
  

  

Abstract—The estimation of the human applying torque is 
critical in many applications, especially in the design of assistive 
exoskeleton. The most common approaches are the estimation 
by the inverse dynamics or by the EMG signal. However, the 
EMG-based torque estimation is not always stable owing to the 
sweats of skin, the noise from posture change, and the nonlinear 
mapping between the EMG signal and the human torque. In 
addition, the estimation based on the dynamic model is unstable 
in the multi-DOFs system and especially in the existence of 
exogenous disturbance, such as ground reaction force. 
Therefore, we propose the Bayesian human intention estimator 
and the graphical model of human-exoskeleton system to solve 
these issues. Through the experiments, the proposed method can 
merge the information from both the EMG signal and dynamic 
model, and can make the estimated torque more stable. 

I. INTRODUCTION 

The estimation of the human applying torque in the design 
of assistive exoskeleton is critical. Most of the exoskeleton 
systems can be regarded as the human torque amplifier [1]. 
Since the estimation of human applying torque is difficult in 
general, various assumptions and models have been proposed 
during last decades. One approach is to implement force 
sensor on the exoskeleton to directly measure the interaction 
force between the operator and the exoskeleton system. The 
extra force sensors, however, increase the costs and the 
weight, and decrease the compactness of the exoskeleton 
system, making the design impractical. Another approach is 
the model-based method that estimates the human applying 
torque under the modeling assumption. We roughly classify 
them into two categories: dynamics model and biosignal 
model. In [2], they derived the dynamic model of the 
exoskeleton system and used the positive feedback to 
increase the sensitivity to the disturbance of the system. The 
unknown parameters of the dynamic model are calibrated in 
the experiments [3] and the exoskeleton can amplify any 
disturbance that comes into the system – even the ground 
impact force. They claimed “…which does not stabilize, will 
only make us stronger.” The real question is whether the 
sensitivity design is stable for all the users regardless of the 
fitness and whether the calibration can be carried with 
different subjects efficiently. The stability issue of the 
sensitivity increasing design was addressed in [4]. They 
applied the band-pass filter to guarantee the robust stability of 
the overall system. Further, they proposed a sophisticated 
smart shoe [5] to estimate the ground reaction force. The 
dynamic model design is standard in the community of the 
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control system, but the main drawbacks are the need of the 
precise modeling and expensive sensors and actuators, not to 
mention the time delay due to the stability and the causality, 
since the disturbance comes into the system only when the 
operator has already moved. The biosignal model alleviates 
the complexity of the dynamic model, and  uses only the 
biosignals such as the electromyography (EMG) signal or the 
electroencephalography (EEG) signal to estimate the 
operator’s intention directly [6-8]. Moreover, EMG and EEG 
signal activates before the actual movement of the operator 
and is directly related to the intention of the operator. As the 
result, a real-time system is possible. Many biosignal models 
have been proposed, including the linear model, the nonlinear 
physiology model, and the fuzzy-neural networks, etc. [9, 10]. 
Due to the low signal-to-noise-ratio (SNR) nature of the 
biosignals, the methods with only biosignal model, however, 
can only perform simple or predefined movements. 
Kawamoto et al. [11] used the clinical database to improve 
the estimation results, and the others used the finite state 
machine [12], or hybrid control scheme [13]. The results are 
not satisfactory for general tasks and the freedom of the 
movement is limited.  

In this paper, we proposed the Bayesian human intention 
estimator based on the probabilistic graphical model to fuse 
the information from both the dynamic model and the 
biosignals model. By human intention, we mean the intended 
applying torque of the operator, which is denoted as human 
applying torque herein. We treat all the measurements, the 
biosignals and the states of the dynamics model, as random 
variables, and use the graphical model to model the joint 
probability. In machine learning, the graphical model can 
help the user visualize the structure and the conditional 
independence of the joint probability, and can simplify the 
Bayesian reasoning required to perform inference and 
learning. With the graphical model, the interaction between 
the biosignal model and the dynamic model is clear, and the 
Bayesian reasoning can be performed to estimate the 
operator’s intention. Inheriting the advantage of the biosignal 
feedback, our system can improve the stability and the 
causality problem in the system with only dynamic model. 

