar RKHS 

where  . Also, one can think that a vector-value RKHS is actually a scalar 

RKHS defined on the space  . 

Definition 3.9. 

A Hilbert space K of functions f  endowed with the inner product ,
K

  and norm 

K
 is called a reproducing kernel Hilbert space on  , if x  there exists a 

map :x KK  satisfying 
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 ( ), , ,  x KK
f x y f K y f   . 

In particular, the reproducing kernel : ( )K L  is defined as 

 *( , ) ,  ,x uK x u K K x u   , 

and 

  *( ) ,  x kf x K f f    

where * :x kK  is the adjoint of xK . 

As a consequence, we have that  

 { | , }K xspan K y x y   . 

Proposition 3.10. 

1. A reproducing kernel is unique up to isometries. 

2. A bounded reproducing kernel exists if and only if x  , ( )f x is a continuous 

linear map of f running through the Hilbert space K  . 

3. ( , )K x u is of positive type ,x u  . 

4. ( ; )k C if and only if ( , )K x u is locally bounded and x X  , xK is 

strongly continuous.  

In particular, we emphasize ( , ) ( )( )uK x u y K y x , where the second argument is 

used as the index.  Also, it can be shown that *( , ) ( , )K x u K u x and ( , ) ( )K x x L , 

i.e. ( , )K x x is a semi-norm of k .  In particular,  

 
1/2

( , )xK K x x  

 , ( , ) , ,  , ,  ,u xv K u x y K v K y x u y v     

In the following, we consider the case ( ; )k C when learning the Lagrangian. 
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To end this section, we summarize some useful admissible constructions of a 

vector-valued RKHS, and the generalized representer theorem for vector-valued 

RKHS.. 

Proposition 3.11. 

Let ,G K be two reproducing kernels of vector-valued RKHS as defined previously.  

1. The sum K G is a reproducing kernel and the corresponding RKHS is the direct 

sum of the two RKHSs. 

2. Hadamard (Schur) product, K G , is a reproducing kernel and the corresponding 

RKHS is the tensor product of the two RKHSs. 

3. Let 0 be a compact Hausdorff space, N , 0:p  for all Np . Given a 

scalar kernel 0 0:G   , then 

  
,

( , ) ( , )
N

p q p q
K x u G x u


    

is a vector-valued reproducing kernel. 

Theorem 3.12. (Representer Theorem) 

Given a locally compact Hausdorff space  and a Hilbert space , a reproducing 

kernel : ( )K L  of the vector-valued RKHS K , a strictly monotonically 

increasing real-valued function g on [0, ) , and an arbitrary cost 

function 2: ( ) { }lc    , a set of samples {( , ) | , }
li i i i ix y x y   , the 

minimizer of  

  1 1 1min (( , , ( ),..., ( , , ( )) ( )
K

l l l Kf
c x y f x x y f x g f


   

admits a representation of the form 

 
i

l

x i

i

f K 


 .  
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3.2.3 Learning the Lagrangian and the Dynamics in the 

Vector-Valued Reproducing Kernel Hilbert Space 

With the vector-valued RKHS introduced in the previous section, we now 

present the main work of this paper: modeling the system dynamics by learning the 

Lagrangian in the vector-valued RKHS. As mentioned before, the choice of the kernel 

is a fundamental and open question, which depends on prior knowledge of the 

application. Without general guidance, most of the algorithms can only try to penalize 

the differences between different outputs so that the hypothesis space in learning can 

be smaller. 

 For the learning of the system dynamics, we propose to use the vector-valued 

RKHS derived from the Lagrangian of the system. By learning the system dynamics, 

we mean both the forward model, where the generalize accelerations are the output of 

the system given the generalized forces, and the inverse model, where the generalized 

forces are the output and states of systems are the input. Therefore, for the system 

with multiple degree-of-freedoms, the learning problem is a multi-input-multi-output 

problem, i.e. a system with vector-valued output and high dimensional input. More 

specifically, we are interested in forward model that models the response of the 

system with exogenous force inputs, and the inverse model for the required exogenous 

force so that the system can achieve the desired states. Such models are useful in 

various applications, especially in the control system. Forward model can be used to 

predict and simulate the system’s behavior at least for a short period ahead, whereas 

the inverse model is widely used in sophisticated control schemes [26, 73]. Also, 

some algorithms combine both the forward and the inverse model for better results 

[24].  
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In the following, we shall first assume that the system is holonomic so that the 

Euler-Lagrange equation holds and monogenic so that the inverse model is well 

defined. Under these restrictions, the modeling and the derivation can be more 

transparent. Then these constrains will be relaxed into a probabilistic framework, and 

the system dynamics is modeled within the multiple kernel framework [65] studied in 

Section 3.2.4. In a holonomic system of classical mechanics, the Lagrangian can be 

treated as an invariant and often regular function, from which the relationships 

between the generalized coordinates and the generalized forces can be derived 

according to the Euler-Lagrange equation. That is, the dynamics of different 

generalized coordinates in a holonomic dynamic system are coupled via the 

Lagrangian. Therefore, the vector-valued RKHS based on the Lagrangian will be the 

natural kernel to model the system dynamics. 

In the following, we shall review some essences of classical mechanics for the 

completeness of the paper in part A. The formulation of the vector-valued RKHS for 

dynamics learning is presented in part B, and finally we use the robot dynamics as an 

example to show how the proposed vector-valued RKHS can be tailored for a specific 

system in part C. 

A. Classical Mechanics Revisited 

In this section, the definitions of some terminologies in the classical mechanics 

[35] are given for the formulation of the learning problem. Although our interests are 

in the Lagrangian mechanics, we believe this framework can be generalized to other 

systems such as Hamiltonian mechanics. We leave it for the further works. 

Definition 3.13. 

Let 1 2, ,...r r be the coordinates of the system. A constraint is said to be holonomic if it 
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can be expressed in terms of the coordinates and possibly time, i.e. 

 1 2( , ,..., ) 0f r r t  . 

Otherwise, it is nonholonomic. A system is called holonomic if all the constraints 

specifying the dynamics of the system are holonomic. 

In a holonomic system, it is possible to find a set of independent generalized 

coordinates (possibly varying with time) that governs the whole system. For a 

holonomic system, let Nq be the generalized coordinates and N  be the 

generalized forces, where N is the degree-of-freedoms of the system. For Nn , the 

Euler-Lagrange equation is as follows: 

  ( ) ( , , ) n

n n

d
q q t

dt q q


 
 

 
, (3.17) 

where the Lagrangian is defined as 

 T UE E  , (3.18) 

( , , )TE q q t is the kinematic energy, and ( , , )UE q q t is the generalized potential. We note 

that there is no unique choice of the Lagrangian . For a Lagrangian and a 

differentiable function ( , )F q t ,  

 '( , , ) ( , , )
dF

q q t q q t
dt

   

is also a valid Lagrangian satisfying (3.17). 

Definition 3.14. 

A system is called monogenic if all forces except the forces of the constraints are 

derivable from a generalized scalar potential that may be a function of ( , , )q q t the 

coordinates, velocities, and time. 

For monogenic systems, the Hamilton’s principle holds, where the motion of the 

system is the stationary solution of the action integral. Although the Euler-Lagrange 
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equation (3.17) can be either derived from the D’Alembert‘s principle or Hamilton’s 

principle, the effects of nonholonomic constraints is more clear in the Hamilton’s 

formulation by the introduction of Lagrange multiplier. Therefore, in the presence of 

nonholonomic constraints so that the generalized coordinates q are no longer 

independent, (3.17) can be rewritten as 

 ( ) ( , , ) 'n
n n

d
q q t

dt q q


 
 

 
, (3.19) 

where 'n is the forces due to Lagrangian multipliers and the exogenous forces.  In 

contrast to n , we note that 'n may not be a proper function of ( , , )q q t due to the 

Lagrange multipliers, and therefore, traditionally, the nonholonomic systems are 

simplified as the holonomic system for analysis and modeling.  

B. Modeling the System Dynamics by Learning the Lagrangian 

Assume that the system is holonomic and monogenic with measurable 

exogenous force inputs a , i.e. ,n a n  in (3.17). We denote by{ , }q q the set of all 

possible generalized coordinates and the generalized velocities of the system and so 

on. Let {( , )}q q and {( , )}q q ; let be the Hilbert spaces of generalized forces. 

With the abuse of notations, we may write q or ( , )q q  for convenience. For 

the consistency of learning, we assume the Lagrangian is analytic, 2( , ; )x  

and it is not explicit in time, i.e. ( , )q q . 

Since is analytic and therefore continuous, we assume there exists a scalar 

RKHS L contains endowed with the inner product ,
L

  .The whole idea of learning 

the Lagrangian is based on the observation that fixed time t and given ( ( ), ( ), ( ))q t q t q t ,  

(3.17) can be written as 

 n nT  , (3.20) 
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where 

 : ( )n

n n

d
T

dt q q

 
 

 
 (3.21) 

is a linear operator :n L LT  . We note that nT can be regarded as a function of 

time t and ( )q t . Since we do not know the exact formulation of  in general, we can, 

for instance, choose to be scalar RKHS with reproducing kernel, 

 

2

,( , ) ( ) exp( ),  ,
2

L L x

u x
k u x k u x u




    , (3.22) 

which is the standard radial basis kernel, where 0   . Since is dense 

in ( ; )C , it is dense in 2( , ; )x  and therefore the approximation converges 

to consistently as the sample size goes to in infinity. 

In terms of the inner product in RKHS, we can write (3.20) as 

 *

, ,( , , ) , ,n n L x n L xL L
q q q T k T k   , (3.23) 

where x , z .  We recall that the linear map nT is actually time-dependent, 

so *

nT cannot be learned directly. On the contrary, we can observe in (3.23) that n is 

the projection of Lagrangian on the image of the reproducing kernel ,L xk via a 

time-dependent linear map nT . By the representer theorem, the Lagrangian admits the 

following representation 

 ,
0

( , )
N

m L u

m

t u T k dudt




    . (3.24) 

Empirically, given training data set, 

 {( , ) | }i i lX q q i   , (3.25) 

the empirical approximation of the Lagrangian admits the representation, 

 , ,
ˆ

i

N

i m m L x

i m

T k
 

  , (3.26) 
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or 

 , , ,
ˆ( , ) ,

i

N

i m m L x L x
L

i m

q q T k k
 

  , (3.27) 

in which the unknown coefficients ,i m can be learned by standard kernel methods 

[86].  

To cut the clutter, we omit the explicit representation of mq in , mn L xT k hereafter, 

although care should be taken in that nT is time-dependent, and 

therefore , ,,
mn L x L x

L
T k k actually includes the information of mq . Similarly, the 

generalized torque can be represented as 

 , ,
0

( , , ) ( , ) ,
N

n m L u n L x L
m

q q q t u T k T k dudt 




     (3.28) 

or empirically 

 , , ,
ˆ ( , , ) ,

i

N

n i m m L x n L x
L

i m

q q q T k T k 
 

  . (3.29) 

We recall from Theorem 5 that (3.29) is actually the result of representer theorem 

in a vector-valued RKHS. We summarize it in the next theorem. 

Theorem 3.15. 

Let Nq and N   be the generalized coordinates and the generalized forces 

of a N-DOF holonomic and monogenic system such that  consists of only the 

exogenous force inputs, and define {( , )}q q and {( , )}q q . Assume there exists a 

scalar RKHS L with reproducing kernel Lk  such that the Lagrangian L , i.e. 

 ,( ) , L x L
x k   (3.30) 

x  . Let :n L LT  be the linear map such that 

 n nT  . (3.31) 

Then there exists a vector-valued RKHS K with the reproducing 
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kernel 2: ( ) ( )NK L  

  , ,
,

( , ) ,
N

m L u n L x L n m
K x u T k T k


   (3.32) 

such that K  . In particular, the ( , )n m entry of ( , )K x u is defined as 

, ,( , ) : ,

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

nm m L u n L x L

T TL L

n n m

T T

L L

n m n m

K x u T k T k

k kx u x d u

q x u q q dt x u q

x d u x d d u
k k

q x dt u q q dt x dt u q

 

      


       

       
 
       

 (3.33) 

where ,x u and ,x u . 

Proof: 

The first part of proof follows from the derivations from (3.20) to (3.29), and 

with Proposition 4, (3.32) can be shown to be a valid reproducing kernel for the 

vector-valued RKHS K . To prove (3.33), we first discriminate the linear 

differentiation operators ,x nT and ,u mT that act on different arguments. In 

 , , ,( , ) ,x n L L u n L x L
T k x u k T k , (3.34) 

the time derivative is taken with u fixed, whereas  

 , , ,( , ) ,u m L m L u L x L
T k x u T k k  (3.35) 

is taken with respect to u . Therefore, we have 

 , , , ,( , ) : , ( , ) ( , )nm m u n x x n u m L u m x n LK x u T T T T k x u T T k x u     (3.36) 

in which the two operators commute, and (3.33) follows from (3.21). 

  Q.E.D. 

By substituting (3.32) into (3.29), (3.29) can be rewritten as  

 ˆ( , , ) ( , )
l

i i

i

q q q K x x 


 , (3.37) 
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which is the just result of the representer theorem in Theorem 3.12. Also, one can 

observe that the reproducing kernel K is actually linear in terms of q , i.e. (3.37) has 

the form 

 ˆ( , , ) ( , )q q q Mq B q q    , (3.38) 

for some matrices , N NM B  .  

Therefore, not only (3.37) can be used as an inverse model, it can be used as a 

forward model as well. Compared with the traditional independent approach and those 

vector-valued RKHS with primitive kernels, K is the vector-valued RKHS that 

models the Euler-Lagrange equation (3.17) implicitly. Therefore, it models the linear 

dependency on q intrinsically, and can be used as both the forward and the inverse 

model serving as the natural vector-valued RKHS for the holonomic and monogenic 

system with exogenous force inputs. 

For the general systems in the assumption, we can use the kernel space (3.22) to 

be , and we show the corresponding vector-valued RKHS K in the next 

proposition. 

Proposition 3.16. 

Let be the scalar RKHS with reproducing kernel  

  

2

,( , ) ( ) exp( ),  ,
2

L L u

x u
k x u k x x u




    . (3.39) 

The corresponding vector-valued RKHS K that contains the generalized force as a 

function { , , } Nq q q  is endowed with the reproducing 

kernel 2: ( ) ( )NK L  defined as 

 1 2 3 4( , )( )LK k x u K K K K    , (3.40) 

where 
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 1

1 1
( ( )( ) )T

x u x uK q q q q I
 


     

 
2 2

2

( ) 1
( )( )

1
( ( ) ( ) )

T
T

x u x u

T T

x x u x u x

x u u
K q q q q

q q q q q q

 




   

   

 

 
3 2

2

( ) 1
( )( )

1
( ( ) ( ) )

T
T

x u x u

T T

u x u x u u

x u u
K q q q q

q q q q q q

 




  

   

 

 

1

4 2

3

3

2

( ) ( ) 1
( ( )( ) )

( )
( ( ) ( ) )

( )
( ( ) ( ) )}

1
( )

T T T
T

x u x u

T
T T

u x u x u u

T
T T

x x u x u x

T T

u x x u

x u x x u u x u
K q q q q I

x u x
q q q q q q

x u u
q q q q q q

q q q q



 







   
   


   


   

 

 

,x u , ,x u and N NI  is the identity matrix. 

Proof: 

This proposition can be proved by substituting (3.39) into Theorem 3.15.  

  Q.E.D. 

 

In Proposition 3.16, the linear dependency of q is explicit, and the matrix M can 

be identified by writing (3.37) in terms of Kronecker product. However, the 

matrix M in (3.38) cannot be guaranteed to positive definite in general during the 

learning. To enforce M to be positive definite, an additional matrix inequality 

constraint should be used in solving the program, which may make most of the 

existing machine learning algorithms semidefinite programming problems. Since our 

focus and most of the applications are on the inverse model, we leave the exact 
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formulation of learning the forward model in the future work by pointing out the 

matrix M can be identified and at least a pseudo-inverse solution can be obtained. 

However, more efforts still need to be done to customize the algorithms for learning 

the forward model. 

Now we want to compare the proposed approach to the traditional independent 

models. Assume the traditional model uses the universal scalar RKHS 0  with the 

reproducing kernel 

 

2

0 ( , ) exp( ),  ,
2

u x
k u x x u




   , (3.41) 

and the models of different generalized coordinates in (3.17) are learned separately 

and independently. In other words, the traditional approach uses the vector-valued 

RKHS  with the reproducing kernel, 

 

2

( , ) exp( ) ,  ,
2

u x
K u x I x u




   . (3.42) 

Compared to the independent approach, the convergence rate in learning with the 

proposed vector-valued RKHS K is faster. It can be explained in two folds. First, we 

can regard that the learning takes place in to learn the Lagrangian in (3.27), from 

which the models of different generalized coordinates are then derived. From this 

viewpoint, both the traditional approach and the proposed approach are in scalar 

RKHSs, but the sample size in (3.27) is N times more than that when models of 

different generalized coordinates are considered separately. Also, the hypothesis space 

is smaller. Since is the image of only, 0 is the image of . Second, we can 

treat the learning in K as (3.37). In this way, although the sample sizes of the two 

approaches are the same, only one model is needed to learn the whole dynamics 

compared to the independent approach, where N models are learned separately. 
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Therefore, the expected error can decreases N times. 

C. Example: Robot Dynamics 

In this part, we demonstrate the robot dynamics as an example for the proposed 

method to show how the RKHS can be tailored for the particular system with 

structure. Let the robot be holonomic and serial, and all the joints be rotary. Therefore, 

the generalized coordinates are the angular position of each joint and the generalized 

forces are the joint torques. Assuming the friction can be neglected and the robot is 

rigid body, the dynamics pacifies the requirement in this section. Since all the joints 

are rotary, a feature map can be used for better generalization, that is 

 (cos ,sin )q q q . (3.43) 

With the feature map, the sets and are defined as 

 {( , )}q q  (3.44) 

and 

 {( , )}q q , (3.45) 

where : (cos ,sin )q q q  , : ( sin , cos )q q q q q   and denotes the Hadamard 

product. The vector-valued RKHS similar to that of the Proposition 3.16 can be 

derived based on Theorem 3.15, where and are replaced by (3.44) and (3.45), 

respectively. Other modifications similar to (3.44) and (3.45) can also be derived. For 

example, let 0c  be the constant for normalizing the feature due to the generalized 

velocity q . Then the corresponding sets and can be defined as 

 {( , )}q cq  (3.46) 

and 
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 {( , )}q cq . (3.47) 

The normalization of the feature space is a well-known and critical factor in learning 

with the rbf kernel, and can largely affect the generalization. Since the proposed 

vector-valued kernel essentially models the Lagrangian function, in which the feature 

is the set , the normalization is can be performed as learning a scalar function with 

the scalar rbf kernel such as (3.46). Finally, we note that the common term 1  in (3.40) 

can be removed in implementation for better numerical stability. 

3.2.4 A Multiple-Kernel Framework for General Dynamics 

In the section, the restriction on holonomic and monogenic system is relaxed in a 

multiple-kernel framework. Let K be given as in Proposition 3.16, and consider 

(3.19), where we may write 

 ' a     (3.48) 

and is the force due to nonholonomic constraints and other forces that are not 

derived from the generalized potential such as frictions. For simplicity, we 

consider {( , )}q q and {( , )}q q , and let  be the joint probability of ( , , )q q q .  

Recall that we are interested in the mapping between a and ( , , )q q q , and that 'n is not 

in general a well-defined function of ( , , )q q q . Despite these issues, the learning can be 

well-defined by introducing the regression function ,a defined as 

 2

2

, ( , )
: arg min '

a
a a X 

   


   , (3.49) 

where is the hypothesis space to be defined. Assuming the training data set are 

independently and identically distributed samples according to  , the learning 

algorithm can learn the regression function ,a as the sample size goes to infinity. 

As for the hypothesis space , we choose the vector-valued RKHS constructed 
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by the direct sum of RKHSs, i.e. 

  ' ':MKL K    , (3.50) 

with the reproducing kernel  

 

and 

 MKL KK d K d K   , (3.51) 

where Kd , d are the weightings to be defined so that 

 

2

'
' { | , }K

K K

K

f
f f

d
     (3.52) 

with the inner product 

 
'

1
, ,

K K
K

f g f g
d

  (3.53) 

and ' is defined similarly. Since  is universal, we can expect in MKL  

 2

2

, ( , )C( ; )
arg min '

a
a a XX

 
   


   . (3.54) 

By introducing the K , we hope the learner can fast adapt to the structure of the 

dynamics, as long as the term a dominates . Otherwise, the learning can gain little 

by exploiting the structure of the Lagrangian. 

To solve the learning problem, we adopt -support vector regression (-SVR) [94] 

with multiple-kernel learning inspired by SimplMKL [77]. SVR is a robust nonlinear 

multivariate regression for scalar output
*
, and SimpleMKL is a wrapper algorithm 

based on the primal problem of multiple-kernel learning solved by reduced gradient 

descent.  As mention in Section II, the vector-valued RKHS is actually s scalar 

RKHS on the space  , so it can be solved by substituting the correct kernel 

matrix in SVR. 
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Let { | }i i iX x x   and { | }i i iY y y   be the empirical observations. 

The empirical kernel matrix N N

MKL

K is the block matrix, in which the (i,j) 

block is defined as 

 , ( , )MKL ij MKL i jK x xK . (3.55) 

Also we define N NK , N N



K associated with the RKHS K and  . 

We note the spaces K and  are scaled empirically before constructing MKL so that 

the empirical kernel matrices K , K  have the same trace. 

Using the Karush-Kuhn-Tuker condition, the multiple-kernel SVR can be 

expressed as  

 

,

2 2

min ( , )

. .

      + 1

      , 0

K
K

d d

K

K

J d d

s t

d d

d d












 (3.56) 

where 

 
*

0 0

* T *

0 0 0 0
,

* *

0 0 0 0

( , ) 

1
= max ( ) ( + )( )

2

            ( ) ( )

K

K

T T

J d d

d d



 






 

   

α α

α α K K α α

1 α α y α α

, (3.57) 

and 

 * * *

0 0 0 0 0 0{ , | ( ) 0, , / }T C N    α α 1 α α 0 α α 1 , 

*

0 0, Nα α are the slack variables,  is the size of the  insensitive cost and the 

parameter C trades off the penalty between the fitting error and the complexity of the 

hypothesis space. After computing the optimal 0α , *

0α , Kd and d , the coefficients in 

(3.37) can be obtained by factorizing the block structure. See [94] for more details. 
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In this formulation, (3.57) is the single kernel SVR problem, for which many 

efficient solvers are available; (3.56) is the 2 -multiple-kernel problem, which is a 

convex nonlinear programming problem. We choose the 2 constraint in (3.56) 

instead of 1 , so the contributions of the two kernels can be balanced. Otherwise, 

MKL will select only one kernel empirically in the 1 formulation. It is shown that the 

objective function in (3.56) is differentiable and the gradient can be computed at ease 

[77] as 

 * T *

0 0 0 0

1
( ) ( )

2K

J

d

 
  


α α K α α  

 * T *

0 0 0 0

1
( ) ( )

2

J

d




 
  


α α K α α  (3.58) 

and therefore, we can use a wrapper algorithm to solve the problem as SimpleMKL.  

The algorithm based on reduced gradient method is shown in pseudo-code in Fig. 

3-8, which is based on an off-the-shelf second-order cone programming (SOCP) 

solver and the conventional SVR solver. The algorithm is similar to SimpleMKL, but 

the 2 constraint is used and Step 2 is solved by SOCP solver to compute the update 

direction. Therefore, the convergence and the computational complexity are the same 

as SimpleMKL, since the SOCP problem only has two variables, which can be solved 

efficiently, and that the SVR solver can benefit from the warm start of the previously 

computed *

0 0,α α so the updating and the line search is fast. In particular, we choose the 

stopping criterion as the stepsize to accelerate the algorithm, since we do not concern 

the accurate value of Kd and d . Thus the computational complexity of the whole 

algorithm is determined by the complexity of the SVR solver.
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Algorithm ( 2 Multiple-Kernel SVR) 

Given 1 4e    

Initialize (0) (0), 1/ 2Kd d   

0i   

While (1) 

1.Update *

0 0,α α by solving the SVR problem (3.57)with (0) (0),Kd d . 

2. Solve  
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3.Compute the stepsize  0,1   by line search such that the 

objective function decreases strictly. 

4. If    

    Break 

  Else Update  
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5. 1i i   

End of While 

Fig. 3-8. The pseudo code of the MKL algorithm. 
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3.2.5 Simulations 

In this section, the simulation results of learning the inverse dynamics of the 

robot system are presented. We want to compare the generalization of the proposed 

vector-valued kernel and the scalar rbf kernel, which is used commonly in the 

learning for its universality. We test our scheme with the simulated dynamics data of 

the serial robot. Therefore, we adopt the modification in Section 3.2.3.C as the 

vector-valued kernel. In each of the following simulations, we show the testing error 

with respect to the complexity of the underlying model, i.e. the degrees of freedom of 

the robot, in different scenarios: perfect rigid-body dynamics, the presence of 

measurement noise, and nonlinear frictions. In the following, for each of degree of 

freedoms, ten different robots with random kinematic and dynamic parameters are 

used as the plant to be learned. We remark that the parameters are sampled from a 

bounded uniform distribution so that all the parameters are physically feasible, e.g. the 

inertia matrix are always positive definite. For each of the robot, 500 training data and 

3000 testing data with angular positions, angular velocities, and angular accelerations 

generated from the uniform distribution are used for validation. Given the uniformly 

random states, the kinematic and the dynamic parameters, the generalized forces are 

computed using Newton-Euler method iteratively. Therefore, the data of the ideal 

robot dynamics can be obtained. As for the unmodeled dynamics, the adopted noise is 

the zero-mean Gaussian noise, the viscous friction is modeled by the force linear to 

the generalized velocity, and the Coulomb friction is modeled as the sign function of 

the generalized velocity. We remark that we limit ourselves to only 500 training data 

for the computational complexity. Since the vector-valued kernel matrix is of 
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size 2( )N given samples of N-DOF, and the computational complexity of most of the 

kernel method is polynomial, the computational burden increases largely as the 

number of the training instances and the DOF. Therefore, we only use limited training 

data to show the behavior of our scheme, since our focus is on the design of the kernel 

not the efficiency of the algorithm.  

In the simulation of the ideal dynamics without frictions and measuring noises, 

we use the least-square regularized learning, i.e. the kernel ridge regression, and the 

kernel parameters and the parameter that controls the tradeoff between the complexity 

of the space and the fitting error all chosen by 3-fold cross-validation. The optimal 

parameters is chosen to be the combination of parameters that minimize the 

empirically expected prediction error, and the whole training data set is used to retrain 

the final model with the optimal parameter.  

On the other hand, we use the MKL algorithm in Section 3.2.4, for the cases 

where frictions and measuring noises are present. Since the MKL algorithm 

determines automatically the weighting, the left parameters of the two kernels and the 

weighting C in SVR are chosen by the cross-validation mentioned above. For the 

SVR implementation, we adopt LIBSVM and integrate it with the pre-computed 

kernel in Matlab and warm start. 

Finally, to verify the result, the performances are shown in terms of prediction 

errors overall all the generalized coordinates both in root mean square (RMS) and the 

peak error (PE). Also, we note that all the generalized force in the simulation are 

normalized within [-1,1] for comparison. In the following, the proposed kernel is 

denoted by vrbfs, the rbf kernel (3.43) is denoted by rbfs, and the MKL kernel is 

denoted by mkl which combines the kernel in Section 3.2.3 and another rbf kernel 
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with the joint velocity as the input. 

D. Simulation Results with Ideal Robot Dynamics 

This section shows the simulation results of the robot dynamics without any 

friction and measuring noises in Fig. 3-9. The kernel method here is SVR with the 

insensitive of size 0.03, which denotes 97% accuracy, and we set the parameter C to 

some large constant. Since there is no friction presented, we only use the kernel in 

Section 3.2.3 without the MKL in Section 3.2.4. The x-axis is the DOF of the 

underlying system, and the y-axis is the prediction error of the normalized torque. The 

result shows that the proposed vector-valued kernel indeed performs better compared 

to the traditional rbfs kernel by taking into account the correlation between different 

generalized coordinates. 

E. Simulation Results with Ideal Robot Model and Frictions 

Similar to the setting in the previous section, the performances with the Coulomb 

frictions, the viscous frictions, and the measuring noise are compared. The Coulomb 

frictions and the viscous frictions are modeled as mentioned previously with the 

magnitude chosen randomly, and the noise is the zero-mean Gaussian noise with 

standard deviation 0.05. The results are shown in Fig. 3-10. Compared to Fig. 3-9, the 

vector-valued kernel performs as in the ideal case. However, the prediction error of 

rbfs increases almost twice. Because the dynamics of the system becomes more 

complex with the presence of the friction, the pure rbfs kernel introduces larger 

variance in the learning. On the contrary, the vector-valued MKL kernel vrbfs uses the 

vector-valued part models the correlation between the generalized coordinates and the 

rbfs part to model the friction forces. As a consequence, the vector-valued part 

introduces a natural bias to learn the system dynamics owing to implicit 
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Euler-Lagrange method, making the generalization of vrbfs better than that of rbfs just 

as in the ideal case. 

Finally, before showing the experimental results, we discuss some discoveries in 

the simulation. First, we find that the precise value of the weighting in the MKL 

formulation seems not so important. In most of models learned in the simulation, the 

weights of the two models are equal. This suggests that the performance of the 

learning can be simply increased by considering both the kernels. Also, we find that 

the warm start does not save times as expected in the current LIBSVM 

implementation, because of the overhead of converting the data from dense format to 

sparse format. Since our kernel is a large dense kernel, the current data structure in 

LIBSVM seems not suitable for our application. We believe rewrite it in a dense 

format may increase the speed in MKL learning. Thus, for simplicity, we may take the 

weighting of the two kernel equal without sacrificing much performance while saving 

lots of times in the MKL learning. 

F. Asymptotical Analysis 

In this simulation, we want to analyze the asymptotical behavior of the kernel as 

the number of the observations increases. The prediction errors in terms of the number 

of the observations are shown in Fig. 3-11, in which the trainings are performed in the 

same fashion as in Part D, and the number of the testing data is 8000. To compare the 

performance, we use the same testing data for all settings. From the figures, we can 

observe that the vector-valued kernel converges faster, and has lower prediction errors, 

compared to the traditional approach. Because the correlations are considered, the 

scheme with the vector-valued kernel, the effective number of the observations is 

increased by N times. Also, we note that the prediction of the 1-DOF robot is also 
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better. By observing (3.40), the vector-valued models also the structure of the 

dynamics, which is linear in the generalized acceleration. Therefore, the performance 

is still better compared to rbfs kernel, even the DOF of the robot is only one.  

3.2.6 Discussions 

In this section, the generalized vector-valued kernel for learning the dynamical 

system is proposed. By modeling both of the structure of the dynamics and the 

correlations between different generalized coordinates, the proposed scheme shows 

better prediction error and the convergence rates in the simulations, compared to the 

rbf kernel used in most of the literatures. The proposed kernel can adapt universally to 

arbitrary dynamics system as long as the Lagrangian of the system can be defined. In 

the future, we want to design another vector-valued kernel by exploiting the 

Hamiltonian of the system so that the kernel can model a larger class of dynamical 

systems. Evidenced by the findings here, we are confident and excited that good 

results can be expected with the Hamiltonian approach. 

Although we focus on the identification of the inverse dynamics, we note that the 

kernel can be used to model the forward dynamics by isolating the inertia matrix in 

(3.40). Since (3.40) is linear in the generalized acceleration, the inertia matrix is 

properly defined. Although this matrix cannot be guaranteed to be positive definite in 

our current approach, the constraint can be added to the learning problem, which is 

still a convex problem. We believe by doing so, both of the forward dynamics and the 

inverse dynamics can be learned faster, since an additional and important prior is 

considered. We leave this in the future works.  

For the future works, the vector-valued kernel will be tested with experimental 

data. Compared to the simulation, the major differences would be sensory noises in 
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the state estimations and the calibrations of the torque sensors. Since it is assumed that 

the output of the regression is the generalized torque in the derivation of the kernel 

(3.17), it is important that the torque sensors are calibrated such that the 

measurements are expressed in the same units. If the calibrations are not performed 

correctly, the vector-valued kernel may introduce a bad bias instead of an informative 

prior. Otherwise, if the calibration errors are small and can be tolerated by the 

insensitive tube of SVR, the vector-valued kernel should improve the generalization 

just as in the simulations.  

In summary, the Lagrangian or the possibly Hamiltonian design of the 

reproducing kernels discovers an interesting link between the dynamics and the 

machine learning. To the best of our knowledge, such an elegant relationship is novel. 

We believe the findings here imply the next generation of the system identification 

and control theory.  
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Fig. 3-9. Simulation result of the ideal dynamics. 
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Fig. 3-10. Simulation result of the ideal dynamics with frictions and 

measuring noises. 
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Fig. 3-11. Asymptotical analysis. 
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3.3 Summary 

In this chapter, the main contribution is the reproducing kernels that incorporates 

the Euler-Lagrange method implicitly to models the dynamical system. To encode the 

Euler-Lagrange method, the structure of the function space and the correlations 

between different generalized coordinates should be considered. In Section 3.1, the 

first scalar kernel is designed by identifying the functional space of the governing 

equation of the robot dynamics, which is derived based on the structured Lagrangian. 

Therefore, this kernel not only encodes the structure due to the Lagrange-Euler 

method such as the linear tendency in the joint acceleration but also the structure of 

the tensor product of the serial robot. In Section 3.2, we generalize the previous idea 

and relax the constraint of knowing the form of the Lagrangian. The result is an 

universal vector-valued kernel that considers both of the structure and the correlations 

by learning the Lagrangian of the system implicitly. Compared to the scalar kernel in 

the previous section, the correlation is considered here, which largely increases the 

performance in term of the prediction error both theoretically and experimentally. In 

the simulations, the proposed schemes are indeed more competitive compared to the 

traditional kernels used in the machine learning. We believe this finding is inspiring 

and exciting, which builds a link between the machine learning and the parametrc 

system identification used in the control community. In the near future, the 

experiments will be performed to verify these kernels.
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Chapter 4 Virtual Impedance Control for 

Safe Human-Robot Interaction 

The collision avoidance problem is essential for safe manipulation. Especially 

with human around, the robot should work only when the safety can be robustly 

guaranteed. Unlike the traditional path planning offline, the collision avoidance 

problem based on the reactive control incorporates the dynamic objects into the path 

planning and the response should be real-time yet smooth. Although this problem is 

not new, it is not completely solved. The dilemma between the robust and the 

consistent reaction and the response of multiple collision points is still an issue. In this 

chapter, we propose a generalized framework for the reactive control based on the 

virtual impedance control. The virtual impedance control shapes the dynamics in 

some abstract vector space so that it follows the spring-damper system. Along with 

the other impedance control schemes, the virtual impedance control benefits from that 

the characteristics of the system can be easily designed by tuning the damping ratio 

and the bandwidth. To robustly, smoothly, and consistently avoid the obstacles while 

minimizing the interference on the original task of the robot, the virtual impedance 

control is designed in the risk space, which governs the dynamics of all the possible 

collision. In implementation, we integrate the system with Microsoft Kinect
TM

 for the 

real-time collision detection and avoidance. Finally, we demonstrate the safe 

human-robot interaction in the experiments.  

This chapter is partly based on the contributed works in conferences or journals 

[17]. 
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4.1 Introduction 

The need of robots operating in partially unstructured circumstances increases in 

recent years. In these tasks, the environmental uncertainties may be due to the static 

objects that are unknown or expensive to be modeled beforehand, or due to the 

dynamics objects such as the human working in cooperation with the robot, or the 

sudden change of the environment, and the objective of the robot is to achieve some 

predefined control schemes, such as the position tracking or the impedance control, 

while guaranteeing the safety of the operation. However, due to such uncertainties, the 

pre-planned paths or the controller of the robot may not be able to guarantee both the 

performance and the safety of the robot. In this case, the safety requirement should be 

put into the highest priority, and the robot should try to accomplish the predefined task 

within this constraint. The safety issue is especially stressed when it comes to the 

human-robot interaction.  

To achieve the safety requirement, the robot should detect and avoid the collision 

before the physical contact. Since the classical path planning and obstacle avoiding 

schemes such as the rapidly-exploring random tree (RRT) needs global information of 

the surroundings, they may be too slow, or even incapable of reacting to such tasks. 

For real-time control in the uncertain environment, the reactive control [2] is 

introduced to cope with such difficulties. In contrast to the global path planning 

schemes, the reactive control uses only the local information from the proximity 

sensors or the computational vision to control the movement of the robot to responses 

simultaneously. The most popular approaches are those based on the potential fields 

[54], which guides the robot through the environment by defining the attractive 

potentials and the repulsive potentials. The forces, defined as the negative gradient of 
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the potential fields, form the vector field in the configuration space, and drive the 

robot to achieve the task while preventing the collision avoidance. As a consequence, 

the reactive controls based on the potential fields can response to the environment fast 

and smoothly, and have been applied successfully [6, 21, 22, 32, 37, 89, 90].  

Nonetheless, the potential field scheme is not perfect. As mentioned, the safety of 

the operation should come first. Therefore, this is potentially the multi-priority 

problem. To ensure the robustness of the collision avoidance, the original potential 

field scheme [6, 54] compensates the dynamics of the point at risk, so the chosen 

point can avoid the obstacle regardless of the predefined trajectory or the control 

scheme. Therefore, the original control scheme only operates in the null space of the 

Jacobian of the chosen point. However, the consistent behavior of the collision 

avoidance cannot be guaranteed when facing multiple collisions, since the degrees of 

freedom (DOF) of the robot is finite. To address this dilemma, we categorize the 

literatures according to use of the projection matrix in the collision avoiding. Without 

the use of the projection matrix, the repulsive forces from different obstacles are 

transmitted and summed to exert on the robot dynamics. In [91], they transmit the 

repulsive forces on the defined the points at risks to the some predefined control 

points to handle the multiple collision problem; to unify both the virtual and physical 

forces, all the repulsive forces are transmitted by the corresponding Jacobian matrices 

and transmitted torques are summed in the joint space in [21, 22, 37-39]; similarly in 

[87], the contributions of different potentials of the collision avoidances, the joint 

limit avoidances, and the manipulation are summed and the dynamics of the robot 

follows the effective torque from all the potentials. This approach that summing up all 

the forces seems intuitive and simple, yet some underlying problems exist. The most 
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serious question is that what the equilibrium point is. Although the system can be 

stabilized by introducing proper damping, the equilibrium point cannot be guaranteed 

to be collision-free.  

On the contrary, the projection matrix is used to isolate the dynamics of the 

original task and the collision. Brock et al. [6] put the original task in the first priority 

and the collision avoidance only operates in the null-space of the original task, which 

is appealing for the highly redundant robot. Sugiura et al. [98] design the collision 

avoidance scheme for ASIMO by preventing the collision of the point that is closest to 

obstacle in the null space of the original task. However, it is not sure whether the null 

space of the original task is large enough to prevent the collision. To robustly enforce 

the priority of the collision avoidance, [97] operates the original task only in the null 

space of the self-collision avoidance. Also, for multiple collision points, they define a 

vector-valued potential. However, due to the asymptotical nature of the design, the 

robot may be trapped in the potential fields.  

In summary, a good reactive control scheme should possess the following 

qualities:   

1. The collision should be robustly and consistently avoided regardless of the types of 

the collisions, and the original tasks.  

2. The interference on the original task in the collision avoidance should be 

minimized.  

3. The collision avoidance should be smooth and stable.  

The first requires not only the collision avoidance to be put in the first priority, but 

also the equilibrium point to be collision free. Such requirement cannot be satisfied in 

the aforementioned works except in [97]. On the other hand, the second requirement 



 

 101 

is satisfied by most of the schemes, especially those operate the collision avoidance 

only in the null space of the original tasks. Finally, the stability is necessary for all the 

systems and the smoothness is required so that the human nearby would not be 

intimidated and the robot would be damaged from the abrupt motion.  

In this chapter, we propose the virtual impedance control in the risk space to 

fulfill the requirement of a good collision avoidance scheme. The risk space is a 

vector space of the risk functions defined as the normalized distance to the collision of 

the active collision points, and therefore we can control the dynamics in the risk space 

to prevent the collision avoidance. To robustly avoid the collisions, the original 

dynamics only operates in the null space of the Jacobian matrix of the risk functions; 

to limit the interference, the collision points is only activated if the distance to the 

obstacles is below some predefined threshold, and also the null space of the risk 

function is maximized such that it contains all the spaces that do increase the active 

risk functions; to ensure the smoothness and the stability, the virtual impedance 

control scheme controls the dynamics in the risk space as the second-order 

spring-damper system, so the desired dynamics can be easily tuned by setting the 

damping ratio and the bandwidth of the system.  

Compared to [97], the proposed scheme generalizes naturally for multiple 

collision points regardless of the types, and solves the asymptotical and the switching 

problem by defining the boundary layer on the spectrum of the Jacobian matrix. In the 

boundary layer, the repulsive forces and the force of the original dynamics balance, so 

the robot will not be trapped in the potential fields, i.e. the active risk function; the 

chattering of the switching is also lessened. In addition, the velocity profile of the 

proposed scheme is continuous intrinsically, since the impedance control works in the 
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acceleration domain.  

In the partially structured environment, we model the robot, the human, and the 

surroundings by the spherically extended convex bodies of line segments and planes, 

so the computational burden is lessened. Although the dynamic object such as the 

human cannot be known beforehand unlike the robot and the static part of the 

environment, the low-cost Microsoft Kinect
TM

 serves as a good option. In our 

implementation, we use Kinect to capture the exoskeleton and of the human nearby, 

so the collision avoidance between the robot and the human can be addressed as the 

self-collision. 

In Section 4.2, we give the formal description of the system and the modeling. 

The main result of the proposed impedance control in the risk space is presented in 

Section 4.3. In particular, we highlight the benefits of maintaining the consistently 

smooth dynamics of the collision avoidance. In Section 4.4, we validate the proposed 

scheme in the experiments with the 6-DOF NTU robot arm. Finally, we give a short 

conclusion in Section V.  

4.2 System Description 

Since the collision problem is related not only to the kinematic description of the 

robot but also to the geometry, how to efficiently model the appearance of the general 

robot is important. In the following, we model the robotic manipulator based on the 

union of the convex sets and the traditional Denavit-Hartenberg notation.  

In Fig. 4-1, link i is connected by joint i and joint i+1, and frame i is assigned to 

joint i+1, with the link length ia , the link twist i , the link offset id  , and the joint 

angle i . The indexes of the joints from the base to the end effector are arranged in the 

ascending order. For the links with non-zero link length or link offset, it is necessary 
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to model the geometry of the links for the collision avoidance. In the literatures of 

robotics and computation vision, various models have been proposed for modeling the 

robot geometry, such as convex hulls, cylinders, or triangular meshes. In this paper, 

we consider the simplest convex geometry, namely the line segment. We use the union 

of the fully connected line segments to describe the skeleton of the robotic 

manipulator, which is the piecewise linear approximation of the geometry. Since one 

of the critical steps of collision problem involves in the online computation of the 

distance between the models of the links, we choose the line segment model to lower 

the computational burden. Efficient algorithms [84] for the distance computation 

between line segments are available, and it is much simpler than the computation of 

the distance between the general convex sets. ,i k  

To model the geometry of link i, we use the union of the spherically extended 

convex hulls of line segment,  
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for 1,.., ik n , where 3

, ,1i k v and 3

, ,2i k v are the two vertices of the line segment, 

, 0i kr  is the radius of the sphere, and in is the size of the set. The indexes are arranged 

as , ,2 , 1,1i k i kv v and , ,2 1,1,1ii n iv v so that all the links are fully connected. For link i, the 

line segments are chosen giving the best piecewise linear approximation of the 

appearance while limiting the size of the set in , and the radius of the sphere is then 

designed such that the union of the convex sets covers link i completely as in Fig. 4-1. 
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Fig. 4-1.The geometry model of the robotic manipulator 

It can be easily shown that the shortest distance between two spherically extended 

convex hulls of the line segment is the same as the shortest distance between two line 

segments minus the radii of the sets, and therefore the efficient algorithm for line 

segments can be used.  

As for the environments, the skeleton model of line segments can also be used, 

e.g. human skeleton model can be detected by Kinect
TM

. Moreover, the spherically 

extended parallelograms are used to model the static platforms, such as desks and 

walls in the environment. Thus, the body-to-body collision can be efficiently 

prevented by the computing the shortest distance between two convex bodies. 

4.3 Virtual Impedance Control in the Risk Space 

In this section, we describe the proposed control scheme. To robustly ensure the 

success of the collision avoidance for all the possible collisions, we define the risk 
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space, which describes the dynamics of the normalized distances between the robot 

and the obstacles, and control the dynamics of the robot in the risks space, instead of 

the Cartesian or the joint space used in common. Since the risk function is normalized, 

the consistent dynamics in the risk space guarantees the behavior of the robot 

regardless of the types of the upcoming collisions. Therefore, the collisions can be 

avoided robustly. 

In the following, we assume that the robot is originally stabilized with some 

control laws such that the joint space dynamics admits the following form, 

 ( ) ( , , ) M q q F q q q 0   (4.3) 

where N N( ) M q is the inertia matrix, ( , , ) NF q q q is the result of the (nonlinear) 

control law. This form (4.3) is general. For example, it can be the independent 

PD-control with the gravity compensation, or the joint space or the Cartesian space 

impedance control, or the admittance interface for a position-controlled robot to 

imitate the impedance effects. The only requirement here is that closed loop system 

(4.3) is stable and ( )M q is known and positive definite.  