We use the Guassian process regression to model the 
conditional probabilities. That is, the conditional probability 
of the human applying torque given the biosignal, and the 
conditional probability of the human applying torque given 
the states of the dynamics. By adopting the Naïve Bayesian 
assumption, the two conditional probabilities are used to 
inference the human applying torque with Bayes’ theorem. 
Consequently, the estimator can adapt itself in different 
operation zones and trusts the model with more confidence. 
This can be viewed as a smooth switching estimator. The 
estimator biases more to the biosignal model when the current 
SNR is large for instance, and relies on the information 
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provided by the dynamical model conversely. This method, 
therefore, takes the advantage of both the models. 

The paper is organized as follows. Section II gives the 
brief reminder of the graphical model and the Gaussian 
process model. In Section III, we described the framework of 
the Bayesian human intention estimator, and we show how 
the Gaussian process can be learned in the experiments. In 
Section IV, we verify the performance of the proposed model 
in the experiments, and discuss the results in Section V.  
Finally, we conclude the contributions and give the future 
works in Section VI.  

For clarity, we summarize the symbols used in this paper 
in Fig. 1. The bold uppercase denotes the matrix, the bold 
lowercase denotes the vector, and the others are scalar. 

( | , )N x µ Σ  is the multivariate Gaussian distribution of x
with mean µand covariance matrixΣ . P(X) is the probability 
of the set X and the p(x) is the probability density function of 
the random variable x. 

II. PRELIMINARIES 

In this section, we review the essence of the graphical 
model and Gaussian process regression that will be used in 
the following section. Please refer to [14] for the details. 

A. Bayesian Networks and Graphical Model 

The Bayesian network is known as the directed graphical 
models in which the links has particular directionality 
indicated by the arrows. The directed link indicates the 
factorization of joint probability and each directed link 
represents the conditional probability. If there is a link that 
goes form node a to node b, we say a is the parent of b, and b 
is the child of a. Also, the joint probability can be factorized 
into ( , ) ( | ) ( )p a b p b a p a= . We say a graph is fully-connected 
if there is a link between every pair of nodes. In particular, we 
consider here the directed acyclic graphs, which is the graph 
with no directed cycles.  

One of the features of the directed graphical model is that 
it represents the conditional independence.  This call 
d-separation, shorted for directed separation, and we give the 
definition as follows. 

Definition 1. 

Let A, B, and C be arbitrary non-intersecting sets of nodes 
in a directed acyclic graph. A path from A to B is blocked if 
one of the following holds: 

(1) the arrows on the path meet either head-to-tail or 
tail-to-tail at the node, and the node is in the set C, or 

(2) the arrows meet head-to-head at the node, and neither 
the node, nor any of its descendants, is in the set C. 

If all paths from A to B are blocked observing C, then we say 
A is d-separated from B by C, and the graph implies that A 
and B are conditionally independent given C, i.e. 

 P(A,B|C) = P(A|C)P(B|C) 

Once the factorization of the joint distribution is obtained 
from the graph, the inference is easy by using Bayes’ theorem. 
Bayes’ theorem is commonly used in machine learning 
algorithms, because it can incorporates the prior knowledge 

in the learning. This is called maximum a posteriori 
estimation (MAP). Given the a priori probability, the 
algorithm returns the model that maximizes the a posterior 
probability after observing the outcomes. 

B. Gaussian Process Regression 

Gaussian process model is one of the Bayesian machine 
learning methods, which incorporates the prior knowledge 
and can inference the probability distribution of the 
prediction directly. It assumes that the measurement noisesiη , 
i=1,..,n, are independent Gaussian random variables

1( | , )N β −
η 0 I , and 0β > . Under the noise assumption and 

the linear model assumption, each of the random variables in 
the model can be modeled by the Gaussian distribution. 
Therefore, the learning and the inference problems are equal 
to solving the conditional distribution of the Gaussian random 
variables. 

Given the N training samplesZ X Y= × , where 
X={ d

i ∈x ℝ ,i=1,…,N}, Y={ ( )i i iy f η= +x ,i=1,…,N},and 

: df →ℝ ℝ , the conditional probability is then  

 1( | ) ( | , )p Y X N Y β −= Φw I , (1) 

 where HN∈w ℝ , : HNdφ →ℝ ℝ , HN is the dimension of the 

feature space and [ ]1( ) ( )
T

nφ φ=Φ x x⋯ . Assuming that
1( ) ( | , )p N α −=w w 0 I , we know that the marginal 

probability of :=t Φw is given as ( | , )N t 0 K , where 0α > ,
1 Tα −=K ΦΦ is the Gramian matrix with entries defined as 

( , ) : ( ), ( )ij i j i j H
K k φ φ= =x x x x the inner product in the 

feature space. The marginal probability of Y is given by 

 ( ) ( | ) ( ) ( | , )p p p d N= =∫y y t t t y 0 C , (2) 

where 1: = +β −C K I an 1: [ ,..., ]TNy y=y . Finally, the Gaussian 
process regression model can be obtained by deriving the 
conditional probability of the new query point 1N +x given the 
training data y, that is 
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where k = [k(xN+1,x1) … k(xN+1,xN)]T, and c= 
k(xN+1,xN+1)+β-1. 