Before entering the subject, we briefly discuss the control scheme. The overall 

control scheme can be divided into two parts: collision detection and collision 

avoidance control. In the first stage, the risk functions are updated based on the 

closest distance between two convex bodies in the Cartesian space or the distance to 

the joint limit, which measure the degrees of possible collisions. If the risk function is 

nonzero, then the collision avoidance control starts. In order to prevent the collision 

regardless of the scenarios, the proposed control scheme first cancels part of the 

dynamics of (4.3) that is related to the upcoming collisions and then compensates the 

angular acceleration q such that the forthcoming collisions can be avoided smoothly. 
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The control policy here is that the collision avoidance is in the highest priority, so the 

original control law has no effect on the subspace that concerns the collision 

whenever the risk function is nonzero, and that the avoiding motion should be smooth 

instead of stopping abruptly for better user interaction experience. Therefore, on the 

subspace related to the collisions, we control the dynamics behavior of the system in 

the risk space such that the dynamics of collision avoidance is independent of the 

configuration and the types of collisions, whereas (4.3) is maintained on the 

complement space to continue the original task. To control risk dynamics, we define 

the control-Lyapunov function so that the risks can be persistently minimized in a 

consistent manner. As for the stability, if (4.3) converges to a bounded set 

asymptotically and the environment is stationary, the overall control law is proved to 

be asymptotically stable. Since the control-Lyapunov function forces the system to 

converge to a positively invariant set in the joint space, the system converges to 

projection of the original equilibrium of (4.3) in that positively invariant set 

asymptotically.  

This section is organized as follows. In Section 4.3.1, we define the risk function 

as the normalized measure of the closeness to the potential risks, and emphasizes why 

the consistent dynamics in the risk space is important in Section 4.3.2. Section 4.3.3 

shows the proposed control law for the consistent collision prevention based on the 

control-Lyapunov function. Finally, we give the proof the stability of the system in 

Section 4.3.4, discuss some issues in implementation in Section 4.3.5 and Section 

4.3.6. 

4.3.1 The Risk Space  

The concept of risk function is to define a normalized distance representing the 
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degrees of the forthcoming collisions, so that different types of the collisions can be 

unified. If the risk function is nonzero, the collision avoidance scheme should be 

activated so that the risk function is bounded above by some constant, which 

represents the physical collision of the robot and the obstacles. With the defined risk 

function, the risk space describes the dynamics of the risk function during the whole 

operation of the robot. Therefore, the success of the collision avoidance can be easily 

analyzed by just looking into the dynamics in the risk space, the risk dynamics.  

In our scenario of the human-robot safety, the possible collisions can be 

categorized into: the self-collision of the robot, and the collision between the robot 

and the environment. By the environment, we mean both the static surroundings and 

the human nearby that may possibly move. The self-collision occurs due to the 

geometry interference of the robot and can be further classified by considering the 

topology of the collision pairs. If the two links are adjacent as described in the 

previous section, the collision can be avoided just by setting proper joint limits. On 

the other hand, the collision of the non-adjacent links and the collisions between the 

robot and the environment are the body-to-body collision problem in the Cartesian 

space, and therefore the distance between the collision pairs in the Cartesian space is 

used to detect the collision. Therefore, the risk function should serve as the 

normalized measure for both the Cartesian space and the joint space. 

In the following we define the risk space and the risk function for the 

human-robot safety. If the links that defines the robot and the environment is finite, 

the possible collisions define a finite set { ( , ) | , }L C Ji j i j   , where C is 

the set of collision pairs defined in the Cartesian space, J is the set of joint limit 

collisions, and L is the number of all the links. LetC    . Given finite pairs of 
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collisions, the risk space is defined as the convex cone of the risk function in C , in 

which the risk function is a diffeomorphism of the joint space. We note that the 

requirement of differentiability is necessary to define proper Lyapunov functions to 

govern the dynamics in the risk space. Since the risk inherits the switching nature, i.e. 

the collision avoidance starts only when the risk function is nonzero, additional 

smoothness must be applied on the risk function, so that the velocity and the 

acceleration of the risk function is well defined.  

To fulfill the requirement, we propose to use the risk function  

 ( ( ))p r r q ,  (4.4) 

where 

 
3( ) , 0

( )
0,

x x
p x

otherwise


 
 


 (4.5) 

is defined for each entry of the vector ( )r q , 0  is the scaling factor to control the 

norm of the derivative of (4.5), and for the ith collision pair i , i C , the ith 

entry ( )ir q of ( ) : N Cr q is defined as, 
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


 






q

r q
q

 (4.6) 

,C id , ,J id is the size of the buffer zone, ,1ir and ,2jr are the thickness of the two convex 

bodies in i for the Cartesian collision, ( )id q is the shortest distance between the pair 

in i in the Cartesian space, , ( )J id q is the distance to the joint limit defined in the joint 

space. The constant ,C id and ,J id are chosen manually to ensure the robustness of the 
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collision while not limiting too much workspace manually. Also, we note that the joint 

limit may be two-sided. In this case, we duplicate the pair of links in so 

that , ( )J id q in (4.6) is well defined.  

From the definition of (4.4), the vector function
r is twice continuously 

differentiable with respect the angular position q , and therefore the velocity r and the 

acceleration r exist and can be computed as 

 3=3r r r r , (4.7) 

and 

 3=3 (2 ) r r r r r r r , (4.8) 

where 

 r Jq  (4.9) 

and 

  r Jq Jq  (4.10) 

( ) C N
 


J r q
q

is the Jacobian matrix, and denotes the Hadamard product. The 

Jacobian matrix defines the differentiation between the joint space and the risk 

function and can be computed as follows. By the definition of (4.6), the ith row iJ of 

the Jacobian matrix J  is 

 2 1
ˆ ( )T

i d j j  (4.11) 

if i C , where 2 1

2 1

ˆ
i






x x
d

x x
, 1x 3

2 x are the two vertices of the line segment of 

the shortest distance in i , 1j
3

2

Nj are Jacobian matrix of the linear velocity of 
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points 1x and 2x , respectively; else if i J , iJ can be computed directly as 

 1

, , ( )J i J i

d
d d

d

 q
q

, (4.12) 

which concerns only the sign of the definition of , ( )J id q . As a consequence, the ith 

row of J can be computed as 

 2 1
2 1 2 1

(( ) ) ˆ ˆ ˆ( )( ) ( )
T

T T

i

d

dt


    

j j q
I dd j j d j j

d
  (4.13) 

if i J ; otherwise, it is a zero vector. 

In summary, the collision occurs when ( ) 1i r q , the potential collision is omitted 

when ( ) 0i r q , and the collision avoidance control is activated in between. Also, due 

to the chosen risk function (4.4), which is twice differentiable, the second-order 

dynamics in the risk space can be properly defined. Therefore, the virtual impedance 

control scheme proposed in Section 4.3.3 can prevents the collision smoothly by 

controlling the dynamics in the risk space. 

4.3.2 Consistency of the Collision Dynamics 

To robustly prevent the collision, it is important to ensure that the collision 

dynamics is independent of the configuration of the robot. In [54], the impedance of 

the end effector in the Cartesian space is controlled as a unit mass system, so that the 

endeffector can consistently avoid the obstacles regardless of the configuration of the 

robot. However, it is well known that the impedance control in the Cartesian space of 

a robot can be in general only defined on a single point, due to the limited degrees of 

freedom. Therefore, the existence of the consistent dynamics when multiple collision 

points are present is a question.  

To enforce the consistent impedance, one may choose to design a consistent 
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collision dynamics on a single point and an alternative scheme to transfer the 

repulsive forces of the other collision points to that point. For example, when multiple 

potential collision points are presented [54], the forces originally exerted on different 

points are transferred to the endeffector, whose dynamics is consistently a unit mass 

model, so that the collision dynamics is consistent at least in terms of the endeffector. 

This approach, however, cannot guarantee the success of the avoidance of the whole 

body but the endeffector. Another intuitive solution is continuously switching between 

the collision points. Since only one point is selected as a time, the collision dynamics 

can be consistent at least in the short interval of the current selection. Due to the 

switching, the chattering may occur, and also the system can be only proved to be 

bounded not asymptotically stable by considering the behavior when multiple 

collision points with similar risks are presented. If other uncertainties are present such 

as the discretization of the control and the detection, the stability of the switching 

scheme is in doubt.  

On the other extremity, the consistency requirement may be dropped to avoid 

multiple obstacles stably. In [20], they do not consider the consistency of the collision 

dynamics and let the forces of the repulsive potentials exert on the robot via the 

Jacobian matrix. Since the original system is passive and the transmitted torques is the 

negative gradient of the potential, the overall system converges asymptotically to the 

point where all the transmitted torques balance the torque of the original system. 

However, this equilibrium point is not guaranteed to be collision-free. Also, the 

collision dynamics depends largely on the configuration of the robot, since there is no 

compensation of the original dynamics and the kinematics. Therefore, this scheme 

cannot robustly avoid the collision in general tasks. 
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By defining the risk space, the contradiction between the multiple collision 

points and the consistent collision dynamics can be addressed. Since the risk space 

unitfies all the possible collisions, the dynamics in the risk space can alone determine 

the success of the collision avoidance. Also, for the consistency, we maintain the 

dynamics in the risk space instead of either the Cartesian space or the joint space so 

that the dynamic behavior of the collision avoidance is consistent regardless of the 

number of the collision points. In summary, the introduction of the risk space solves 

the dilemma between the consistency and the number of the collision points. Because 

the risk function is twicely differentiable, the dynamics behavior in the risk space can 

be properly controlled just as the impedance control of a single point so that the 

overall system can be both consistent and stable.  

4.3.3 Control of the Dynamics in the Risk Space 

Continuously detecting the possible collisions, the collision avoidance control is 

turned on when the risk function is nonzero to maintain the risk function below 

certain upper bound in the risk space. For better human perception, we desire the 

motion of the collision avoidance to be smooth. Therefore, we propose the virtual 

impedance control in the risk space by designing the control-Lyapunov function. To 

ensure the collision can be avoided robustly regardless of the configuration of the 

robot, we put the collision avoidance control in the first priority. That is, the original 

dynamics (4.3) only operates on the subspace that is independent of the collision, 

when the collision avoidance control starts. Therefore, the robot can continue 

performing the original task, if the subspace related to the collision is small.  

To control the dynamics of the risk space, we first consider the following 

control-Lyapunov function, 
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1

( , )
2 2

T T

RV


    q q r r r r , (4.14) 

where 0  is the parameter controlling the bandwidth of the system. Since (4.14) is 

positive definite, all the risk reaches zero if (4.14) converges to 0. To attain the 

objective, we can design a control law to ensure the time derivative of (4.14) to be 

negative semidefinite. The time derivative RV of (4.14) can be shown as 

 33 (2 ( ))

( ( ))

T T

R

T T

T T

V 

 



   

  

 

 

   

   

r r r r

r r r r r r r r Jq Jq

r S S r a A Jq Jq

 (4.15) 

where C CS is the selection matrix of the active risks, i.e. ij ijS ,and ij is the 

Kronecker delta function, C C is the number of the active 

risks ( ) 0i r q , 33 ( )diagA r r ,and 36 ( )a r r r . To make the time derivative 

negative semidefinite, we may choose q such that 

 ( )    Jq S r a AJq Jq , (4.16) 

where C N J SAJ is the active Jacobian matrix and 0  is the damping. If (4.16) 

is achieved,
2

LV    r , then
r can converge to zero asymptotically with the 

consistent dynamics, i.e.  

 ( )T      r S S r r ,  (4.17) 

which is independent of the configuration of the robot. However, (4.16) does not hold 

in general, so this intuitive approach may fail. As the problem of controlling the 

impedance of multiple points in the Cartesian space, (4.16) may fail due to the limited 

degrees of freedom. Especially, ( )rank CJ may occur even if C N .  

To approximate the solution, we may use the pseudo-inverse, so the control 
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scheme is to design a controller in (4.3) such that  

 0 ( )c   q Nq P q q  (4.18) 

where 1

0 ( , , ) q M F q q q is the resultant joint acceleration of the original system 

(4.3),   

 1 ( )T

C 

   q VΣ U S r a AJq ,  (4.19) 

is the joint acceleration used to compensate the dynamics of the risk space, 

1 1 1: = ( )T T  
P M J JM J J and : N I P are the projection matrices in the space with the 

inner product defined by 1
M , TJ UΣV is the reduced SVD of the Jacobian matrix 

with C U and N V the basis of the non-zero singular values  Σ , 

and  is the rank of J . Here we assume the joint acceleration is controllable in the 

original dynamics system (4.3), so that (4.18) is realizable by designing proper control 

input in (4.18). The first term in (4.18) 0Nq  projects the original dynamics into the 

null space of the active Jacobian matrix J , so the original dynamics have no effect on 

the risk dynamics once the collision avoidance starts; the second 

term ( )c P q q controls the risk dynamics so that it is consistent in controllable 

subspace, which is the column space of the active Jacobian matrix J . That is, in the 

column space of J , the risk acceleration (4.8) is consistently  

 ( )T T T T      S UU Sr S UU S r r .  (4.20) 

Therefore, in the controllable subspace in the risk space, the dynamics of the risk 

function r actually follows a second-order spring-damping system regardless of the 

number of the active collision C , and the configuration of the robot, where the 

stiffness and the damping  can be designed to realize specific bandwidth and 
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damping ratio. Before analyzing the stability and the detailed characteristics of the 

closed loop system, we note that although (4.20) actually realizes a nonlinear system 

in terms ofr due to the nonlinear mapping (4.5), the damping ratio in (4.20) can still 

prevent the undesirable effects such as overshooting of r . 

4.3.4 Stability 

In this section, we first show that the proposed control scheme (4.18) is 

asymptotically stable if the environment is static and the original dynamics (4.3) is 

asymptotically stable, and then discuss the properties of the closed-loop system. We 

neglect the discussion of the dynamic environment. Since the overall system is 

continuously differentiable, the system can be easily proved to be input-to-state stable 

provided with the stability with the static environment. 

Assuming the environment is static and the original dynamics (4.3) is 

asymptotically stable converging to the set{ | 0}q q and M is known and positive 

definite, we first consider the behavior of the risk dynamics. Substituting (4.18) into 

the time derivative (4.15), we have 

 
2

0RV    r . (4.21) 

Since T

 r S Jq , the system converges to the positively invariant set 

 {( , , ) | 0} q q q Jq ,  (4.22) 

which implies either 0J , i.e. 0A , leading to all the risks are successfully 

avoided, or 0T V q . In addition, since 0Jq in , the acceleration 

 ( )T T T T   S UU Sr S UU S r 0  (4.23) 

from (4.20), which implies the control-Lyapunov function in is 
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1
( )

2 2 2

( )
2

T T T T T T T T T

R

T T T

V
 



     

 

   

 

r S I UU Sr r S UU Sr r S UU Sr

r S I UU Sr

 (4.24) 

i.e. the uncontrollable potential energy, which is constant since 0RV  in . Thus, in 

, 0 0  Jq Pq . On the other hand, we consider the original dynamics in the 

null space N starting from . Since the original dynamics in asymptotically stable, the 

null space joint velocity, 

 lim 0
t

Nq .  (4.25) 

From (4.22) and (4.25), we have both 0Pq and 0Nq , and therefore 0q and 

therefore 0q as time goes to infinity. Thus, the closed-loop system is 

asymptotically stable.  

At the equilibrium point, the risk function is either zero, or the energy of the risks 

converges to a constant that cannot be further reduced due to the configuration of the 

collision. The irreducible risk in (4.24) is due to the configuration of the environment. 

For example, if the robot is in a fully cluttered environment, in which there is no 

configuration of the robot with zero risks, the irreducible risk exists. Otherwise, the 

proposed control scheme leads to the asymptotical equilibrium point, where all the 

risks, the joint velocity, and the joint acceleration are zero. We summarize the results 

as follows. 

Theorem 4.1 

The Virtual Impedance Control  

 0 ( )c   q Nq P q q  (4.26) 

with 1 1 1= ( )T T  
P M J JM J J and  N I P converges asymptotically to the set 
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 {( , , ) | 0, 0} q q q q USr , (4.27) 

if the original dynamics of the robot converges asymptotically to the set  

 {( , , ) | 0}q q q Nq  (4.28) 

regardless of the projection matrix N . 

4.3.5 Some Practical Issues 

We now consider some imperfection that may happen in practice, due to the 

discrete control and the finite computational power. Although the Jacobian matrix J is 

defined as ( )





J r q
q

in (4.10), there is, however, actually another implicit 

parameter  that determines the possible collision point in the joint space. Therefore, 

the Jacobian matrix should ideally be defined as 

 ( ) ( )




  
 
  

J r q r q
q q

. (4.29) 

Because the variation


q
is hard or costly to be computed, we implement (4.10) 

instead of (4.29). We note that the same assumption is made to compute J in (4.13). 

Since ( )




 

 
r q

q
is upper bounded by the factor due the geometry of the robot and 

the sampling time, we can expect that the system can still be asymptotically stable by 

selecting  large enough. Therefore, the bandwidth of the risk dynamics is limited.  

As for the collision detection, the self-collision detection is much faster than the 

detection of the collision between the human and the robot by Kinect
TM

, which is 

limited by the sampling rate of the visual sensing. Therefore, the human is assumed to 

be a static object between the updates of the visual sensing. Also, the second-order 

virtual impedance system in (4.20) actually filters the noise of the visual sensing since 

it acts as a lowpass filter in the risk space. Therefore, the overall system can be more 
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stable.  

4.3.6 The Design of the Boundary Layer 

Apart from the issues mentioned above, the chattering may occur, since the 

controller in (4.18) actually switches as the dimension of the projection matrix 

changes. For example, on the boundary where the risk function is activated, the 

magnitude of the chattering is large if the force of the original dynamics tends to push 

the system deeply into the region where the risk function is high. Although the risk 

function converges exponentially to the boundary once activated, the risk function 

will be largely increased once it reaches the boundary due to the control delay. To 

eliminate the chattering, we design a boundary layer on the spectrum of the weighted 

Jacobian matrix 1/2
JM . Since the singular value and the right singular vector 

of J SAJ and AJ , which is a continuously differentiable function, are the same, we 

can define the boundary layer by introducing the function 

 
1,

( )
( ), 0

i

i

i ig

 
 

  


 

 
 (4.30) 

on the spectrum of 1/2
JM , where i is the ith singular value of 1/2

JM ,  is the 

thickness of the boundary layer, and ( )g  is the third-order polynomial satisfying the 

boundary conditions that (0) 0g  , (1) 1g  , (0) 0g  , and (1) 0g  . With (4.30), we can 

substitute it in (4.18) by changing the definition of the projection matrix, leading to  

 1/2 1/2: = [ ]T
P M VΦV M  (4.31) 

where 1/2 T JM UΣV is the reduced singular decomposition andΦ is the diagonal 

matrix formed by (4.30). In particular, if the inertia matrix in (4.3) is of the 

form mM I , which is the case when the original control loop is the joint space 
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impedance control for instance, (4.31) can be simplified into  

 : = T
P VΦV . (4.32) 

In summary, the risk function converges exponentially into the boundary layer, and 

once into the boundary the repulsive force will balance the force due to the original 

dynamics. Therefore, the trapping phenomenon in [97] and the chattering due to the 

control delay will not occur by selecting large enough. As for the convergence in the 

boundary layer, we believe it can be proved that the norm of the states can be bounded 

by some constant relative to the thickness of the boundary layer . We leave it in the 

future works. 

4.3.7 The Selection of the Parameters 

The tuning of the parameters is simple. Due to dynamics compensation in (4.19), 

the risk dynamics depends fully on the choice of the damping ratio  and the 

bandwidth 0 of (4.20), i.e.  

  2

0m  , (4.33) 

 2 m   ,  (4.34) 

where m is mass of the virtual impedance system. The choice of these parameters can 

follow the behavior of the canonical second-order linear dynamics. For example, if 

the no overshooting is allowed when leaving the potential field,  can be critically 

damped; m can be used to tune the magnitude of the initial response. 

In the implementation, we design the system with 1m  and 1  , and choose the 

bandwidth empirically such that it is large enough to prevent the collision fast but 

small enough to stabilize the system due to the imperfections mentioned above. The 

other parameters are  to define the risk function and the thickness of the boundary 
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layer. The optimal choice of is actually a function of  , because is defined on the 

spectrum of J SAJ and recall 33 ( )diagA r r . Therefore, we propose to set in the 

parametric form 3  , where  is a constant to be tuned. In this setting, the 

normalized thickness is more easily tuned. As for the scaling parameter  , it should 

be as small as possible yet large enough for preventing numerical errors in 

computing 3 and . The reasons for choosing  to be small are as follows. The 

compensating term 36 ( )a r r r involves the quadratic term of the normalized risk 

velocity, which may be large when the robot enter the boundary with high velocity. To 

limit the require joint acceleration to cancel the fictitious Coriolis accelerationa due to 

the definition of the risk function,  should be chosen to be small. Also, the choice 

of  does not actually affect the dynamics of r . From(4.17), we have 

 1( )
3

T 
    r S S r r A a , (4.35) 

which is independent of the choice of  , since (4.5) is only used to define a proper 

dynamics system for the collision avoidance. Therefore,  can be arbitrarily small as 

long as it is numerically stable. 

4.4 Experiments 

In this section, we demonstrate three experiments to show the performance of the 

proposed control scheme with the 6-DOF NTU Robot Arm in Fig. 4-2. The 6-DOF 

NTU Robot Arm is a position-controlled manipulator, and we implement the original 

task of the robot in (4.3) as the position-based impedance controller.  

In the first experiment, we test the consistency of the dynamics in the risk space 

regarding different configurations, and discuss the effect of the boundary layer. In the 

second experiment, we demonstrate the ability of the robot circumvents through the 
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obstacle. Finally, the integrated system with the robot performing some predefined 

task and the Kinect
TM

 detecting the human nearby the robot is tested with the 

interaction with the human.  

We first want to test the consistency of the obstacle avoidance. In Experiment 1, 

we initialize the robot in different poses with zero velocity and acceleration, such that 

the initial value of the risk functions are similar, 0.016432 and 0.016416 respectively, 

as shown in Fig. 4-3, and the original controller is the joint space impedance 

controller trying to stabilize the robot in the initial condition. Here we demonstrate the 

toy example in which only one risk function is activated in the Cartesian for better 

visualization to understand the characteristics of the proposed method. In this case, 

the proposed scheme is actually the Cartesian space impedance control in the 

one-dimensional space of the collision. First, we observe that the risk dynamics of the 

two cases are the same regardless of the pose of the robot in the region where ( ) 1   , 

which is never the case, when the collision avoidance scheme transmitting the 

 

Fig. 4-2. 6-DOF NTU Robot Arm. 
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repulsive force by the Jacobian is used. Then we compare the response with different 

boundary layers. In Fig. 4-4, the size of the risk function at the equilibrium point is 

related to the size of the boundary. If the thickness of the boundary layer is large as in 

the first figure, the risk function converges to larger value. Also, we can observe that 

the dynamics of the risk space is consistent only outside the boundary, i.e. ( ) 1i   , 

so the overshoot may happen in the boundary layer despite the critically damped risk 

dynamics. In Fig. 4-5, we show the asymptotically behavior of the risk dynamics 

inside the boundary layer. If the boundary layer is large enough as the 

case 1 2e   and 1 4e   , we observe that the chattering does not occur by the 

variation of ( )  . Also, the norm of r is bounded by the constant related to the 

thickness of the boundary layer. As the boundary gets smaller, the variation of r is 

smaller. However, the chattering occurs if the thickness is below some threshold as in 

the case of 1 6e   . The robot is oscillating on the boundary as it is pushed in and 

out by the force of the original dynamics and the repulsive force for the obstacle 

avoidance. In this case, the boundary layer is not large enough to overcome the 

imperfection due to the control delay. 

In Experiment 2, we want verify that the propose scheme has small impact on the 

original dynamics in (4.3), since only the subspace related to the active risk function 

is projected into the null space. In Fig. 4-6, the obstacle avoidance of a ball in the 

Cartesian space with the proposed virtual impedance control is shown. The yellow 

ball is the obstacle and the transparent red ball is the potential field, where the risk 

function is active. We choose the size of the potential field to be larger than the 

needed one in practice for the demonstration purpose. The dark blue line denotes the 

trajectory of the endeffector if the original control scheme is applied; the light blue 
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line denotes direction related to the risk function; the green line denotes the trajectory 

of the endeffector when the virtual impedance control is applied. In Fig. 4-6, the 

original trajectory passes the obstacle, so the collision occurs. With the proposed 

control, the robot arm can smoothly pass by the obstacle by gliding along the surface 

of the potential field. As in the previous experiment, the virtual impedance control 

scheme becomes the Cartesian space impedance control operating in the subspace that 

relates to the increase of the risk function, since only single risk function is activated. 

In Fig. 4-7, we show the risk dynamics in Experiment 2. According to the figure, the 

collision avoidance control is activated two-times. As in Experiment 1, the dynamics 

outside the boundary layer is persistently controlled; in the boundary, the external 

force balances the repulsive force. Also, the impact on the original dynamics is 

minimized, since the virtual impedance controller only compensates the dynamics of 

the active risks. Finally, we implement the avoidance collision scheme that transmits 

the repulsive force by the Jacobian matrix as in [20] for comparison. The result is 

shown in Fig. 4-8. As expected, the configuration and the original dynamics of the 

robot affect the dynamics of the collision avoidance. Therefore, the risk cannot be 

bounded robustly, in contrast to our approach as shown in Fig. 4-9. 

For multiple activated risks, we conduct the following experiment with the fully 

integrated system with Kinect
TM

.  In Fig. 4-10 the modeling of the human and the 

robot in the virtual impedance control is shown. With the SDK of Kinect
TM

, the 

skeleton of the human can be identified in the depth image, which can be incorporated 

into our framework trivially. The light blue lines in the figures are the direction of the 

upcoming collisions, and the other sticks denote the robot and the human. With these 

directions, the Jacobian matrix J can be computed as shown in Section 4.3. The 
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parameters of the risk dynamics is selected as. 1  0 15  0.1  0.001  ; the 

control rate the collision avoidance is 1kHz; the sampling rate the vision is 30Hz; the 

transmission of the position trajectory via RS232 is 40Hz. To validate the proposed 

scheme, we perform the following experiment. The robot is operated with a joint 

space impedance control law performing some predefined movements repetitively, 

and the human nearby command the robot to behave well not the come closer. In Fig. 

4-11 and Fig. 4-12 the snapshots of the experiment is shown. With the virtual 

impedance control, the follows the direction of the human, and does not come any 

closer to the safe zone indicated by the potential field. We can observe that the motion 

of the robot is smooth due to the controlled impedance. Therefore, the robot shows 

satisfactory and consistent performance regardless of the types of the collisions.  

 

Fig. 4-3 The initial condition in Experiment 1. 
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 Fig. 4-4.The consistent risk space dynamics with the boundary layers of differnet 

sizes. 
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Fig. 4-5.The asymptotical analysis of the boundary layer. 
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Fig. 4-6. Obstacle avoidance of a sphere with virtual impedance control. 
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Fig. 4-7. The risk dynamics in Experiment 2. 
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Fig. 4-8. The risk dynamics of the collision avoidance that do not compensate the dynamics in the risk space. 
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.  

 (a)  (b) 

Fig. 4-9. The trajectory of the collision avoidance.  

(a) the virtual impedance control (b) the force transmitted by the Jacobian matrix 

 

Fig. 4-10. The modeling of the human and the robot in the virtual impedance control. 
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Fig. 4-11. The safe human-robot interaction experiment part 1. 
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Fig. 4-12. The safe human-robot interaction experiment part 2. 
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4.5 Summary 

In this chapter, we propose the virtual impedance control as the reactive 

controller for the safe human-robot interaction. The virtual impedance control is a 

model-reference control scheme defined in a abstract vector space so that the 

dynamics in that space can be controlled as the second-order linear system. To unify 

all the possible collisions, we define the risk space which is a normalized measure of 

the degree of the upcoming collisions and apply the virtual impedance controller. As 

the consequence, the dynamic response of the collision avoidance is smooth and 

consistent regardless of the types of the collision, and most importantly the collision 

can be robustly avoided. Compared with the other reactive controls for the collision 

avoidance, the proposed control is not only state-of the-art but also easily tuned, since 

the dynamic characteristics is completely determined by the damping ratio and the 

bandwidth of the second-order system. In the experiments, we integrate the 6-DOF 

NTU Robot arm with Kinect to detect the dynamic environment, and demonstrate our 

control scheme for the safe human-robot interaction. In the future works, we want to 

incorporate the physical forces into the risk space, since the dynamics now is only the 

initial response of the second-order system. By defining the proper map to transfer the 

physical contact force into the normalized risk space, the forcing term in the 

second-order linear system can be defined. This can improve the performance of the 

system by considering the physical interaction that may not be detectable by the 

machine vision, or is more suitable in some collaborative scenarios. Also, we mention 

another potential limitation of the current scheme. Since it is the dynamics of r notr is 

controlled, the velocity r may be large when leaving the potential field even 
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if 0 r due to the critically damped system. However, we believe this issue is 

addressed by the boundary layer, because the force from the original dynamics may 

balance the system. Therefore, if the two systems are both passive, the stability can be 

proved, which is the case in our experiments.   

Also, we want to prove the stability and the convergence properties of the 

boundary layer. 
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Chapter 5 Bayesian Exoskeleton System 

The essence of an exoskeleton system is the estimation of human intention. That 

is, the human applying torque. Once the intention of the operator is known or can be 

estimated, the exoskeleton can perform arbitrary tasks and movement freely. Although 

the dynamics model and the biosignal model are the most common approaches in the 

literatures, none of them is universal. The dynamics model suffers from the 

unobservable disturbance torques due to exogenous disturbances or the unmodeled 

nonlinear dynamics, such as flexible joints and frictions; the biosignal is very noisy, 

time-variant, and nonlinear. In most of the cases, the biosignal can only picture of the 

intention vaguely, instead of estimating the precise value of the human applying 

torque. In lieu of using only either of the models, the proposed Bayesian exoskeleton 

system provides an alternative by optimally combining the two models in the 

Bayesian sense, so that the estimation can be more accurate when either of the two 

models fails. By modeling the human-exoskeleton system as the graphical model, the 

Bayesian human torque estimator can online adaptively fuse the information from the 

two models. In addition, a robust torque control loop is design to achieve the assistive 

control. In the experiments, the performance and validity of the Bayesian scheme is 

examined. The experimental results show prominently that the Bayesian exoskeleton 

system performs nearly as good as theoretically guaranteed. 

This chapter is partly based on the contributed works in conferences or journals 

[14, 16, 44-46].
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5.1 Introduction 

Exoskeleton system draws attention in recent years. The objective of the 

exoskeleton design is to augment the operator with assistive forces to support the 

movement or to amplify the force of the operator. The scheme is called assistive 

control. In contrast to the traditional tracking or regularization control, the reference 

trajectory in the assistive control is usually hard to be characterized. In the application 

of the exoskeleton system, the reference trajectory is the desired torque exerted by the 

operator on the human-exoskeleton system, which is called human applying torque 

herein. The human applying torque is often referred as the human intention in the 

context of the exoskeleton system, and is the essence of a exoskeleton system, since 

most of the exoskeleton systems can be regarded as the human torque amplifier. Once 

the human applying torque is known or can be estimated, the exoskeleton control 

problem can almost be regarded as solved. The exoskeleton system can augment the 

operator and then perform freely in any task if the correct human intention is known, 

since, in this case, the human-exoskeleton is identical to the operator himself. 

Despite the merit of the human applying torque, the estimation is difficult in 

general. In the literatures, various assumptions and models have been proposed during 

last decades. We roughly classify them according to the existence of the force model. 

In the modeless design, the force sensor is implemented directly on the exoskeleton to 

measure the interaction forces between the operator and the exoskeleton system [108, 

112]. The EXO-UL7 [112] uses three force sensors to estimate the interaction between 

human and robot, and the position trajectories of upper limber exoskeleton are 

generated by the admittance model. In [108], the similar admittance model is adopted 
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with the force sensors on the fingers. Moreover, they included the sliding mode 

control to overcome the mechanical parameters uncertainties due to deflection of 

Bowden cables and the disturbance. The extra force sensors, however, increase the 

costs and the weight, and decrease the compactness of the exoskeleton system, 

making the design impractical. Also, we need to emphasize that measured force of the 

force sensor cannot truly represent the human applying torque in general. More 

specifically, the operator can only exercise ultimately as if without the existence of the 

exoskeleton and the possible external loadings. For instance, in both designs, the 

objective is to minimize the interaction force between the user and the robot so that 

the robot follows the motion of the user. This design, however, does not directly 

minimize the loading of the operator. In fact, the control scheme only lowers the 

impedance between the exoskeleton and the user. Therefore, the exoskeleton cannot 

directly lessen the loading due to the inertia of the operator. In assistive applications, 

the exoskeleton, however, should provide additional power to support the user. 

The model-based methods, on the other hand, are more suitable to be used in 

practices. According to the types of the feedback sensors, the model-based method 

can be further classified into the dynamics model [52, 57] and the biosignal model [40, 

55]. In the literatures, most of the dynamics models are referred to the inverse 

dynamics model. The inverse dynamics model is based on the dynamics equation of 

the exoskeleton system, and can infer the human applying torque if all the states, the 

unknown parameters, and the toque contributed by the exogenous disturbance of the 

system are known. Although all the states, the unknown parameters can be calibrated 

or estimated by the canonical estimation method in the system theory, the exogenous 

disturbance is hard to be estimated empirically. In [52], they derived the dynamics 
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model of the exoskeleton system and use the positive feedback to increase the 

sensitivity to the disturbance of the system. The parameters of the dynamical are 

calibrated in the experiments [34]. The controller of the exoskeleton amplifies any 

disturbance that comes into the system – even the exogenous disturbances, e.g. the 

ground reaction forces. They claimed “…which does not stabilize, will only make us 

stronger.” The real question is whether the sensitivity design is stable for all the users 

regardless of the fitness. The stability issue of the sensitivity increasing design is 

addressed in [57]. They applied the band-pass filter to guarantee the robust stability of 

the overall system. Further, they proposed a sophisticated smart shoe [58] to estimate 

the ground reaction force. The dynamics model is standard in the community of the 

control system, but the main drawbacks are the need of the precise modeling, 

expensive sensors and actuators, not to mention the time delay due to the stability and 

the causality, since the disturbance comes into the system only when the operator has 

moved already. Therefore, the dynamics model fails when the exogenous disturbance 

cannot be measured accurately, for example using the footswitch as the exogenous 

force sensor, or when the structured unmodeled dynamics in the exoskeleton is large. 

 The biosignal model, on the other hand, alleviates the complexity of the 

dynamics model and uses only the biosignals, such as the electromyography (EMG) 

signal or the electroencephalography (EEG) signal, to estimate the human intention 

[40]. One of the characteristics of the biosignal is that it activates earlier before the 

actual movement of the operator and it is directly related to the human intention. As 

the result, a real-time system is possible ultimately. Many biosignal models have been 

proposed, including the linear model, the nonlinear physiology model, and the 

fuzzy-neural networks, etc [33, 55]. Due to the low signal-to-noise-ratio (SNR) nature 
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of the biosignals, the application of the pure biosignal models, however, are limited 

and can only perform simple or predefined movements. [50] use the clinical database 

to improve the estimation results and the others use the finite state machine [51], or 

hybrid control scheme [46]. The results are not satisfactory for the general tasks and 

the freedom of the movement is limited.  

Aimed for better human intention estimation and assisting control, this chapter is 

devoted to the estimation schemes that combine both the dynamics model and the 

biosignal model, and the robust assistive control to strengthen the operator. The 

chapter is organized as follows. Section 5.2 introduces the knee exoskeleton and the 

inner torque control scheme that will be used throughout the whole chapter. The knee 

exoskeleton is based on the serial elastic actuator (SEA) mechanism, which can 

provide intrinsically safe assistance. The inner torque control scheme is implemented 

as the PD type position control due to the nature of the SEA system. The proposed 

scheme shows to be robust in presence of the unmodeled dynamics and the estimation 

error of the human intention. Section 5.3 demonstrates a simple adaptive scheme of 

combining both the biosignal model and the dynamics model based on switching 

control to compensate the defects of using either of the models alone. The 

self-learning scheme in Section 5.3 is designed to learn the non-stationary biosignal 

model online in a semi-supervised fashion, and the inner sliding mode control with 

admittance interface can provide robust and continuous assisting forces. Based on the 

simple heuristics of considering nature of the two models, Section 5.3 is introduced to 

be compared with the Bayesian framework in Section 5.4, whereas in Section 5.4, the 

main contribution of this chapter is given, the general Bayesian exoskeleton system. 

To ultimately combine the biosignal model and the dynamics model, the Bayesian 
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exoskeleton is based on the Bayesian human intention estimator in Section 5.4 and the 

robust assistive control in Section 5.2. Interestingly, the results of the Bayesian 

Exoskeleton System are similar to the heuristic switching scheme in Section 5.3 when 

a footswitch is used as the exogenous disturbance sensor. Finally, Section 5.5 

summarizes the contributions in this chapter, and discusses the effects of different 

control schemes. 

5.2 A Robust Hybrid Control for Assistive Control with 

Knee Orthosis 

The assistive control is a general framework for the exoskeleton system to 

augment human by amplifying the human applying forces. Given the estimated 

human applying force, the assistive control provides an effective gain by injecting the 

amplified estimation into the system. However, the stability and the robustness of 

such scheme are unknown in general. Aimed at both safe and effectual robot-assisted 

walking, this paper proposed a hybrid control scheme for the robust assistive control. 

To provide robust assistance, the hybrid scheme switches between the intention 

feedback control and the zero-impedance control. In major movements, the intention 

feedback control amplifies the force of the operator, whereas in minor movements, the 

zero-impedance control provides compliance property for comfortable interaction 

between the operator and the robot. The switching effectively introduces an 

insensitive zone in the assistive control so that the exoskeleton can reject uncertainties 

and provide assistance consistently. Further, a new human-exoskeleton model is 

proposed to investigate the stability considering the motor feedback of human, and the 

hybrid scheme is proved to be robustly stable. In addition, a new backdrivable torsion 
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spring actuator (BTSA) is designed to achieve intrinsic safety. Compared with the 

state-of-the-art assistive methods, the robust hybrid controller provides better 

interaction experience in that the operator feels unconstrained in relaxation and 

boosted in motions. In the experiments, a knee exoskeleton is designed based on the 

BTSA to validate the performance. Both the simulations and the experimental results 

show the effectiveness of the hybrid scheme. 

5.2.1 Introduction 

In the field of physical human-robot interaction (pHRI), the fundamental tradeoff 

is how to maximize the performance and detect the human intention while 

maintaining the safety [29]. The general scenario is that the robot performs some 

specific tasks in the presence of human, and, meanwhile, tries to understand and 

response to the human intention. However, the interaction can be carried on, only 

when the safety is asserted.  

As for the application of walking assistance, the goal is to enhance or to recover 

the locomotion ability of the users, especially for the patients with neurological 

dysfunctions that affect the activities of daily living permanently, such as cerebral 

vascular accidents (CVA), spinal cord injury (SCI), traumatic brain injury (TBI) [47]. 

Despite the neurological impairment, it is possible to improve the motor ability and 

the quality of life by rehabilitation. In particular, neuroplasticity can amend of motor 

ability even for patients with 6 to 12 months post-stroke [47]. If full recovery is not 

possible, rehabilitation can maintain the patient’s present condition. Hence the 

development of the exoskeleton for walking assistance is important. 

In this paper, a biofeedback knee orthosis with the backdrivable torsion spring 

actuator (BTSA) is designed for the subjects with normal or minor damaged neural 
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signals. With the new hybrid control scheme and the BTSA, the exoskeleton provides 

robust assistance in general walking scenarios, and offers both the intrinsic safety and 

the support. In following, we give the introduction to exoskeleton design and the 

comparison with the other biofeedback exoskeletons. 

A. Design of the Knee Orthosis with Intrinsic Safety 

Considering the knee motion assistance, the important features are the 

backdrivable property, the actuators that are compact and light-weighted yet have 

sufficient power for human locomotion, and most importantly, the intrinsically safe 

mechanism. Although the non-backdrivable mechanism with high reduction ratio, 

such as worm gears [1, 104], has larger output force, it is only suitable for those with 

severe motor disability in rehabilitation because of the self-lock and the isolation of 

external forces. For the healthy subjects or those with mild motor disability, the 

backdrivable actuator with low reduction ratio transmission, for example bevel gears, 

cable transmission, or direct drive [47], are more suitable because it is more sensitive 

to the external forces, the interaction force between human and the robot. That is, the 

overall system is more stable because it includes the operator’s feedback, and the 

interaction remains smooth in the presence of minor control error. On the other hand, 

the non-backdrivable relies highly on accurate controllers and trajectory planning, and 

therefore even little control error may cause discomfort of the operator. In summary, 

the comparison between rehabilitation and assistive exercise is shown in Table 5-I. 

For both safety and efficiency, various mechanisms have been devised for 

intrinsically safe robot actuation, such as serial elastic actuators (SEA) [28, 41, 59, 66, 

72, 88],  programmed impedance actuators [81, 101], variable stiffness actuators [4, 

49, 69, 74, 75, 110], etc.. The programmed impedance actuator controls the force 
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TABLE 5-I COMPARISON OF REHABILITATION AND ASSISTIVE EXERCISE 

 Rehabilitation Assistive Exercise 

Frequency Low High 

Load High Medium 

User 
Patient with Movement 

Impairment or Disability 

Healthy Person, Elder, 

Patient with Impairment 

Mechanical 

System 

Non-Backdrivable System 

High-Gear Ratio 

Backdrivable System 

Medium-Gear Ratio 

 

profile to generate the piecewise linear impedance; the variable stiffness actuator is 

more flexible and can control the bandwidth, the payload capacity, and the safety level 

of the pHRI in versatile tasks [47]. However, both the programmed impedance 

actuator and variable stiffness mechanism are usually too complex, and the volume 

required is larger than that of the traditional SEAs. Therefore, SEA is more practical. 

To achieve the backdrivable property, various SEA designs with constant stiffness 

have been proposed. According to the spring, they can be roughly categorized into 

rotational [61, 62] and linear SEA [63]. In this paper, the rotational SEA is adopted for 

the compactness and the simplicity of fabrication.  

B. Biofeedback Control 

How are those assistance and rehabilitation devices controlled by the 

biofeedback signals? The biofeedback signals used to control or to estimate the 

subject’s performance can be categorized into the electromyography signals (EMG) 

[62, 63], the electroencephalograph signals (EEG) [61, 95], and the sensing of the 

human motion and the external force [23, 99]. The most common biofeedback signals 

are the motion detection and the force sensing, because these signals are more stable 

than EMG signals, and, especially, the EEG signals. However, the motion detection 
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and the force sensing fail when the subjects have partially or totally impaired motor 

ability. For the patients with partially impaired motor ability due to cardiovascular 

accidents or the spinal cord injury, the EMG and the EEG signals provide an 

alternative. While the EEG signals are limited to certain simple motions, the EMG 

signals can detect abnormal situations, such as spasticity, and can estimate the human 

applying torque directly, providing directly the feedback signals for control. 

To estimate the human intention, the EMG models are commonly based on the 

general learning techniques [109] or the bio-inspired models [47, 60]. With the 

estimation, the amplified estimated biological torque is used as the torque reference 

for the inner torque control loop. Therefore, this intention feedback control acts 

effectively as the human force amplifier, assisting the operator of the exoskeleton 

performing arbitrary motions.  

C. Robust Hybrid Control and Knee Orthosis 

It has not been proven whether users are comfortable when wearing the 

exoskeleton to perform the tasks. Some articles have argued that the assist-as-needed 

method is more suitable for human use [71]. However, the authors do not consider 

how the exoskeleton system influences the user’s limb dynamics when the EMG 

feedback is turned off. Although the EMG biofeedback control can be used to assist 

humans to perform any task, the muscles become weaker under this control law, 

because muscles degenerate without being used. One solution is to give a specific 

task-oriented command trajectory, but this requires a great deal of data for various 

kinds of tasks.  

In this paper, a robust hybrid control scheme switching between the intention 

feedback control and the zero-impedance control is proposed, in which the intention 
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feedback control uses the estimations by EMG signals to amplify the human forces, 

and the zero-impedance compensates the impedance between the exoskeleton and the 

operator. The hybrid scheme is inspired by [71], and improves the deficiency by 

compensating the mechanical impedance when the EMG estimation is off. The 

switching is necessary, because of the uncertainty of EMG signal when the 

measurement is low. Compared with [71], the zero-impedance control compensates 

the mechanical impedance, and therefore with the new hybrid control, the user can 

move as freely as possible in minor movements and be supported in major movements. 

In summary, the proposed hybrid control creates an insensitive zone such that the 

exoskeleton can provide assistance robustly regardless of the sensory uncertainties in 

the intention estimation. In addition, a new human-exoskeleton model is proposed to 

reveal more insights of the interaction, and the hybrid control is proved to be robustly 

stable considering the ability of the motor feedback of human. 

Overcoming aforementioned problems, the proposed hybrid control that switches 

between the intention feedback control and the zero-impedance control with the knee 

orthosis composed of the BTSA provides a new paradigm of rehabilitation training 

and walking assistance. In Section 5.2.2, the design concept and the dynamic 

properties of the proposed system are addressed. The main contribution, the robust 

hybrid control scheme, is introduced and the stability is proved in Section 5.2.3. The 

simulations and experimental performance of the BTSA with the hybrid control are 

presented and discussed in Section 5.2.4 and Section 5.2.5, respectively. Finally, a 

short conclusion is drawn in Section 5.2.6. 

5.2.2 Design of Backdrivable Torsion Spring Actuator 

A new BTSA system is designed with a torsion spring, bevel gears, and a 
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DC-mircomotor. The soft stiffness of the BTSA provides mechanically intrinsic safety 

and can measure the interaction torque between the operator and the exoskeleton. The 

detailed working principle and design are addressed in this section.  

To design the torsion spring, it is crucial to consider the torque range and the 

deformable range of the knee during walking. In order to avoid the plastic 

deformation of spring, the spring stress must be lower than the yield stress. 