III.  BAYESIAN HUMAN INTENTION ESTIMATOR 

A. Graphical Model for Exoskeleton System 

In this section, we model the joint probability distribution 
of the exoskeleton system using the graphical model. We use 
the EMG signale for the biosignal model, and the angular 
positionq , angular velocityqɺ , angular accelerationqɺɺ , and the 
exogenous disturbance sensord for the dynamic model. Note 
that we do not assume the specific form or the quality of the 
sensors in this model. The estimator described in the next 
section can automatically optimize the use of information by 
adjusting the weighting of different models. Therefore, the 



  

 

Fig.1. Graphical model of the human-exoskeleton system 
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exogenous disturbance sensor can even be simply the 
foot-switch.  

In the proposed method, we made the following 
assumption. 

Assumption. 

 The total torque Στ applied on each joints and the EMG 
signal eare d-separated by the human applying torque Hτ , 
i.e. the random variables are conditionally independent on 
the true human applying torque.  

 ( , | )= ( | ) ( | )H H HP P PΣ Σe τ τ e τ τ τ  (4) 

This assumption is critical to build following graphical 
model. We argue this is a reasonable assumption, because we 
know the contribution of the operator into the system once we 
know the true human applying torque, and the value of the 
EMG signal becomes irrelevant. The contribution of the 
EMG signal to the total torque is blocked when the human 
applying torque is known. 

We show the graphical model in Fig. 1, where the green 
nodes denote the random variables that can be observed in 
exoskeleton system and the others are the latent random 
variables. We explain the connection of the graphical model 
in the following. We assume that the operator is able to track 
any intended force, so the human applying torqueHτ

determines the value of the EMG-signale; The total torque
Στ applying on each joints is the summation of the human 
applying torque Hτ , torque provided by the exoskeletonEτ , 

and the torqueDτ is passed by the exogenous disturbance d 
via the transpose of the Jacobian, which is determined by the 
angular positionq ; The total torqueΣτ then affects the 

angular accelerationqɺɺ given the current angular positionq
and the angular velocityqɺɺusing the dynamics equation. In 
summary, the graphical models shows the causal relationship 
of the dynamics system of the exoskeleton given by 

 ( ) ( , ) ( ) + +H E D+ + = Σ =M q q B q q q K q τ τ τ τɺɺ ɺ ɺ  (5) 

 T= ( )Dτ J q d , (6) 

where ( ) n n×∈M q ℝ  is the mass matrix,( , ) n n×∈B q qɺ ℝ is the 

Coriolis matrix, ( )K q is the gravity force, ( )J q is the Jacobian 
matrix of the current configuration, and n is the number of 
joints. 

From the rules of graphical model, the path from the 
sensor information of the dynamic model,d ,q ,qɺ , Eτ , to the 

node of the human applying torqueHτ is unblocked when the 

angular accelerationqɺɺ is observed. In this case, a posteriori 
probability of the human applying torque can be inferred, and 
the estimated torque is the torque that maximizes the posterior 
probability. Then again, the EMG signal e can influence the 
human applying torqueHτ since it is its descendent.  

B. Human Intention Estimation by Bayesian Reasoning 

From the graphical model in Fig.1, we can factorize the 
joint probability distribution into 

( , , , , , , , , )

( | ) ( | , , ) ( | , ) ( | , , )

( ) ( ) ( ) ( ) ( )

H E D
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H E
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Σ
= Σ Σ

e q q q d τ τ τ τ

e τ τ τ τ τ τ d q q τ q q

τ τ d q q

ɺ ɺɺ

ɺɺ ɺ

ɺ

. (7) 

The objective is to estimate the conditional probability of the 
human applying torque given the sensor information, 

( | , , , , , ) ~ ( | ) ( | , , , , )H E H H Ep p pτ e q q q τ d τ e τ q q q τ dɺ ɺɺ ɺ ɺɺ , (8) 

which is the direct result from Bayes’s theorem and the 
d-separation. The two parts correspond to the biosignal model 
and the dynamic model respectively. The estimated torque 
then can be computed as the torque that maximizes the 
conditional probability.  