Meanwhile, the deflection angle should be sufficient large to provide enough 

sensitivity so that the torsion spring can be used as a torque sensor. In order to design 

a compliant mechanism with large torque output and high sensitivity within a limited 

space, the torsion spring must be small in size yet can deflect largely. To fulfill such 

requirements, we list the specification as shown in Table 5-I: the desired maximum 

torque 50Nm, the yield stress 15000 MPa, and the maximum deflection  21.89 

degrees. The deflection, the stress, and the spring constant are calculated by formulas 

below.  
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where is the deflection [deg.],  is the spring stress [MPa], M is the torque [ N m ] 

and E  is the elastic modulus [MPa]. 

We fabricate the torsion spring with S45500 with the geometry parameters listed 

in Table II. Within the torque range (50Nm), the designed spring stress is strictly 

under the yield stress, and the deflection is large enough to provide enough sensitivity. 

Therefore, the designed spring satisfies the need of the BTSA. Fig. 5-1 shows the 
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 TABLE 5-II SPECIFICATION OF THE DESIGNED TORSION SPRING 

Specification Values 

Desired maximum deflection  21.89 deg. 

Desired maximum torque  50 Nm 

Yield stress of the spring material  1500 MPa 

Mean diameter of spring (D) 26.3 mm 

Wire thickness (t) 8 mm 

Wire width (b) 4 mm 

Number of turns (n) 3 

Desired spring constant (k) 2.284 Nm/deg. 

Measured spring constant (k) 1.94 Nm/deg. 

 

exploded view of the BTSA, where the actuator, the bevel gears, the output bevel gear, 

and the torsion spring are in serial. Two potentiometers are installed. One 

potentiometer inside the spring measures the displacement of the torsion spring so that 

the interaction force can be estimated by the Hooke’s law, and the other potentiometer 

measures the knee angle. Finally, the knee orthosis driven by the BTSA is shown in 

Fig. 5-2 and the specification is summarized in Table 5-III. 
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Fig. 5-1. Exploded view of the proposed backdrivable torsion spring actuator 

 

  

Fig. 5-2. The knee orthosis and the backdrivable torsion spring actuator 

 

TABLE 5-III Specification OF THE BTSA 

Weight (including the motor) 835 g 

Length*Width*Height 62×50×187 mm3 

Reduction Ratio of Bevel Gear 2:1 

Reduction Ratio of Motor Gear Head 43:1 

Stall Torque 87.5 Nm 

No-Load Speed 404 deg/sec 

*The input motor used in this design is a Faulhaber DC-micromotor 3863H024CR with gear head 38/2 S (43:1). 
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5.2.3 Robust Hybrid Control 

The BTSA approach is a general concept that cascades a torsion spring serial 

with the mechanical system. In our case, the system is the human-exoskeleton system, 

and we adopt the human-robot interaction model [47] to investigate system properties 

and the stability during human-robot interaction. This section is organized as follows. 

First, the nominal multi-input-multi-output linear model of the human-exoskeleton 

system is presented in Section A. In the following, Section B and Section C show the 

zero-impedance control and the EMG-control, respectively. By combining the human 

intention feedbacks and the compliant zero-impedance control, the hybrid scheme is 

proposed in Section D to provide robust assistance. Finally, we analyze and prove the 

robust stability of the human-exoskeleton system in Section E. 

A. A Simple Human-Robot Interaction Model 

The human-robot interaction model is shown in Fig. 5-3, and the governing 

equations of the system with gravity compensation is given as  
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and the transfer functions are 
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, (5.5) 

where :e o ex x x   , :h o hx x x   , and ijP , , 1,...,3i j  , are the corresponding 

Hurwitz transfer functions in Fig. 3. In the model, the force is used as a generalized 

term and therefore the actuator can be either linear or rotary. By linearizing the Hill’s 
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muscle model [42], the linear system in (5.4) can be derived. Therefore, we can model 

the dynamics with the nominal plant (5.5) and analyze the stability by introducing the 

set of uncertainties. More macroscopically, the human-exoskeleton system can be 

described by  

 33( )o E H Dx P      , (5.6) 

Thigh

Shank

Human Muscle

Actuators BTSA

E

H

DM

eB

hB

e

h

ex

hx
3x

em

hm

ek

hk
eb

hb

 

Fig. 5-3. Human-robot interaction model. 

M the mass the shank with exoskeleton,
em the mass of actuator,

hm the mass of muscle,
eB the 

damper of motor,
eb the damper of BTSA,

ek the spring of BTSA,
hB the effective serial 

damper of the muscles,
hb the effective parallel damper of the muscles,

hk the effective parallel 

spring of the muscles,
e  the motor force,

h  the muscle force,
H the external force,

E  the 

force exerted on the leg from the BSTA,
H the force exerted on the leg from the muscles,

ex  

the displacement of the motor,
hx  the displacement of the muscles,

ox the displacement of the 

shank 
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Fig. 5-4. Block diagram of zero impedance control 
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Fig. 5-5. Block diagram of intention feedback control  

by neglecting the internal models, where E is the assistive force from the exoskeleton 

and H is the muscle force as in Fig. 5-3. In this setting, H  is the linearized nominal 

plant of the nonlinear robot dynamics. By assuming proper inner force control 

feedbacks of both the actuator and the human operator, the internal models are stable, 

and we shall assume them as the ideal lowpass filters with limited bandwidth in the 

following. Therefore, they can be neglected as long as the system operates in the 

bandwidth within the human capability.  

B. Zero-Impedance Control 

The zero-impedance control compensates the impedance of the BTSA such that  

 0E  . (5.7) 

Neglecting the damping eb , E can be estimated as ˆ
E by measuring of the 

deflection of the rotary spring 1x . Feeding back this estimation, the zero-impedance 

control can be achieved, resulting to the compliant mechanism as in Fig. 5-4. In this 
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control mode, the operator should feel no resistance due to the actuator but only the 

weights and the inertias of the exoskeleton.  

C. Intention Feedback Control 

To assist arbitrary motions, the intention feedback control is a force control 

scheme that feedbacks the human intention, i.e. the human applying torque H into the 

system, so that the exoskeleton can control the inputs from the human operator to 

track some predefined references. Here, the human intention H applied by the muscles 

on the shank and the exoskeleton is estimated by using the EMG signals. Assuming 

the human applying force H is linear in terms of the instantaneous energy of the EMG 

signal, the model can be calibrated experimentally by the ordinary regression to 

provide the estimation ˆ
H . We choose the EMG feedback for the simplicity, since it is 

almost modeless. We note that other models also fit in our framework. For examples, 

a nonlinear muscle-model-based method [60] can be used . However, such model 

Zero Impedance 
Control

0ref 

Intention Feedback 
Control

,
ˆ( )ref p H H refK   

ref Torque 
Control

Human-Robot 
Interaction Model

E

ˆ
E

ˆ
H

,
ˆ

H H ref 

,
ˆ

H H ref 

0

Expected Effect
 without the assistive control

 with the assistive control

H

H





,H ref

,H ref

L

  

Fig. 5-6. Block diagram of hybrid control 
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sometimes leads to over-fitting and is too complicated to model the multi-joint system. 

In addition to the biofeedback, the inverse dynamics model, or the fusion model can 

also be used to estimate the human intention H  [16].   

The objective of the intention feedback control is to make H track some 

predefined trajectories. Here, the trajectory is defined as a constant value ,H ref . The 

block diagram is shown in Fig. 5-5, in which the seemingly positive feedback of the 

estimation ˆ
H  is actually a negative feedback, since there is actually a latent negative 

feedback of the human motor control as shown in Fig. 5-8 in the next section. 

Therefore, the EMG biofeedback control in Fig. 5-5 is effective a proportional force 

controller with the gain pK . If ,H ref is set zero, which will be used in following 

experiments of pure intention feedback control, the intention feedback control 

provides a constant fictitious gain as in [64].  

D. Hybrid Control with Robust Assistance 

The main objective of the hybrid scheme is to provide robust assistances. Since 

estimation of human applying torque is contaminated with noises and estimation 

errors, the pure intention feedback control may deteriorate the system – the expected 

assistance may become the resistance. To robustly provide assistance during the 

operation, the hybrid scheme is proposed by introducing an insensitive zone. Based on 

the threshold 0thre  of the estimated human applying torque, the hybrid scheme 

switches between the zero-impedance control and the intention feedback control, i.e.  

 
ˆintention feedback control,

zero-impedance control,

H thre

otherwise

  



 (5.8) 
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ref
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Fig. 5-7. The mapping from ˆ
H to ref . 

33(1 )P  ,H f
3xG



-
H+ H

L

 

Fig. 5-8. The human-exoskeleton model with the hybrid control 

If ˆ
h is greater than or equal to the threshold thre , it is switched to the 

EMG-biofeedback control mode. Conversely, if ˆ
h is less than the threshold, it is 

switched to the zero-impedance control mode. With this hybrid scheme, we can 

expected that ĥ thre  in the ideal case, which is shown in Fig. 5-6. Also, we note 

that the switching law (5.8) is actually a continuous map from ˆ
h to ref if we 

set ,H ref thre   in the intention feedback control, as shown in Fig. 5-7, which will be 

used in the following hybrid scheme. 

The hybrid control scheme is motivated by the fact that the force H intended by 
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the operator is difficult to be estimated by ˆ
H especially when H  is small owing to 

the noises and the modeling errors. The hybrid control resolves this issue by the 

switching control scheme, so the exoskeleton can assist the operator robustly. To show 

this, we rearrange the block diagram of the system in Fig. 5-8. The human motor 

control is modeled as a feedforward force ,H f , which is based on the experiences, 

and a (possibly) nonlinear and time-varying feedback , of which the input is the 

sensory neurons and the output is the muscle force of the feedback compensation. 

Together with the assistive torque E , the muscle force H  is first amplified by the 

effective gain G and then the filtered by the stable lowpass linear time-invariant 

filter L . The resultant H applies on the single-input-single-output linear 

system 33(1 )P  , in which is a relation containing the modeling uncertainties. We 

choose the linear nominal plant both for the simplicity of the analysis and, most 

importantly, for the fact that that human tend to linearize the system in control. 

Therefore, 33P is actually the linearized plant apprehended by the human operator.  

By neglecting the exogenous input D and assuming perfect force tracking such 

that E ref  , the hybrid control can be treated as an effective gain amplifying the 

human applying force, 

 ( ) : 1 /ref HG t    . (5.9)  

Moreover, assuming ĥ h  


  for some 0   , we have 

 1 ( ) 1 pG t K    (5.10) 

uniformly over [0, )t  by choosing thre   , since 

 
,
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lim lim 1 1
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p p
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G K K
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Compared to [64], ( )G t is actually time varying and the hybrid scheme eliminates the 

noise and the uncertainties in the human intention estimation such that the effective 

gain can be guaranteed to ( ) 1G t  robustly. Finally, we add another lowpass filter in 

Fig. 5-6, so that ( )G t and the disturbances due the estimation errors can vary slowly 

for the comfort of the operator and for the stability, which is proved in the next 

section.  

As a consequence, the operator can move as freely as possible when the applied 

force is small. This scenario occurs when the user adjusts his posture rather than 

actually intends to move, in which the pure intention feedback control may result in 

instability and vibrations, whereas the hybrid control scheme gains the overall 

smoothness and the stability by switching to the zero-impedance control. On the other 

hand, for the large motions and the loadings, the hybrid control behaves like the 

traditional assistive control with the fictitious gain.  

E. Stability 

The stability of the human-exoskeleton system is strictly required, because it 

relates to the safety of the operator. The exoskeleton system should magnify the 

human force and meanwhile maintain stability of the overall system. Although the 

analysis of the stability of the system involving human is difficult in general, we can 

at least qualitatively investigate the stability of the proposed hybrid control method.  

Let H  be the bandwidth of the human motion, and define the sector of 

memoryless function as follows.  
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Definition 5.1 

A memoryless function :[0, ) p ph    is said to belong to the 

sector 1 2[ , ]K K with 2 1 0TK K K K    , if 

 1 2[ ( , ) ] [ ( , ) ] 0Th t u K u h t u K u   . (5.12) 

We can show the stability of the hybrid control by making the following assumptions.  

Assumption 5.2 

1. If H is within H , the feedback of human ( , )t u is a (time-varying) memoryless 

nonlinear function belonging to the sector [ , ]  such that 0   . 

2. The estimated error is uniformly bounded, i.e. ˆ
H H  


   for all [0, )t   , 

and thre  .  

3. The inner torque is robustly stable and tracks the reference perfectly within h . 

4. The uncertainty model of the nominal plant 33P  is a high-pass multiplicative 

uncertainty   with bandwidth over h . 

The first assumption is critical for our modeling. It states that the feedback of the 

human motor control is input strictly passive as long as the system operates within the 

controllable bandwidth H that the human has learned and accustomed to. Outside H , 

we cannot expect strictly that ( , )t u is passive. For examples,  may be negative if 

H changes abruptly, since the response time of the sensory motor cortexes is limited. 

The second assumption is valid for many human intention estimation models, which 

is required to provide robust assistance; the third assumption is standard in the 

exoskeleton modeling. Finally, the last assumption states the expectation of the 

operator to system. Since human tend to learn and adapt to the system quickly 

especially for the low frequency profiles by the linearization, the uncertainty is 
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
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Fig. 5-9. The closed-loop system of the human-exoskeleton system 

modeled as a family of high-pass uncertainties.  

Under these assumptions, we can prove the stability of the closed loop system of 

the human-exoskeleton system by recalling the following lemma, known as the circle 

criterion.  

Definition 5.3 

Consider the system with linear plant with transfer function ( )H s and negative 

feedback  belonging to the sector [ , ]a b with 0b a  . The system is said to be 

absolutely stable if the origin is globally uniformly asymptotically stable for any 

nonlinearity in the given sector.  

Lemma 5.4 [53] 

Following the conditions of the system in Definition 5.3, the system is absolutely 

stable if 0 a b  and the Nyquist plot of ( )H s does not enter the disk ( , )D a b , whose 

diameter passes though the line segment joined by 1 0a j  and 1 0b j  , and 

encircles it m times in the counterclockwise direction, where m is the number of poles 

of ( )H s with positive real parts. 
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Using this lemma, we can easily prove the stability of the human-exoskeleton system.  

Theorem 5.5 

The closed-loop system in Fig. 5-8 is robustly absolutely stable, if L is within H and 

the gain pK is bounded by a constant determined by the human operator.  

Proof: 

Let the lowpass filter L  in Fig. 5-8 with cutoff frequency H . Then we have H is 

within H  so that the Assumption 1 and 3 is valid.  Therefore, the robust stability 

can be proved by showing the system is absolutely stable over all possible 

uncertainties with Lemma. To use Lemma, we first rearrange the block diagram in Fig. 

5-8 into Fig. 5-9. The time varying gain ( )G t and the negative feedback can commute 

due to that ( ) [ , ]G t a b with 1 pb K  and 1 0a   due to the insensitive zone 

introduced in (5.8). Combining ( )G t and ( , )t u , we define a new time-varying 

nonlinear memoryless function 

 ( , ) : ( ) ( , )t u G t t u  ,  (5.13) 

whereu is sensory feedback of the neurons, and it can be shown that  

 ( , ) , (1 )pt u K       (5.14)  

uniformly, since , , (1 ) 0pK    . Define  

 33: ( )H L P  .   (5.15) 

The system is robustly absolute stable if the Nyquist plot of H does not pass the disk 

( , (1 ))pD K   defined in Lemma. A sufficient condition would be  

 33

1
( )

(1 )p

L P
K

 


. (5.16) 

Therefore, the proportional gain pK for the assistance should be bounded by 



CHAPTER 5 BAYESIAN EXOSKELETON SYSTEM 

  160 

 
33

1
1

( )
pK

L P


 


.  (5.17) 

  Q.E.D. 

Since we do not know and  in general, Theorem qualitatively analyzes the 

stability criterion of the assistive control including the human feedback. The result is 

intuitive that there should be sufficient gain margin to provide the robust stability. 

Also, interesting results can be shown by (5.16). First, the lowpass filter L eliminates 

the uncertainties from , so the operator actually perceives a similar system that he is 

already familiar with. Therefore, assuming there is sufficient gain margin without the 

assistant, i.e. 1G  , the bound (5.17) is not trivial, i.e. there exists 0pK  that does not 

unstabilize the system. Secondly, although we assume and  to be constant in this 

analysis to prove the uniformity, one can model further that   , in which  is a 

compact set, and  is piecewise constant, which varies much slower compared to H . 

Because the strong learning ability of human, the bound  may decrease once he 

observes and adapt to the system with the gain ( )G t , just as human learns to limit the 

maximum force output if he is in a low gravity environment. Therefore, the bound 

(5.17) can be tighter by considering this ability. Finally, we note that the proof 

actually relies on that ( )G t is passive. Otherwise, the stability cannot be proved by 

limiting the assistance gain [53]. 

5.2.4 Simulations 

The simulation environment is the GUI-based simulation interface, 

SimMechanics in MATLAB/Simulink. We use the simplified human-exoskeleton 

model in Fig. 5-3 to investigate the effect of the proposed control schemes. In the 

simulations, we assume the muscle is perfectly controlled such that the muscle 
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displacement hx follows some predefined trajectories. To see the effects of the control 

schemes, the responses of ex and hx are investigated. 

A. Simulation Results of Zero-Impedance Control 

The result for the zero-impedance control is shown in Fig. 5-10. The input 

command, the muscle displacement hx , is a sinusoidal trajectory. Because of the 

zero-impedance control, the displacement of the torsion spring ex , the red solid line, 

in the simulation is approximately zero. This also indicates that the subject feels no 

resistance from the mechanism under the zero-impedance control. 

B. Simulation Results of the Intention Feedback Control 

The simulation results of the intention feedback control are shown in Fig. 5-11. 

Here, we set , 0H ref  , and the input command, the muscle displacement hx , is a 

sinusoidal trajectory. With the intention feedback control, the displacement of the 

muscle spring hx in simulation is approximated to zero. Therefore, the subject can 

move easily with little muscle effort. However, the results may be compromised in 

practice due to the noise of EMG signals. In this simulation model, the relationship 

between the EMG signal and the torque is modeled as a linear model, and, without 

loss of generality, the proportional gain pK  is set as unity for explaining the control 

concept, since we assume perfect control of the muscle in the simulations 

and ˆ
H H  .  

In the experiments, the EMG signals are filtered and normalized, and the linear 

EMG model learned by the ordinary regression is used. It deviates from the 

simulation setting and therefore the error in the experiments of the pure intention 

feedback control is much larger. 
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Fig. 5-10 The simulation result of the zero-impedance control 
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Fig. 5-11. The simulation result of the intention feedback control 
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Fig. 5-12. The simulation result of the hybrid control 

C. Simulation Results of the Hybrid Control Scheme 

The hybrid control provides assisting force only for large enough movements. 

That is, the objective is to control the human applying force H to be the user-defined 

threshold ,H ref when it is over the threshold, and to control the exoskeleton force E to 
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be zero otherwise. The simulation of the hybrid control is shown in Fig. 5-12. 

In this simulation, ,H ref is set such that hx should below 0.05 mm in pure 

intention feedback control. In the Fig. 5-12., the number 1.5 and -1.5 denote the 

intention feedback control and the zero-impedance control, respectively. It is clear that 

the displacement of the muscle spring hx is under 0.15 mm and it is larger than the 

displacement in the intention feedback control yet smaller than that in the 

zero-impedance control. 

5.2.5 Experiments 

In the experiments, the subject is a healthy 23-year-old male. The subject sat on a 

chair in relaxation, and was asked to extend the knee joint and then return it to the 

original position. The knee angle is defined as zero degrees when the thigh and shank 

are perpendicular, and it is defined as 90 degrees as the knee fully extends.  

In this work, a knee exoskeleton system was designed based on the proposed 

BTSA, as shown in Fig. 5-2. In order to satisfy the individual needs of the knee 

assistive exercise, a level arm with a shank holder was designed to move with the 

subject’s shank, and another thigh holder was designed to fix the BTSA on user’s leg. 

The results of the three control methods are discussed below. 

The experimental results of the zero-impedance control are shown in Fig. 5-13. 

The first two figures are the extensor EMG signal and flexor EMG signal, respectively. 

In the preprocessing, the raw EMG signal is first rectified and then the filtered by the 

Kalman filter [4], which is used as a lowpass filter. The filter makes the feedback 

EMG signal smoother and the user may feel more comfortable in practice. The third 

figure is the estimated human intention ˆ
H  . The calibration of the linear EMG model 

is carried through a slow motion experiment, in which the position of the output 
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link ox is fixed as the user extends and flexes the knee joint slowly, and the feedback 

information are the torsion spring torque E  and the filtered EMG signals. The bottom 

figure shows the knee joint angle ox and the exoskeleton force E . The exoskeleton 

force E is nearly zero under the zero-impedance control as expected. The result is that 

the subject still needs to move the lower limb by himself, but the mechanism 

resistance is lowered. Therefore, the EMG signals of the extensor and the flexor are 

larger than that of the other two controls. 

The results for the intention feedback control with , 0H ref  are shown in Fig. 

5-14. However, the estimated human intention ˆ
H is not zero even with the assistance. 

The main reason is that the EMG noise is large and influences the performance greatly. 

Compared to the zero-impedance control in Fig. 5-10, the assistance is still valid.  

Fig. 5-15shows the results of the hybrid control, where the 

threshold ,thre H ref  is set as 1.3 in this experiment. Although the controller does not 

track perfectly, the hybrid control helps the user exercise with smaller torque than that 

in the zero-impedance control, and provides assistance forces stably and robustly. 

Comparing the exoskeleton torques E in the intention feedback control and the hybrid 

control, it shows that the hybrid control assists the user as needed, but the intention 

feedback control assists whenever the muscle contracts. Compared with the 

zero-impedance control, E is zero in the hybrid control only when muscle 

contraction is small. It is because when the estimated human torque is larger than the 

threshold, the EMG feedback control takes over.  

Comparing all the three control approaches, it shows that the hybrid control 

outperforms other two control methods. The main reason is that for small EMG 
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signals, the simple linear model fits poorly, and that the zero-impedance control does 

not supports only the weight of the exoskeleton, not the body of the user. The hybrid 

control, on the other hand, is more suitable for human, because the exoskeleton can 

provide the assistance robustly and overcomes the mechanical impedance due to the 

deadzone as in [71]. Because the noise level of the EMG signal is larger than other 

torque sensors, a wide dead zone is usually necessary for the stability. However, in the 

dead zone, the user wastes energies to overcome the resistance from the mechanism. 

In contrast, the zero-impedance control in the hybrid scheme can solve this problem 

easily, and therefore the interaction is more comfortable than using either of the 

controllers alone, leading to the effective gain ( ) 1G t   consistently. However, the 

hybrid control may not be suitable for the severe patients with feeble muscle forces 

and abnormal muscle activations. In such situations, there should be another 

mechanism to detect of the spasticity and the co-contraction, where the controller 

stops the movement and fixes at the current position in order to protect the muscle 

from danger.  
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 Fig. 5-13. Experimental results of the zero-impedance control 
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Fig. 5-14. Experimental results of the intention feedback control 
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 Fig. 5-15.Experimental results of the hybrid control 
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5.2.6 Discussions 

In Section 5.2, a robust hybrid control scheme with the new BTSA, was 

proposed as a new way to assist humans in walking and rehabilitation. By introducing 

an insensitive zone, the hybrid scheme is proved to provide robust system and be 

robustly stable.  

Considering the mechanism of human muscles, the proposed control can deal 

with possible muscle degenerations while successfully assisting human motion. 

Namely, this mechanism not only considers the assistance method when performing 

large movements or carrying the loads, but also considers control methods when 

assistance is not needed. The proposed system combines intrinsic safety with 

performance, and provides flexibility for the users with different movement abilities 

by setting different thresholds. In the future, more experiments should be conducted. 

The optimization of BTSA stiffness is also an important issue for performance and 

safety tradeoff. In summary, the proposed BTSA approach with the hybrid control 

helps the patients with weak muscle ability, the elderly, and even those with normal 

abilities. 

5.3 A Simple Self-Learning Scheme 

5.3.1 Introduction 

Human intention estimation is important for assistive lower limb exoskeleton, 

and the task is realized mostly by the dynamics model or the EMG model. Although 

the dynamics model offers better estimation, it fails when unmodeled disturbances 

come into the system, such as the ground reaction force. On the contrary, the EMG 

model is non-stationary, and therefore the offline calibrated EMG model is not 
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satisfactory for long-time operation.  

Considering the unmodeled disturbance in the dynamics model, the adaptive 

control in Knee Orthosis [80] tracks the predefined trajectory and adjusted the 

dynamics parameters online. In [68], they identified the parameters of the model for 

the lower limb offline, and controlled the knee orthosis by the high-order sliding 

model controller to overcome the uncertainty of the online parameter estimation. 

Because the robots in [68, 80] are used in rehabilitation, the position trajectories are 

predefined by the doctor or the user. No online feedback of the operator’s intention is 

presented, yet it is crucial to estimate the human intention and to control the robot 

accordingly for assistive exoskeletons.  

Combing the benefits of both the dynamics model and the EMG model, we 

propose the self-learning scheme for human walking assistance with the sliding mode 

admittance control. During the swing phase, the inverse dynamics model estimates the 

human intended torque and teaches the EMG model with the estimation. The taught 

EMG model is then used in the consecutive stance phase to overcome the disturbance 

uncertainty in the dynamics model, such as the ground reaction force. The 

self-learning scheme updates the parameters of the EMG model so that it can adapt to 

the time variant nature. In summary, the estimator of the human intended torque 

switches between the dynamics model and the EMG model in the swing phase and in 

the stance phase, respectively, so the most accurate estimate of the two models can 

always be used for the assisting. With the estimation, we treat the human intention as 

the forced response of the estimated human intended torque exerting on a 

second-order linear system - the admittance interface. Finally, the sliding mode 

controller is used to overcome the uncertainties of modeling errors and disturbances. 
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To the best of our knowledge, no other papers have investigated the adaptive 

estimation of the EMG model via self-learning. Our self-learning exoskeleton uses the 

dynamics model to teach EMG model so that the EMG model can cover for the 

dynamics model when needed. The hybrid scheme overcomes the insufficiency of 

using only a single model alone. Compared to [44], the dynamics model, identified 

offline, serves as the supervisor and teaches the EMG model online in this paper, 

whereas Cheng et al. [44] use the Bayesian committee machines to combine the two 

models, which are both trained offline. Finally, the control scheme is justified by the 

knee orthosis with the backdrivable spring torsion actuator in Section 5.3.4, and the 

experimental results are prominent.  

This section is organized as follows. Section 5.3.2 gives the knee orthosis system, 

and the modeling. In Section 5.3.3, we described the self-learning scheme and the 

sliding mode admittance control. In Section 5.3.4, we verify the performance of the 

proposed scheme in simulations and experiments, and the results are discussed.  

Finally, we give a short summary in Section 5.3.5. 

5.3.2 Knee Orthosis System and Modeling 

A. Exoskeleton System 

The exoskeleton system comprises the knee orthosis system and the footswitch 

as mentioned in Section 5.2.2. The knee orthosis system is driven by a backdrivable 

spring torsion actuator (BTSA) and, the soft stiffness of the BTSA provides 

mechanically intrinsic safety and measures the torque between the human and the 

actuator. For details, please refer to [46], Section 5.2 and therein. 

B. The Dynamics Model and the Biosignal Model 

The dynamics model of the human-knee orthosis system is given by: 
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 ( ) sin( ) E h gMq Bq Asign q G q         , (5.18) 

where q is the angular position, M is the inertia, B is the viscous friction, A is the static 

friction,G is the gravity torque, E is the external torque of the exoskeleton, h is the 

external torque of the human muscle, and g is the external torque of the ground 

reaction force, which is assumed to be zero during the swing phase. The parameters of 

the dynamics model are calibrated offline in the experiments. 

As in Section 5.2.3.C we use the linear combination of the filtered EMG signals, 

the flexor fE and the extensor eE , as the EMG model. That is, 

 ĥ e e f f biasa E a E a    , (5.19) 

where ea , fa , biasa are the unknown parameters to be identified. Although more 

sophisticated EMG models are possible, in our experience, the linear model suffices 

to predict the human intended torque. 

C. Offline System Identification 

In this section, we describe how the unknown coefficients in (5.18) and (5.19) 

are identified offline. Unlike the EMG model, the dynamics model identified offline 

can predict with high accuracy as long as no unmodeled dynamics is neglectable, 

since it is time invariant. The EMG model, however, can only approximate locally due 

to the unmodeled uncertainties and the slow variation of the parameters over time. 

Therefore, the identification of the dynamics model is carried offline, whereas the 

EMG model learns online from the dynamics model in the swing phase with the initial 

parameters identified offline. 

The task for the identification of the dynamics model is shown in Fig. 5-16 (a). 
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During this task, the user needs to relax totally such that h can be approximated to be 

zero. The system model becomes 

 ( ) sin( )E Mq Bq Asign q G q      (5.20) 

The stimulus signals are the sinusoidal position trajectories of q with different 

frequencies. The filtered angular position q , the angular velocity q , the angular 

acceleration q , and the torque E are collected to identify the unknowns by the 

ordinary linear regression. 

The task for the EMG model identification is shown in Fig. 5-17 (b). During this 

task, the user tries to exercise his leg, while the knee angle is fixed to be a constant 

position by the position controller. The system model becomes 

 _0 _0 _0E h e e f f biasa E a E a      , (5.21) 

and the identified parameters 0 _0 _0 _0: [ ,  , ]e f biasa a aθ are used as the initial condition 

for the online learning. 

motor

Knee 

q

0°

motor

Knee 

EMG  

 (a) dynamics model identification   (b) EMG model identification 

Fig. 5-16. Offline dynamics and EMG model identification 
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5.3.3 Self-learning Scheme and Sliding Mode Admittance Control 

The general idea of the exoskeleton control is to exert the force desired by the 

operator. We believe that human reduces the muscle force when feeling the positive 

feedback. Therefore, the exoskeleton can assist the operator and reduces the payloads 

by providing the desired force. 

We classify the walking phases into the swing phase and the stance phase, and 

the controller switches in between according to the footswitch. In the swing phase, the 

dynamics model identified offline is used to estimate the human intended torque, and 

to teach the EMG model; in the stance phase, the EMG model, becomes the estimator.  

In both phases, the admittance interface transfers the estimated torque of either the 

dynamics model or the EMG model to the position command, and effectively filters 
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Fig. 5-17. The self-learning control scheme of the exoskeleton system 
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the discontinuities of the switching. Therefore, the reference position trajectory for the 

inner position controller is continuously differentiable, and is tracked by the sliding 

mode controller in the inner position control loop. In summary, the exoskeleton 

system consists of two control loops. The upper control loop estimates the human 

intention and learns online; the lower control loop tracks the reference trajectory 

robustly by the sliding mode controller, as shown in Fig. 5-17. 

A. Self-Learning Scheme 

Self-learning, also called self-training, is a technique for semi-supervised 

learning. Semi-supervised learning [113] is a methodology of machine learning and 

used in the scenario where accessing the labeled data is hard or expensive. The 

semi-supervised learning machine takes into account both the labeled and the 

unlabeled data to improve the performance. In the supervised step, the machine is first 

trained with the small amount of labeled data, and then it is used to predict the 

unlabeled data. During the unsupervised process, the machine labels parts of the 

confident unlabeled data and retrains. We found the mechanism very suitable for the 

exoskeleton. In our case, the exoskeleton learns offline with the data collected from 

the strictly controlled experiments, which is time consuming if large amount of data 

are in need. In the unsupervised step, the machine labels the unlabeled data by the 

dynamics model, and the newly labeled data are used to teach the EMG model. In this 

design, the exoskeleton system consists of a weak learner, the EMG model, and a 

strong learner, the dynamics model. In spite of the ability, the strong learner can only 

be used in the restricted domain, and therefore the strong learner has to teach the weak 

learner to compensate the deficits. That is, in the swing phase, the dynamics model 

teaches the EMG model, since it is accurate in absence of external disturbances. And 
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then the EMG model takes over when the dynamics model fails. We detail the process 

as follows. 

In the swing phase, using (5.18) with the parameters identified offline 

and E measured by the BTSA, the dynamics model can estimate the human intended 

torque. The estimation is used to teach the EMG model by the following adaptive law 

with the initial parameters identified offline in (5.21). From (5.18) and (5.19), 

 
( ) sin( ) E

e e f f bias

Mq Bq Asign q G q

a E a E a

   

  
, (5.22) 

so the human intended torque can measured by the dynamics model with 

 *[ ( ) sin( ) ]
:

( )

TEMq Bq Asign q G q
z

s

   
 


θ Φ , (5.23) 

where * * * *,  ,
T

T

e f biasa a a   θ is the optimal parameter with respect the 2 -norm error,  

 1 1 1( ) ,  ( ) ,  ( )
T

e fs E s E s       Φ  

is the regressor vector, and with the abuse of notation, ( )s denotes Hurwitz system, 

which is chosen as the Butterworth lowpass filter in the experiments, and s is the 

variable of Laplace transform. Let the empirical estimation be 

 ˆˆ Tz  θ Φ , (5.24) 

where ˆ ˆ ˆ ˆ,  ,  
T

e f biasa a a   θ is estimated parameters. The error between the measurement 

and estimation is given as 

 
2 2

ˆ T

s s

z z

m m



 

θ Φ
, (5.25) 

where ˆ θ θ θ ,and sm is the normalization factor such that 2/ sm  Φ .Considering 

the cost function ( )J θ ,  
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the adaptive law is given by taking the negative gradient of ( )J θ , that is 

 0( ) ,  (0)J     θ θ Φ θ θ , (5.27) 
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where 0  is the learning rate. Let  
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be the Lyapunov function. The adaptive law is stable since 
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. (5.30) 

B. Sliding Mode Admittance Control 

The sliding mode admittance control consists of the admittance interface, the 

sliding mode controller, and the PD torque controller. The main advantages of sliding 

mode admittance control are that the admittance interface in fact acts as a low pass 

filter, so the tracking position trajectory is smoother than the estimated human 

intended torque, and that the sliding mode controller can handle the uncertainty of the 

modeling errors and the disturbance robustly. Compared to the methods [68, 80, 108, 

112] that compensates only impedance of the dynamics, the main difference here is 

that the human intended torque is also considered, and therefore the assistance is more 

direct and more precise.  

The admittance is used to model the relationship between the human intended 

force and the relative angular position,  

 ˆ( ) ( ) ( )h d h d h d hM q q B q q D q q        (5.31) 

where hM , hB , and hD  are user-specific dynamics parameters, dq is the desired 

trajectory of the output link, q is the current position, and ˆ
h is the estimated human 

intended torque. The desired trajectory is forced response of the second-order system, 
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so it is continuously differentiable. Note that, (5.31) is the compliance control in the 

impedance control literatures, so exoskeleton follows smoothly regardless of the 

discontinuities in the estimated human intended torque. 

With the desired trajectory from the admittance interface, the sliding mode 

controller uses the sliding surface to generate the torque command, which is tracked 

by the PD torque controller. 

The nominal model of the human-exoskeleton system can be modeled as  

 1ˆ ˆ
Eq f M      (5.32)  

 
1ˆ ˆˆ ˆ[ sin( ) ]
ˆ hf Bq G q

M
     (5.33) 

where ˆ
h  is the estimated human intended torque, M̂ , B̂ , Ĝ are the estimated 

parameters, D

 is contribution of all the modeling uncertainties and the 

disturbances and is bounded by some constant D  . Notice that we include the 

static friction term ( )Asign q in  so that the nominal plant (5.32) is bounded and 

continuous. In order to let the system track dq q , the sliding surface 0S  is defined 

as (5.34) 

 S q q   (5.34)  

 1ˆ
d E dS q q q f M q q           , (5.35)  

where dq q q  and 0  . Assuming ˆ ( )<dM f q q     , to achieve 0S  , we 

set 

 ˆ ( )E dM f q q     . (5.36)  

To satisfy the sliding condition under the uncertainty d , the torque reference is 

designed as (27). 
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 ,
ˆsat( / )E d E M S     , (5.37)  

which is the torque reference for the inner torque control loop, where 0  ,  

 
, if 1

sat( )
sgn( ), if 1

x x
x

x x

 
 


, 

sgn( ) { 1,0}   denotes the sign function, and 0  is the thickness of the boundary 

layer. Choose the Lyapunov function as  

 2

1

1
0

2
V S   (5.38)  

Set 0  , we can show that for / 1S    

 1

1
[ sgn( )] 0

2
V S S S S S         . (5.39)  

Therefore, { | / 1}S S   is positively invariant. Inside the boundary layer, take  

 2

2

1

2
V q  (5.40) 

and we have 

 2

2 ( ) (1 ) 0V q S q q         (5.41) 

for 1( )q S  , where 0 1  . The error q is ultimately bounded in the 

ball 1( )q S  .  

5.3.4 Experimental Results 

In the experiments, the subject is a healthy 32-year-old male, and he is asked to 

climb the stairs up and down with the BTSA knee orthosis. Before the task starts, the 

exoskeleton system is calibrated offline according to Section II. During the task, the 

self-learning exoskeleton estimates the human intended torque with the dynamics 

model and the EMG model in the swing phase and the stance phase, respectively. And 
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then the estimation is used for the sliding mode admittance controller. The EMG 

signals of the extensor and the flexor are shown in Fig. 5-18 (a) and Fig. 5-18 (b). All 

the EMG signals are rectified, filtered by the Kalman filter, and offset such that the 

EMG signal is zero when muscles are totally relaxed.  Fig. 5-18 (c) shows how the 

EMG model learns during the task with the initial parameters identified offline. In 

each swing phase, the EMG model is updated to adapt to current condition, and the 

result shows the parameters of the EMG model fluctuate with time. The bias term 

remains almost constant while the parameters of the flexor and the extensor vary 

slowly. This is because, to approximate the nonlinear model, the linear model is only 

valid locally, and the electric resistance between the electrodes and the operator 

changes with time due to sweats and slipping. Therefore, it is necessary to learn the 

EMG model online. 
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Fig. 5-18. (a) The EMG signal of the extensor. (b) The EMG signal of the flexor. 

 (c) The parameters of the EMG model. 
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Fig. 5-19(a) The self-learning estimator, the dynamics model, and the EMG model. (b) The actual angle and the 

desired angle generated from admittance interface. (c) The torque command of the sliding mode controller and exoskeleton 

torque.. 
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To compare the self-learning estimator and the single model approach, the 

estimations are shown in Fig. 5-19 (a). Combining the two models, the self-learning 

estimator switches between the two models according to the gait phase. In the swing 

phase, the EMG model tries to learn from the dynamics model, so it can encounter the 

uncertainties in the stance phase. We observe that the dynamics model overestimate 

the human intended torque in the stance phase, because it includes the torques from 

the disturbance and the exoskeleton. Indeed, when climbing, the hamstrings and the 

quadriceps exert the most in the swing phase and relax in the stance phase. This 

accounts for the estimation of the EMG model. Therefore, if we use the dynamics 

model in all the phases, the operator might be easily injured by the large forces 

provided by the exoskeleton in the stance phase, since it not only amplifies the human 

intended torque but also the torque due to exogenous disturbance. In this case, the 

operator has to exert large forces to compensate the disturbance, which is the major 

defects of most of the exoskeleton with only the dynamics model. Fig. 5-19 (b) shows 

the reference position from the admittance interface. Despite the discontinuity of the 

torque estimation in Fig. 5-19 (a), the desired position trajectory is continuously 

differentiable owing to the second-order system. Finally, the torque command of the 

sliding mode controller is shown in Fig. 5-19 (c). 

In the implementation, the sliding mode control plays an important figure. As 

discussed, the thickness of the boundary layer trades off the magnitude of the 

chattering and the tracking error. In contrast to the conventional sliding mode 

controller used in the tracking, we design our sliding mode controller with large 

boundary layer. Augmented on human, the success of an assistive controller relies 
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more on the smoothness, the phase, and the direction of the assisting torque rather 

than the actual value of the supporting force and the position tracking error. With such 

knowledge, the boundary layer should be large as long as it pushes the exoskeleton 

from large tracking errors; inside the boundary, the sliding mode control is actually a 

proportional feedback controller providing smooth assisting. 

In the experiments, we observe that the optimal parameters of the admittance 

interface vary with the configurations and the tasks. It is interesting that human expect 

different impedance with various poses. We suggest identifying the task-dependent 

impedance and using the gain scheduling technique to control the impedance system 

in the future works. Also, the learning rate affects the performance of the EMG model 

much. With small learning rate, the EMG model cannot learn fast enough within the 

short swing phase, while the learning becomes more unstable when large learning rate 

is used. Therefore, the learning rate trades off the performance and the stability. We 

hope this can be addressed by incorporating the adaptive learning rate and the Hessian 

matrix. Finally, we are considering whether the robust control approach is suitable in 

the application of exoskeleton. Most of the robust control uses finite bounds for the 

disturbances and the uncertainty, and forces the tracking error to stay within some 

bounded domain. On the other hand, the interaction with human does not emphasize 

the absolute error. Indeed, only the bandwidth and smoothness matters. In our 

experience, human seems to be able to adapt to the errors easily as long as the 

bandwidth is limited. 

5.3.5 Discussions 

In this section, we propose the self-learning scheme with the sliding mode 

admittance controller for the assistive exoskeleton system. The self-learning scheme 
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combines both the dynamics model and the EMG model to achieve better 

performance. In the swing phase, the dynamics model teaches the EMG model, so that 

the estimated human intended torque can tolerate the disturbance uncertainties in the 

stance phase. With the estimated human intended torque, the sliding mode admittance 

controller assists the operator robustly. Despite the discontinuity of the switching, the 

desired position trajectory is smooth owing to the admittance interface. In the 

experiments, we justify the control scheme with the BTSA knee orthosis. The results 

are satisfactory, and show the deficiency of single dynamics model. In the future 

works, we want to address the issue of pose-dependent desired impedance and design 

a more sophisticated self-learning scheme. 

5.4 Bayesian Exoskeleton System 

5.4.1 Introduction 

According to the previous sections, an exoskeleton system consists of two parts: 

intention estimation and assistive control. The estimation of the human intention 

provides the adaptivity of the system, so the operator can move freely wearing the 

exoskeleton; the assistive control should be robust against the estimation noise and the 

modeling uncertainties, so the safe interaction between human and robot can be 

guaranteed. This section proposes a novel Bayesian estimation human estimator for 

general exoskeleton. Together with the robust hybrid control scheme in Section 5.2, 

the Bayesian exoskeleton system can assist the operator freely and robustly. Taking 

the advantages of both the dynamics model and biosignal model, the proposed 

Bayesian human torque estimator based on the probabilistic graphical model. 

Combined with the assistive toque controller and the knee orthosis in [45], the 

resultant Bayesian exoskeleton system can adaptively perform the optimal sensory 
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fusion in the Bayesian sense to infer the human applying torque, which is used 

generate thereafter the reference trajectory in the robust assistive controller to provide 

assistance for the operator.  

The major contribution of this section is the construction of the graphical model 

of the human-exoskeleton system. We treat all the measurements, the biosignals and 

the states of the dynamics model, as random variables, and use the graphical model to 

model the dependency of the variables. With the graphical model, the a posteriori 

probability of the human applying torque can be easily inferred by optimally 

combining the information of the biosignal model and the dynamics model.  The 

major breakthrough in this model is the structure of the Naïve Bayesian assumption, 

so that the biosignal model and the dynamics model are independent once the true 

human intention is known, which corresponds to the common intuition. In the 

graphical model, three Gaussian process models are used to model the conditional 

probabilities: the biosignal model, the inverse dynamics model, and the exogenous 

disturbance model. Also, the experiments needed to learn the conditional probabilities 

are given in details. Remarkably, the proposed Bayesian framework is general in the 

sense it does not specify the particular form of the sensors. For example, the biosignal 

is not limited to the EMG signals; the exogenous disturbance can be as simple as the 

footswitch, which is the case in out experiments. The Bayesian human torque 

estimator can optimally use the sensory information to infer the human intention. 

In the experiments, we show the calibration of the Gaussian process models, and 

verify the proposed Bayesian exoskeleton system by demonstrating two types of 

motions: the swing motion, as the toy example, and the stair climbing task to resemble 

the possible scenarios in the real applications. Despite the adoption of the simple 
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footswitch, the experimental results of the proposed Bayesian exoskeleton system are 

prominent, and the performance index in the experiments is close to the theoretical 

bound. 

This section describes the modeling of the human-exoskeleton system in the 

Bayesian fashion, which is the major contribution of this chapter. By using the 

graphical model, the dependencies of each states of the system are clear as indicated 

by the factorization of the joint probability. The main purpose of the model is to infer 

the human intention. In this context, by human intention, we mean the intended 

applying torque of the operator on the human-exoskeleton system. The estimation of 

the intended applying torque is critical in the application of the exoskeleton system. 

Once the estimation is obtained, the assistive control is designed under the scheme of 

our previous work [45]. 

5.4.2 Bayesian Network and Gaussian Process Revisited 

In this section, we review the essence of the graphical model and the Gaussian 

process regression that will be used in the following section. Please refer to [5] for the 

details. 

A. Bayesian Network and Graphical Model 

The Bayesian network is known as the directed graphical model in which the 

links has particular directionality indicated by the arrows. Each node in the graph 

represents a random variable; the directed link indicates the factorization of joint 

probability, and each directed link represents the conditional probability. If there is a 

link that goes from node a to node b, we say a is the parent of b, and b is the child of a. 

Also, the joint probability of a and b can be factorized into 

 ( , ) ( | ) ( )p a b p b a p a . 
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We say a graph is fully-connected if there is a link between every pair of nodes. 

In particular, we consider here the directed acyclic graphs, which is the directed graph 

without cycle.  

One of the features of the directed graphical model is that the conditional 

independence can be easily inferred from the structure of the graph. This call 

d-separation, shorted for directed separation, and the definition is given as follows. 

Definition 5.6. 

Let A, B, and C be arbitrary non-intersecting sets of nodes in a directed acyclic graph. 

A path along the links from A to B is blocked if one of the following holds: 

(1)There exists a node in the set C that the arrows in the path pass either head-to-tail 

or tail-to-tail, or 

(2)the arrows in the path pass a node head-to-head, and neither the node itself, nor 

any of its descendants is in the set C.  

If all paths from A to B are blocked when observing C, then we say A is d-separated 

from B by C, and the graph implies that A and B are conditionally independent given 

C, i.e. ( , | ) ( | ) ( | )P A B C P A C P B C . 

In the graphical model, each arrow denotes the conditional probability and the 

structure of the graph indicates the factorization of the joint probability of all the 

random variables. Together with the d-separation property, the a posteriori probability 

of the node can be inferred by Bayes’ theorem. The inference is called maximum a 

posteriori estimation (MAP) in machine learning. Given the prior probabilities, the 

algorithm can return the model that maximizes the a posterior probability of the latent 

variables after observing the outcomes. 
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B. Gaussian Process Regression 

The Gaussian process regression (GPR) is one of the Bayesian machine learning 

methods, which can infer the probability distribution of the prediction directly by 

incorporating the prior knowledge. Let and be the input space and the output 

space with probability measure. Without loss of generality, we assume is in a vector 

space ranging over the real field and  . Assume there exists a linear 

map :f  , that is for all y Y  there is x and the zero-mean Gaussian 

random variable with probability distribution 1( | 0, )   such that ( )y f x   , 

where 0  is the precision. If is in a subset in Hilbert space , for all *f  , 

Riesz representation theorem shows that there exists one and only one w such 

that ( ) ,f x w x , where * is the dual space of . We note that the linear functional 

is not restrictive, since can be an arbitrary Hilbert space as long as the inner product 

can computed efficiently, e.g. kernel trick [86].   

Given M observations, we denote { | }i MX x i   and { | }i MY y i   . 

Assuming the observations are independent and identically distributed (i.i.d.) samples 

from the underlying distribution, the conditional probability can be written as 

 1( | ) ( | , )Np Y X w   y X I , (5.42) 

where M dX  is defined as ( )
M

T

i ix  , : ( )
Mi iy y , and 0 d   is the dimension 

of the Hilbert space . Supposing the a priori distribution of the function w is a 

Gaussian distribution in , the learning of w , and the prediction of y given a new 

sample are identically equal to solving the conditional distribution in the joint 

Gaussian distribution of ( , )P X Y , given in Appendix A. 

Let the a priori probability distribution of w is given as 
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 1( ) ( | 0, )dp w w I  . (5.43) 

where 0  , and define a new random variable  

 : wt X , (5.44) 

which is the mode of the estimation of the sampled data. The marginal probability 

of t is then  

 ( ) ( | , )p t t 0 K , 

where 1: T K XX is the Grammian matrix with entries defined 

as 1( , ) : ( , ) ,ij i j i j j iK x x k x x x x   , and therefore the marginal probability ofY is  

 ( ) ( | ) ( ) ( | , )p p p dt y y t t y 0 C , 

where 

 1

M  C K I . (5.45) 

The objective of the Gaussian process distribution is to predict the output given a 

new query point 1Mx  , that is the conditional probability 

 2

1 1 1 1 1( ( ) | , ) ( | ( ), ( ))M N M N Np y x Y X y m x x     ,  

where 

 1

1( ) T

Mm x 

  k C y , (5.46) 

 2 1

1( ) T

Mx c 

  k C k , (5.47) 

1: ( ( , ))
MM i ik x x k , and 1

1 1: ( , )M Mc k x x  

   . 

5.4.3 A Graphical Model for Exoskeleton System 

The human-exoskeleton system is modeled as the graphical model according to 

the causality and the dynamics characteristics. Let e be the measured EMG signal in 
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the biosignal model; Let q , q , q be the angular position, angular velocity, angular 

acceleration, respectively, E the torque exerted by the actuator of the exoskeleton, and 

exd be the exogenous disturbance measurement in the dynamics model. For the 

universality of the proposed method, we do not limit and therefore do not particularly 

specify the dimension of the state vectors, e.g. q , e , exd . Hence, the size of the 

vectors can vary with different applications.  

Apart from the observable random variables defined above, we define the latent 

random variables: H , the human applying toque, i.e. the human intention, which is 

the intended applying torque of the operator; D , the transmitted torque of the 

exogenous disturbance;  the total toque exerted on the exoskeleton system. These 

variables are not observable, so they can only be inferred from the observable 

variables. We remark that we do not assume the specific form of the exogenous 

disturbance sensor, and that the proposed estimator can automatically optimize the use 

of information in real time. In the extremity, the disturbance sensor can be just as 

simple as a footswitch, which is used in our designed exoskeleton. See Section 5.4.5 

for more details. 

Before proceeding into the details of the graphical model, we summarize the 

assumptions made in this model. 

Assumption 5.7. 

1. The total torque applied on each joint of the exoskeleton and the measured EMG 

signals e are d-separated by the human applying torque H , i.e. 

 ( , | ) ( | ) ( | )H H Hp e p e p        (5.48) 

2. All the random variables defined in the graphical model are independent from time 

to time. That is, for each sampling time instance, all the random variables are i.i.d. 
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samples. 

Assumption 5.7.1 is the essential to the proposed graphical model. We argue this 

is a reasonable assumption, because once we know the true human applying torque, 

we know the contribution of the operator into the system and therefore the value of 

the EMG signal become irrelevant. That is, the contribution of the EMG signal e to the 

total torque  is blocked when the human applying torque H is observed. On the 

other hand, Assumption 5.7.2 makes the modeling simpler by neglecting the time 

dependency of the random variables. Otherwise, hyper-edges can be added into the 

graphical model to consider the correlation of evolution of different random variables 

through time, which, in our conjecture, can increase the precision of the prediction 

and eliminate the noise in the system. One possible way is to consider additionally the 

contribution of the two previous sampling instances, since the exoskeleton system is 

essentially a second-order nonlinear system. Canonical state estimation techniques in 

the system theory can be embedded into this Bayesian formulation easily by defining 

proper Gaussian distributions, or the extended Kalman filter may be used alternatively. 

We leave this possibility for the future works, and focus on the model under 

Assumption 5.7.2. 
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Fig. 5-20. Graphical model of the human-exoskeleton system 

The graphical model of the exoskeleton system is shown in Fig. 5-20, where the 

green nodes denote the observable random variables and the others are the latent 

variables. We now give the detailed description of the graphical model as follows. We 

assume human is a perfect force controller, so that the EMG signal is determined 

completely by the human applying torque of the operator, because human is able to 

adjust the contraction of muscles to track the human applying torque perfectly. In the 

language of graphical model, the human applying torque node H is the only parent of 

the EMG signal node e . In the exoskeleton system, there are three torque sources: the 

human applying torque H , the exogenous torque D , the assistive torque of 

exoskeleton E . Namely, the identity reads as 

 H D E       . (5.49) 
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On the other hand, the exogenous torque D is related to the exogenous force by 

the Jacobian matrix of the robot, which is the function of the current configuration q , 

i.e. 

 ( )T

D exJ q d  . (5.50) 

In the end, the last governing equation of the system is the dynamics equation of the 

human-exoskeleton system, which can be derived from the Euler-Lagrange 

formulation, that is, 

 ( ) ( , ) ( )M q q B q q q K q     , (5.51) 

where ( )M q is the inertia matrix, ( , )B q q is Coriolis/centrifugal matrix, ( )K q is the 

gravity term. 

According to Definition 5.6, the path from the sensor information of the 

dynamics model , , ,ex Ed q q  to the node of the human applying torque H is unblocked 

when the angular acceleration is observed q . Therefore, the a posteriori probability of 

the human applying torque H can be inferred from the sensory 

information , , , ,ex Ed q q q  in the dynamics model. In the biosignal model, the 

observation of the EMG signal e can influence the estimation of the human applying 

torque H , since it is a descendent of H .  

For a time instance, when all the observable random variables are sampled or 

measured, the a posteriori probability of the human applying torque can be inferred 

by combining the information both of the dynamics model and the biosignal mode. 

With further inspection, the tree of the human applying torque, the dynamics model, 

and the biosignal models is actually the Naïve Bayesian assumption. Therefore, the 

proposed Bayesian human intention estimator is under the framework of mixture of 

experts, in which the two experts are namely the dynamics model and the biosignal 
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model.  

5.4.4 Human Intention Estimation by Bayesian Reasoning 

From the graphical model in Fig. 5-20, the joint probability distribution can be 

factorized into 

 

( , , , , , , , , )

( | ) ( | , , ) ( | , )

   ( | , , ) ( ) ( ) ( ) ( ) ( )

ex E D H

H H E D D ex

H E ex

p e q q q d

p e p p d q

p q q q p p p d p q p q

   

     

  



 



. (5.52) 

To estimate human intention, it is sufficient to infer the a posteriori probability 

conditioned on all the observable variables, 

 ( | , , , , , ) ~ ( | ) ( | , , , , )H E ex H H E exp e q q q d p e p q q q d     , 

which is the direct result of Bayes’ theorem. By applying Bayes’ theorem again, we 

obtain the factorization 

 

biosignal model dynamics model

( | , , , , , ) ~ ( | ) ( | , , , , )H E ex H H E exp e q q q d p e p q q q d      (5.53) 

Assume the two conditional probability distribution are two Gaussian distributions 

with means Bio , Dyn and covariance matrices Bio , Dyn , i.e. 

 ( | ) ( | , )H H Bio Biop e    , (5.54) 

 ( | , , , , ) ( | , )H E ex H Dyn Dynp q q q d     . (5.55) 

Under the Gaussian assumption and with properly chosen Hilbert space, we can 

formulate the conditional probability as the Gaussian process model, and the learning 

problem is then the Gaussian process regression problem, which can be solved easily 

by solving a linear system.  

We now summarize the solution of the Bayesian human intention estimation in 

the following. The first Gaussian process model is the biosignal model in (5.54). In 

this model, we assume the human applying torque depends on the EMG signal 
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linearly. In implementation, the EMG signal is the rectified and filtered raw EMG 

signal. That is, the Hilbert space (5.42) is the image of the mapping of the filtering 

from the raw EMG signal to the filtered EMG signal. As for the dynamics model, 

there are two Gaussian process models: the inverse dynamics model and the 

exogenous disturbance model. 

 ( | , , ) ( | , )Inv Invp q q q      , (5.56) 

 ( | , ) ( | , )D D D Dp q d    , (5.57) 

where Inv , D and Inv , D are the means and the covariance matrices of the inverse 

dynamics model and the exogenous disturbance model, respectively. The inverse 

dynamics is modeled in the feature space by expanding all the unknowns in (5.51), 

whereas the exogenous disturbance model is in the space of the direct sum of the 

space of the exogenous disturbance measurement and the space of trigonometric 

function of q , which is the basis of the Jacobian matrix. 

Assume the a priori probability distribution of the human applying torque is 

given as 

 ( ) ( | 0, )H H Hp    . (5.58) 

The dynamics model is the result of combing the two models: 

 
1( ) ( )Dyn Dyn Inv D Inv E D         , (5.59) 

 
1 1 1( ( ) )Dyn H Inv D

        . (5.60) 

With the three Gaussian process models (5.54), (5.56), and (5.57), we arrive at the 

solution of (5.53), 

 ˆˆ( | , , , , , ) ( | , )H E ex H H Hp e q q q d     , (5.61) 

where 
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 1 1ˆˆ ( )H H Bio Bio Dyn Dyn       , (5.62) 

 1 1 1ˆ ( )H Bio Dyn

      , (5.63) 

and the estimator is naturally defined as  

 ˆ ˆ: argmax ( | , , , , , )H H E ex Hp e q q q d     . (5.64) 

Proof: 

Here we give the proof of the proposed Bayesian human torque estimator from 

(5.59) to (5.64). We first prove the dynamics model in (5.53). By repetitively applying 

the Bayes’ theorem, we can factorize the dynamics model into 

 ( | , , , , )H E exp q q q d   

 ~ ( ) ( | , , , , )H E H exp p q q q d  

 ~ ( ) ( | , , ) ( | , , , )H E H exp p q q q p q d d         

 

  

~ ( ) ( | , , ) ( | , , , ) ,H E H ex

Inverse Dynamics Model

p p q q q p q d d         (5.65) 

since the probability ( | , )p q q q  is independent of the integral. 

According to the conditional probability of the Gaussian distribution, we have 

 ( | , , , )E H exp q d    

 

Exogenous Disturbance Model

( | , , ) ( | , )D E H D ex Dp p q d d        

 ( | , )E H D D         

 ( | , )H E D D         

and 

 ( | , , ) ( | , )Inv Invp q q q      . 

To perform the integral, we recall ( | , , , )E H exp q d   is the conditional probability 

of H given  and ( | , , )p q q q is the prior of  . Therefore, the right hand term 
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of (5.65) reads as 

 ( | , , , , )~ ( | , )E H ex H Inv E D Inv Dp q q q d          (5.66) 

Proposition 5.8. 

Given two Gaussian distributions 1 1( | , )x   and 2 2( | , )x   of the random 

variable x , if the probability of x can be factorized into 

 1 1 2 2( ) ~ ( | , ) ( | , )p x x N x    

then ( )p x is a Gaussian distribution with mean and covariance matrix as 

 1 1

1 1 2 2( )        

 1 1 1

1 2( )      . 

Using Proposition 5.8., the mean and the covariance matrix of the dynamics model 

can be shown as (5.59) and (5.60), since 

 
( | , , , , )

~ ( | 0, ) ( | , )

H E ex

H H H inv E D inv D

p q q q d 

        
 

Similarly, we can show the result of the Bayesian human torque estimator as (5.62) 

and (5.63).  

  Q.E.D. 

From (5.62), the estimator can be viewed as the time varying weighted mean of 

different models by the corresponding precision matrices (the inverse of the 

covariance matrix). Given the current state, the estimator trusts the estimation of the 

model with higher precision more, so the resultant estimator can adaptively adjust the 

estimation. This is the merit of Bayesian model. In contrast, if discriminative models 

are used in (5.54) and (5.55), the resultant estimator only biases to one of the models 

and cannot adaptively chose the weighting, unless other sensory information is 

available.  
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In summary, the Bayesian human intention estimator uses three Gaussian process 

models: the biosignal model (5.54), the inverse dynamics model (5.56), and the 

exogenous disturbance model (5.57). With proper calibration setting, all the three 

models can be learned by MAP, which will be detailed in the next section. We remark 

that we cannot learn the conditional probability ( | )Hp e  directly, but we can 

approximate the inverse model ( | )Hp e instead, and consider the a priori probability. 

5.4.5 Control and Learning with Graphical Model 

 In this section, we show how formulation of graphical model can be used in the 

control of the exoskeleton system and how the Gaussian process models can be 

learned by MAP. 

A. Control with Graphical Model 

We adopt the control framework similar to [57] and [45] as in Fig. 5-21. The 

control scheme consists of two parts: the torque controller and the Bayesian human 

torque estimator (5.64). The inner torque control loop is aimed to track the torque 

reference generated by the Bayesian estimator, which is the lowpass filtered version 

of (5.64), as in Section 5.2 The DC gain of the lowpass filter is set as AG , which is the 

assistive gain, and the bandwidth A is set to be the bandwidth of the human motion. 

As proved separately in [57] and [45], the additional lowpass filter can guarantee the 

robust stability of the overall system, and eliminate the discontinuities due possible 

switching. In terms of the Bayesian formulation, the lowpass induce changes the a 

priori probability distribution of the human applying torque in (5.58), such that it is 

strictly within the prescribed bandwidth A .  

Oracle. 

Assume human is a perfect torque controller and inner torque control loop is 
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Fig. 5-21. Control block diagram for human assistive exercises 

perfect. Let AG be the assistive gain. Given an arbitrary fixed motion, with the 

assistive control, the human applying torque H becomes 

 
0

1

1
H H

AG
 


, 

where 0H is the human applying torque of the same motion without the assistive 

control. 

In particular, when the assistive gain AG is chosen as identity, the exoskeleton will 

ideally assist half of the human applying torque of the motion. 

B. Learning with Graphical Model 

(1). The Biosignal Model 

To learn the conditional probability ( | )Hp e , we take the use of the joint force 

sensor in the exoskeleton in the toque control loop. In the experiments, the operator is 

asked to wear the exoskeleton with the EMG sensors. As shown in Fig. 5-22 (a), the 

controller of the exoskeleton is set to position regularization mode with different 

postures, rejecting any disturbance that deviates the mechanism from the current 

position. The operator is then asked to perform forward and backward voluntary 

movements, and the EMG signals e  and the exoskeleton torque E  are recorded. 

Assuming that the regulation control is perfect, the Gaussian process model can learn 
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(a) Biosignal Model (b) Inverse Dynamics Model 
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(c) Exogenous Model (d) Foot plate data collection 

Fig. 5-22. Data collection procedure and the coordinates of joint angle and knee angle 

the mapping between the EMG signal and the human applying torque by using the 

(5.51) and (5.49), i.e. 

 H E   . 

 Linear model in our experience is sufficient to model relationship in most 

postures. A more complex model considering also the angular position q and the 

angular velocity q is possible or using the nonlinear kernel space, e.g. radial basis 

kernel. We left it for the future works.  

(2). The Inverse Dynamics Model 
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The dynamics of the exoskeleton system can be derived based on Euler-Lagrange 

equation [92], and it is shown that the total joint torque  is linear in terms of the 

unknown parameters. Therefore, we can build a linear Gaussian process model (5.56) 

as mentioned in the previous section. In the experiments as shown in Fig. 5-22 (b), the 

operator is asked to wear the exoskeleton and to relax completely. The controller of 

the exoskeleton is set in position control mode to track some predefined trajectories. If 

the trajectories are sufficient rich [48], then the underlying model can be identifying 

by the feedback of the torque sensor information E and the current states of the 

exoskeleton , ,q q q  .  

(3). The Exogenous Disturbance Model 

As mentioned in previous section, we do not assume any specific form of the 

exogenous disturbance sensor. In most of the cases, the exogenous disturbance in the 

exoskeleton system is the ground reaction force, and the force sensor is footpad. The 

proposed method, however, are not limited to the sensor above. Other types of the 

force sensors, even the footswitch in the worst case, can also be adopted to improve 

the overall accuracy. In the experiments described in the next section, we adopt the 

footswitch as the force sensor and the results are similar to the switching scheme 

proposed in [44]. 

Two possible scenarios of the experiment are both able to learn the conditional 

probability ( | , )Dp q d .  In the first case, the operator is asked to wear the 

exoskeleton in relaxation, and the controller of the exoskeleton is set to position 

regularization with different postures. In each posture, disturbances are injected 

artificially, and the sensor feedback of the exogenous disturbance senor exd , the torque 

sensor E , and the angular position q  are recorded.  
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In the second case, the exogenous disturbance mode is based on the inverse 

dynamics model learned in the previous experiment, so that the data can be collected 

more generally without constraining the position of the exoskeleton. From (5.49) and 

(5.51), we know that the disturbance torque can be estimated if 0H  and the inverse 

dynamic model is known. In contrast to the first approach by eliminating the 

dynamics effect term completely, we can allow the movement of the exoskeleton here 

by introducing proper prior in (5.42) as long as 0H  .  

From the dynamic equation, we know that 

 ( + )D H E      . 

Since knowing the human applying torque is generally impossible, we can, however, 

ask the operator to relax the muscles during the data collection as the trick in the 

previous experiments. To formulate this into a standard Gaussian process regression 

problem, we replace the noise model of   in (5.42) to 

 1( | 0, )Inv I    , 

which is a state dependent noise model. Effectively, it is to set C in (5.45) to 

  1= + Inv M C K Σ I , 

where InvΣ is the empirical covariance matrix of the inverse dynamics model in the 

Gaussian process model computed by (5.47). We note that InvΣ can be chosen to by 

diagonal by assuming each prediction is independent of time as in Assumption 5.7.2. 

Since the human applying torque is neglected in this setting, the target of the 

regression problem, the exogenous transmitted torque, is then 

 D Inv E    . 

We remark that the exogenous disturbance model ( | , , )Dp q q d  can also be 
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learned in this scenario by modifying the graphical, adding another node before the 

exogenous disturbance force exd and another link from q to exd . The new graphical 

model helps the imprecise disturbance sensor more by considering the velocity 

information.  

In experiment, we collect the data based on the learned inverse dynamics model 

and the measurements of the torque sensor. As in the case of the inverse dynamics 

model, the subject is asked to relax totally, and the controller is set to track some 

predefined position references in which the exogenous force sensor is bound to hit 

some obstacles. This scenario is designed, because it is sometimes more convenient 

for the experimenter to collect the data while not constraint the movement of the 

exoskeleton.  

5.4.6 Experiments 

In the following experiments, the data acquisition and the controller are 

implemented on a sbRIO-9642 embedded control and acquisition system (National 

Instrument Inc.) with sampling rate 250 Hz. To train each Gaussian process model, 

6000 training data are sampled uniformly randomly from the recorded data in the 

previously described experiments. The EMG signals are measured by the active 

surface EMG electrode with pre-amplifier (B&L Engineering, Inc.) placed on the 

quadriceps femoris and hamstring muscle, which is later rectified and the 

DC-component is removed; the exogenous disturbance sensor is the footswitch (B&L 

Engineering, Inc.); the states of the exoskeleton systems are calculated by numerical 

difference; the exoskeleton torque E is measured by the backdrivable spring torsion 

actuator (BTSA) described below. In addition, all the measurements and the control 

signal are filtered by a second-order Butterworth filter with cutoff frequency 15 Hz. 
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Fig. 5-23. Overview of the proposed backdrivable torsion spring actuator and the knee orthosis exoskeleton 

A. Experiment Setting 

(1). Backdrivable Spring Torsion Actuator (BSTA) 

In order to collect the data and build the biosignal model, the inverse dynamics 

model, and the exogenous disturbance model for the Bayesian human torque estimator, 

a simple knee exoskeleton with BTSA [45, 46] is constructed. BTSA is composed of a 

designed torsion spring, bevel gears, and a DC-actuator. The soft stiffness of the 

torsion spring provides mechanically intrinsic safety and measures the torque between 

the human and the actuator. Fig. 5-23 shows the overview of the BTSA. Two 

potentiometers are used. Inside, one potentiometer is inserted into the spring to 

measure the deflection of the torsion spring, which can be used to calculate the output 

torque via Hooke’s law. The knee angle   is measured by the other potentiometer. 

For the specification of the BTSA, please refer to Section 5.2.2. Finally, we note that 

with the BTSA the angular positoin of the output linke can be measured directly, so 

the effect of the spring can be neglected. 

(2). Experimental Setting  

In this paper, we demonstrate two types of motions with the proposed Bayesian 

Exoskeleton system: the swing motion and the stair climbing. The swing motion is a 
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toy example to show how the three Gaussian process models are calibrated with the 

knee orthosis and to verify the effectiveness of assistive control scheme. The stair 

climbing, on the other hand, is another example to show how the estimator behaves 

when the exogenous disturbance comes in.  

In the experiments, the subject was a 31-years-old healthy male. The coordinate 

of the knee angle is shown in Fig. 5-22 (d), in which the knee angle is 0 degree 

under knee extension and -90 degrees under knee flexion. We note that the knee 

angle is different from the joint angle q in general, where the joint angle  is 

calibrated as in Fig. 5-22 (d), while the joint angle is referred to the world frame as in 

Fig. 5-22 (b). 

Experiments in Swing Motion  

In this scenario, the subject is first asked to sit on a chair and drape his leg in 

relax over the floor, which is the initialization in all the calibrations and in the 

experiment with assistive control in the swing motion. The calibrations are carried out 

as detailed in the previous section. In particular, the exogenous disturbance model is 

based on learned the inverse dynamics model. All the hyper-parameters of the 

Gaussian process model are chosen by cross-validation in contrast to the expectation 

maximization approach. In the experiments, we found that the cross-validation gives 

more satisfactory results, since some of the conditional probabilities are not strictly 

under the Gaussian assumption. Notably, the exogenous disturbance model fails the 

assumption when footswitch is used. Also, we model the noise model of the 

exogenous disturbance model as a function of the exogenous disturbance 

measurement, where the variance is zero when the force measurement is zero, and a 

Gaussian random variable with some predefined variance otherwise, due to the nature 
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of the footswitch. 

In the experiment of assistive control in swing motion, we ask the user to 

perform voluntary movements as in the calibration of the inverse dynamics model, 

and compare the result with and without the assisting of the exoskeleton. The details 

are shown in the next section. 

Experiments in Climbing Stair up and down 

In this experiment, the task is to climb a 20-cm stair up and down repetitively, 

and the results with and without the assistive control are compared. Assuming the 

variation of the hip angle is small, the joint angle q and the knee angle are similar. 

Therefore, we assume the joint angle q  is the same as the knee angle in this task. 

B. Experimental Results and Discussions 

In section (1), (2), and (3), we show the result of the calibration of the three 

Gaussian process models: the biosignal model, the inverse dynamics model, and the 

exogenous disturbance model. Section (4) shows the experimental result of the simple 

swing motion; Section (5) discusses the results of the stair climbing, which resembles 

the scenario of the assistive exoskeleton system.  

(1). Results of the Biosignal Model 

The estimation of the biosignal model and the measured human applying torques 

are shown in Fig. 5-24, in which the black solid line is the measured human applying 

torque, the blue solid line is the mode of the prediction, and the blue dash lines 

indicates the regions within two one standard deviations (corresponding to the 95% 

confidence region). Despite the inconsistencies in the extreme values, the simple 

linear EMG signal model and the measurement shares the same tendency, and the 

prediction errors are acceptable in the sense of 95% confidence. Compared with the 
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results of the dynamics model in the next section, the standard deviation of the 

biosignal model is on average higher than that of the dynamics model in the swing 

motion, and yet smaller than that of the exogenous disturbance model when 

disturbance comes in. Therefore, it is supposed that the Bayesian human torque 

estimator should biased to the dynamics model more in the swing phase of the gait 

cycle. 

(2). Results of the Inverse Dynamics Model 

The estimated dynamics torque and the measured torque are shown in Fig. 5-25, 

in which the black solid line is the measured dynamics torque, the blue solid line is 

the mode of the prediction, and the blue dash lines indicates the regions within two 

standard deviations (corresponding to the 95 % confidence region). It shows the 

prediction has the correct tendency and the standard deviation of the prediction varies 

in different regions. The regions in which the standard deviation is small mean more 

reliable predictions. We note that the prediction of the estimated dynamics torque has 

larger prediction variance in the region where the angular acceleration is large, due to 

the numerical error of the differentiation and the measurement noises. Compared to 

the other models, the dynamics model has smallest standard deviation, and therefore 

the Bayesian human estimator will more believe the dynamics model more during the 

swing phase. 

(3). Results of the Exogenous Disturbance Model 

 The estimated exogenous disturbance torque and the measured torque are shown 

in Fig. 5-26, in which the black solid line is the measured disturbance torque, the blue 

solid line is the mode of the prediction, and the blue dash lines indicates the regions 

within two standard deviations (corresponding to the 95% confidence region). Due the 



 

 209 

discrete nature of the footswitch, the exogenous disturbance model cannot fit the 

continuous measurements well. Although the prediction is actually block-wise, we can 

still infer at least the average exogenous disturbance torque and the timing when the 

disturbance comes in. The standard deviation of the prediction is the highest among 

all three models, because the analogue signal of foot switch contains only on (5 

Voltage) and off (0 Voltage), which is very inaccuracy in estimating exogenous 

disturbance torque. Therefore, the Bayesian estimator will believe the biosignal model 

more during the stance phase. 

(4). Experimental Results for Swing Motion 

The experimental results of the swing motion with and without the assistive 

control are shown in Fig. 5-27 and Fig. 5-28, respectively. In Fig. 5-27 (a) and Fig. 

5-28 (a), the black solid line is the estimation of the Bayesian human torque estimator, 

the blue dash line is the estimation of dynamics mode, and the yellow dash line is the 

estimation of the biosignal model. Because the dynamics model has smaller standard 

deviation than the biosignal model in the swing phase, the human torque of Bayesian 

estimator is more consistent with the dynamics model. But all of them share the 

similar tendency. In Fig. 5-27 (b) and Fig. 5-28 (b), the blue solid line denotes the 

assistive torque of the exoskeleton E and the green dash line denotes the knee angle , 

which is the same as the joint angle q in this experiment. In the swing motion without 

assistance, the exoskeleton torque E is mainly contributed by the mechanism 

impedance between the operator and the exoskeleton, whereas in experiment with the 

assistive control, the exoskeleton torque E is approximately equal to 

 E A HG  ,  

where the assistance gain AG is chosen as identity in this experiment, which means that 
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the assistance torque will be about half of the human applying torque in the same task 

without the assistance. The maximum exoskeleton torque is about 5 Nm in Fig. 5-28 

(b) and the maximum human torque of Bayesian estimator is about 12Nm in Fig. 5-27 

(a). We can observe that the assistant exoskeleton torque E is nearly half of the human 

applying torque in the task without assistance, which is consistent with the ideal case 

in Oracle.  

In Fig. 5-27 (c)(d) and Fig. 5-28 (c)(d), the blue lines denote the rectified raw 

EMG signals and the yellow lines denote the filtered EMG signals, which are used as 

the input in the biosignal model, of the extensor and the flexor, respectively. During 

the swing motion, the extensors are the main muscle groups, and therefore the EMG 

signal of the extensor is larger than that of the flexor. In order to quantify the 

effectiveness of the assistive control, we compare the magnitude of the filtered EMG 

signal in Fig. 5-27 (c) and Fig. 5-28 (c). With the assistance of the exoskeleton, the 

filtered extensor EMG signal in Fig. 5-28 (c) is about half of the magnitude in Fig. 

5-27 (c). Finally, the averaged performance is investigated in Fig. 5-27 (e) and Fig. 

5-28 (e). The Bayesian exoskeleton decrease the magnitude of the filtered EMG signal, 

which manifest the human applying torque, decreases about 51% compared to the 

case without the assistive control. By Oracle, the experiment with swing motion 

proves the Bayesian human torque estimator. 

(5). Experimental Results for Climbing Stair Up and Down 

The experimental results of the climbing stair up and down with and without the 

assistive control are shown in Fig. 5-29 and Fig. 5-30, respectively. In Fig. 5-29 (a) 

and Fig. 5-30 (a), the black solid line denotes estimation of the Bayesian human 

torque estimator, the blue dash line denotes the estimation of dynamics model, and the 
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yellow dash line denotes the estimation of biosignal model. Because the prediction of 

the dynamics model has lower standard deviation than that of the biosignal model 

without the absence of the exogenous disturbance, the estimation of the Bayesian 

estimator is more consistent with the dynamics model in the swing phase; In the 

stance phase, due to the uncertain exogenous disturbance model, the estimation of 

Bayesian estimator is biased to the biosignal model. Therefore, the discontinuity may 

occur during phase switching, which can be solved by using a more sophisticated 

exogenous force sensor than just a simple footswitch. Despite the poor footswitch, 

this, however, is not a serious problem. As mentioned previously, we can add a 

lowpass filter after the Bayesian estimator in the control loop to ensure the robust 

stability and therefore the discontinuity is eliminated [45], because the lowpass filter 

acts as another important prior information regarding the frequency domain of the 

human applying torque. 

In Fig. 5-29 (b) and Fig. 5-30 (b), the blue solid line denotes the exoskeleton 

torque E and the green dash line denotes the knee angle . As in the swing motion 

experiment, the small exoskeleton torque in Fig. 5-29 (b) is caused by the mechanical 

impedance. The maximum exoskeleton torque is about 20 Nm in the Fig. 5-30 (b), 

which is nearly half of human applying torque, estimated by the Bayesian estimator in 

Fig. 5-29 (a), in the task without assistance. In Fig. 5-29 (c)(d) and Fig. 5-30 (c)(d), 

the blue lines denote the rectified raw EMG signals and the yellow lines denote the 

filtered EMG signals, which are used as the input in the biosignal model, of the 

extensor and the flexor, respectively.  During the climbing stair, the extensors are the 

main muscle groups and therefore the magnitude of the extensor signal is larger than 

that of the flexor. The filtered extensor EMG signal in Fig. 5-30(c) is about half of the 
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signal in Fig. 5-29 (c), because the exoskeleton assists the human during the climbing 

stair. Finally, the averaged performance is investigated in Fig. 5-29 (e) and Fig. 5-30 

(e). As in the swing motion, we quantify the human applying torque by the averaged 

magnitude of the filtered EMG signal. 

In Fig. 5-30 (e), the averaged human applying torque of during 0%~25% 

climbing cycle increases about 53% percentage compared averaged Fig. 5-29 (e), 

which means the operator feels a small resistance about 5 Nm during 0%~25% 

climbing cycle with the assistive control. This is induced by the error of joint angle 

calibration, since we approximate the joint angle q by the knee angle , by assuming 

the hip angle is small. However, the hip angle is actually large enough to influence the 

torque estimation from gravity term during 0%~25% climbing cycle, which is the 

swing phase when climbing up the stair. The problem can be solved by the feedback 

the hip angle or by adding another gyroscope to determine the joint angle q . However, 

in our experiments, the assistance performance during the swing phase of climbing up 

stair is compromised due to the limitation of the hardware. Except 0%~25% climbing 

cycle, the averaged human applying torque of biosignal model during 25%~50%, 

50%~75%, and 75%~100% climbing cycles with assistive control in Fig. 5-30 (e) 

decrease  36%, 45%, and 11%, respectively, compared to the averaged human 

applying torque without the assistive control in Fig. 5-29 (e). Because of validity of 

the hip joint assumption, the performance is a little worse than that of the simple 

swing experiment. In spite of the imperfection, the Bayesian exoskeleton can still 

provide assistance to the operator in the climbing task. 
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Fig. 5-24. The measured and estimated dynamics torque in dynamics data 
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Fig. 5-25. The measured and estimated human torque in EMG model 
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Fig. 5-26. The measured and estimated disturbance torque in the exogenous disturbance mode 
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(b) 

Fig. 5-27. The experimental results of swing motion without the assistive control 
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Fig. 5-27. The experimental results of swing motion without the assistive control 
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(b) 

Fig. 5-28. The experimental results of swing motion with the assistive control 
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Fig. 5-28. The experimental results of swing motion with the assistive control 
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(b) 

Fig. 5-29. The experimental results of climbing stair up and down without the assistive control 
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Fig. 5-29. The experimental results of climbing stair up and down without the assistive control 
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(b) 

Fig. 5-30. The experimental results of climbing stair with the assistive control 
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Fig. 5-30. The experimental results of climbing stair with the assistive control 
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5.4.7 Discussions 

In this section, we propose a general framework of the human-exoskeleton with 

the probabilistic graphical model. Combined with the robust assistive controller, the 

Bayesian exoskeleton system can incorporate all the sensory information by means of 

sensor fusion in a Bayesian manner. The mixture of experts framework can optimally 

unify the prediction both from the dynamics model and the biosignal model. As a 

result, the Bayesian exoskeleton system can alleviate the defects of using either one of 

the model alone by adjusting the weighting between the two models in an adaptive 

manner. In the experiments, we validate the performance of the proposed system, and 

the experimental results show prominently that the performance is nearly as good as 

Oracle guarantees, which proves the accuracy of the Bayesian estimator. In terms of 

complexity, the training time is short since all the models considered here is the linear 

model, and the inverse of the covariance matrices can be pre-computed.  In the 

future, we want to adopt the proposed framework into a multi-joint exoskeleton 

system. The only difference may be complexity of the dynamics model, whereas the 

biosignal model is not affected. Although the complexity, the expanding terms in the 

inverse dynamics model, increases, the problem can be solved by introducing proper 

kernel space. Also, with the multi-joint exoskeleton, the mismatch between the joint 

angle and the knee angle can be addressed. Finally, whether the performance of the 

proposed Bayesian estimator in a multi-joint system can be near to Oracle is very 

interesting. 

5.5 Summary 

In this chapter, the design and the control of the BTSA knee exoskeleton system 
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is detailed. The exoskeleton system consists mainly of two components: human 

intention estimation and the assistive control. Frist, the mechanism design and the 

inner robust hybrid assistive control is introduced in Section 5.2, which is used 

throughout the other sections. The backdrivable BTSA knee exoskeleton provides 

intrinsically safe human-robot interaction; the robust hybrid scheme can provide the 

operator support when needed, and therefore the uncomfortable disturbances due to 

the estimation and modeling errors are efficiently eliminated. To prove the robustness, 

it is assumed that human is able to compensate any disturbance that is within the 

bandwidth of the desired movement. Although this holds for healthy subjects, the 

assumption may hold only partly for the patients with movement impairments. In such 

condition, a more sophisticated approach should be used. For example, some prior can 

be introduced to consider the time dependency of the estimation, or the estimator 

should simultaneously consider the balance of the system. Otherwise, the admissible 

bandwidth may be too low for normal functionalities.  However, it should be 

mentioned that the strong adaptivity of human seems to be able to learn the dynamics 

of the augmented system via practicing. Since it is reasonable for the patient to have 

time to accommodate the new system just as the infant takes time to learn to walk, the 

property such as learnability of an exoskeleton system should be defined. Therefore, 

instead of designing a robustly controlled system with limited functions to bound the 

effects of the disturbances, a more advanced control scheme should ensure the system 

is robustly learnable or may be adaptive if possible. For example, the system should 

be biased to perform only simple, limited and robust movements within the canonical 

robust control, but graduate relax the constraints as the operator learns to control the 

system. Therefore, a robustly learnable exoskeleton ensures the robustness by 
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considering the feedback of the operator.  

As for the human intention estimation, two different approaches are proposed to 

combine the dynamics model and the biosignal model shown in Section 5.3 and 

Section 5.4. The simple self-learning scheme provides adaptivity to learn the 

non-stationary EMG model, and the sliding mode admittance control ensures the 

assistive performance robustly. On the other hand, Section 5.4 proposes a general 

Bayesian framework to model the exoskeleton system regardless of the types of the 

sensors and the disturbance. Compared to the self-learning scheme, the Bayesian 

framework adapts to fuse the biosignal model and the dynamics model as the 

Bayesian committee machine, and therefore the Bayesian human estimator can online 

optimally combine the two models. The experimental results in Section 5.4 point out 

an interesting observation that the Bayesian exoskeleton behaves like the self-learning 

scheme, if the exogenous disturbance sensor is the footswitch. Because the switching 

nature of the sensor serves as a strong prior, the Bayesian exoskeleton learns to bias to 

the correct model. If a pressure sensor is used, the evolution of the weighting between 

the two models may be more continuous. In addition, this result also evidences that 

the heuristics in the self-learning is a valid approach as the special case of the 

Bayesian exoskeleton system. 

For the future works, we are interested in the control of the multi-joint Bayesian 

exoskeleton. Since the multi-DOF dynamics model are tedious to be derived, a 

machine learning approach can be used instead of the traditional analytic approach. In 

particular, the reproducing kernels proposed in Chapter 3 are good alternatives. 

However, the current problem is the measurement noise in the EMG measurements 

and the errors due to numerical differentiation. Since most of the machine learning 
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algorithm can only deal with the output noises not the input noises, additional states 

estimator or a more sophisticated filter should be used, which is equivalently 

introduced a sets of hidden variables in the Bayesian network. Otherwise, we may 

derive a similar model based on auto regressive moving average (ARMA) model for 

sampled system. In addition, the estimation and the assistive control scheme should 

consider the robust learnability mentioned earlier. We leave this for the future works 
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Chapter 6 Conclusions 

In this thesis, we present three works attempting to use the techniques from 

various fields for developing the control of the robots in the next generation in terms 

of the dynamics learning and the human-robot interaction. The kernel methods for 

learning the system dynamics are improved by the proposed structured kernels 

proposed in Chapter 3. Derived from the Euler-Lagrange method, these kernels are 

the natural kernels for learning the dynamics. The first scalar kernel models the 

function space of the robot dynamics implicitly; the second kernel generalizes the first 

kernel and considers the correlations between different generalized coordinates by 

learning the Lagrangian of the system implicitly - the Euler-Lagrangian method is 

engraved in the structure of the vector-valued RKHS. Due to the structures, the 

proposed kernels fill the gap between the parametric and the non-parametric learning, 

and show better generalizations compared to the traditional methods. We remark that 

this finding is astonishing, showing an interesting links between the machine learning 

and the traditional system identification of the dynamics system. For the safe 

human-robot interaction, the virtual impedance control in Chapter 4 is a generalized 

framework of the robust collision avoidance for the human-robot safety. The proposed 

scheme unifies all possible collisions in the risk space, in which dynamics is 

controlled to be a consistent second-order linear system during the collision avoidance. 

As the consequence, the robot handles the potential collisions smoothly and robustly 

regardless of the modeling uncertainties. In the experiments, we integrate the 

proposed method with Kinect
TM

 to detect the human and the environment nearby, and 

the experimental results validate the control scheme. The robot successfully yields to 
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the command of the human, while trying to accomplish the original task. Finally, the 

Bayesian exoskeleton is demonstrated as an integrated system, in which the Bayesian 

estimator inference the human intention optimally and the underlying torque control 

provides robust assistance. The proposed graphical model gives a transparent view of 

the dependency of the states and the structure of the human-exoskeleton, and is 

general for all kinds of exoskeleton systems. Not limited to the mechanisms and the 

sensors used in this thesis, the Bayesian estimator can inference the human intention 

adaptively and optimally. Given the estimated human intention, the hybrid control is 

designed to provide robust assistance. By introducing an insensitive zone, the hybrid 

scheme not only overcomes the estimation uncertainties but is proved to be robustly 

stable by the newly proposed human-exoskeleton model. The experimental results 

show the estimations are accurate and the control law is effective in that the torque 

from the operator required to perform the tasks is reduced almost as theoretically 

guaranteed.  

In summary, this thesis provides novel algorithms and vast control schema for 

the development of the human-robot interaction, and each subject is self-contained 

and worthy of publishing. However, these subjects are essentially linked to each other 

and can be easily integrated. Although the dynamics learning techniques were 

developed separately from the controls for the human-robot interaction, it can be 

directly integrated into the control schema proposed in the previous chapters. In the 

future works, the theoretical work of structured kernels will be first tested in the 

experiments in terms of the prediction errors and the tracking errors in the computed 

torque control. Then this novel modeling techniques can be directly into the Bayesian 

exoskeleton as the dynamics model, or in the virtual impedance control framework by 
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replacing the original dynamics as the torque-based impedance control. By fusing 

these techniques, the overall system can achieve better performances than using either 

of them alone. More can still be done to improve the theoretical part of the structured 

kernels. In Chapter 3, the structured kernels are based on the Lagrangian formulation 

of the dynamics system. However, a similar technique can be used for the 

Hamiltonian formulation, which covers wider families of dynamics system. Also, the 

corresponding control schemes can be developed. As for the empirical techniques, a 

maximum likelihood algorithm can be designed to calibrate the normalization factor 

of the torque sensors in the vector-valued kernel, since it is assumed that all the 

measured generalized force should possess the correct unit. Also, the computational 

time in learning with the vector-valued kernel is another critical issue, which may 

benefit from the techniques from the compressive sampling, greedy scheme or the 

reinforcement learning.  

As for the control of human-robot interaction, the virtual impedance control and 

the Bayesian exoskeleton system can still be improved. In the current design of the 

virtual impedance control, the physical forces from the force sensors or the joint 

torque sensors do not contribute in the risk space. However, in some circumstances, 

the physical forces represent the physical collision which may not be detected by the 

collision avoidance scheme. In this case, the sensed forces should be used in a unified 

way in the risk space to balance the repulsive force in our current design. That is, the 

physical forces can be transformed as the forcing term in the second-order linear 

system in the risk space. In addition, we are interested in the teaching and playing 

scenario with the virtual impedance control, since the shaping of the robot 

configuration is more natural by the physical/virtual contact in the Cartesian space 
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rather than by the joystick. The virtual impedance control may be modified to 

accustom to this need.  

For the Bayesian exoskeleton system, we want to conduct more experiments on 

different subjects to validate the proposed scheme. Since the biosignal model and the 

dynamics models are different from subject to subject, how to efficiently calibrating 

the model with limited data becomes an important topic. Therefore, the proposed 

structured kernels might cater to this need directly. To provide better estimation, 

another layer of the graphical model can be designed in the time domain using 

techniques like Markov chain to eliminate the measurement noises. For example, a 

transition model of the states like the joint velocity and the joint acceleration, which 

are used extensively in the dynamics model, can be designed and integrated into the 

original graphical model. If theses conditional probabilities are too Gaussian 

distributions, the final estimation can still enjoy a closed form solution. Also, the risk 

space approach in Chapter 4 can be used as the admittance interface for the torque 

control of the multiple-joint exoskeleton. As for the implementation, advanced 

exogenous disturbance sensors and EMG sensors can improve the system’s 

performance at once. Since one of the major defects of the biosignal model is due to 

the distortions from the slipping of the EMG sensors or the sweats of long-term 

wearing, a more compact and flexible design or a semi-invasive design can be 

adopted. On the other hand, using the pressure sensor instead of the footswitch can 

offer more information. Further, we want to implement the proposed Bayesian 

exoskeleton system and the robust hybrid control into the full lower-extremity 

exoskeleton and maybe the upper-extremity exoskeleton as well. When considering 

the full-body exoskeleton, the balancing control plays an important figure. In walking, 
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the center of mass or the center of gravity travels along some manifold, so human may 

proceed. Therefore, the assistive control should honor these constraints as well. We 

suggest the techniques from the biped-robot can be used.  

Finally, we suggest a valuable direction for the future researches. Reviewing all 

the works in this thesis and some recent literatures, there is a trend of combining the 

techniques from the control and the machine learning. Since the performance index in 

the control, e.g. tracking error, is similar to cost function in the machine learning, they 

share similar characteristics. The only difference is that most of the machine learning 

algorithms considers only static mappings or stochastic performances rather than the 

dynamics system as in the control system. However, following the design of the 

structured kernel or some recent progresses in the machine learning community, e.g. 

the dynamical systems or the Markov chain in the RKHS, it may be possible to 

develop a whole new theory that can encode the modern control and sampling 

techniques in the machine learning algorithms, which should be another milestone of 

the modern control theory.  
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