The two conditional probability distribution are 
essentially two Gaussian distributions with meansBioµ , Dynµ

and covariance matricesBioΣ , DynΣ , 

 ( | ) ( | , )H H Bio Biop N=τ e τ µ Σ  (9) 

 and 

 1

1 1 1

( | , , , , ) ( | , )

( ) ( )

( ( ) )

H E H Dyn Dyn

Dyn Dyn inv D inv E D

Dyn H inv D

p N
−

− − −

=

= + − −

= + +

τ q q q τ d τ µ Σ

µ Σ Σ Σ µ τ µ

Σ Σ Σ Σ

ɺ ɺɺ

, (10) 

where  

 ( | , , ) ( | , )inv invp NΣ = Στ q q q τ µ Σɺ ɺɺ  (11) 

 ( | , ) ( | , )D D D Dp N=τ q d τ µ Σ  (12) 

 ( ) ( | , )H H Hp N=τ τ 0 Σ , (13) 

and ( | , )H Bio BioN τ µ Σ , ( | , , )p Στ q q qɺ ɺɺ , ( | , )Dp τ q d are the 
Gaussian process models of the biosignal, the inverse 
dynamics, and the exogenous disturbance force, respectively, 
with the mean and the covariance matrix expressed as in (3), 
and ( ) ( | , )H H Hp N=τ τ 0 Σ is the a priori probability of the 

human applying torque with covariance matrixHΣ . The 
conditional probabilities can be easily derived by using the 
properties of the Gaussian distribution; we leave it for the 
interested readers due to the limited space. 



  

We use three Gaussian process models in the framework 
of the proposed Bayesian human torque estimator, and all of 
them can be learned by MAP in the experiments with the 
proposed exoskeleton system, which will be detailed in the 
next section. With the Gaussian process models, the estimator 
is the MAP solution of the Gaussian distribution that governs 
all the equations given by 

 1 1

1 1 1

ˆˆ( | , , , , , ) ( | , )

ˆˆ ˆ( )

ˆ ( )

H E H H H

H H Bio Bio Dyn Dyn

H Bio Dyn

p N
− −

− − −

=

= +

= +

τ e q q q τ d τ µ Σ

µ Σ Σ µ Σ µ

Σ Σ Σ

ɺ ɺɺ

 (14) 

 ˆ ˆ: arg max ( | , , , , , )H H E Hp= =τ τ e q q q τ d µɺ ɺɺ  (15) 

From (14), the estimator is the weighted mean of different 
models by the precision matrices (the inverse of the 
covariance matrix). Given the current state, the estimator 
trusts the estimation of the model with the higher precision 
more. This can only be accomplished by the use of the 
Gaussian process model. The estimator will consistently bias 
to one of the models if the traditional regression is used. Also, 
we note that the online computation of the Gaussian process 
is fast if the model is linear, since many of the matrix inverses 
can be pre-computed. 

C. Learning the Gaussian Process Regression Model 

In this section we give the design of the experiments to 
learn the Gaussian process models in the proposed Bayesian 
human torque estimation framework. We want to lessen the 
hardware requirement of the exoskeleton system by the 
sophisticated computing. The only required hardware of the 
proposed estimator is the torque control loop and the position 
control loop in the exoskeleton system, the biosignal feedback, 
such as the EMG sensor, and the exogenous disturbance 
sensor of any form. These are more feasible in practice.  

1) The Biosignal Model 

To learn the conditional probability( | )Hp τ e , we take use 
of the joint force sensor in the exoskeleton in the force control 
loop. In the experiments, the operator is asked to wear the 
exoskeleton with the EMG sensors. Then the controller of the 
exoskeleton is set to position regularization mode with 
different postures, rejecting any disturbance that deviates the 
mechanism from the current position. The operator is then 
asked to try to move his leg with arbitrary force, and the 
computer records the EMG signals and the torque sensing 
value of the motors. Assuming that the position controller can 
fix the current position, the Gaussian process model can be 
performed to learn the mapping between the EMG signal and 
the torque, that is( | )Hp τ e . Without loss of generality, we 
use the simple linear model to model the mapping in this 
paper. Linear model in our experience is sufficient to model 
relationship in most postures. A more complex model 
considering the current angular position q can also be used to 
obtain a more accurate model, we left it for the future works.  

2) The Inverse Dynamics Model 

The dynamics of the exoskeleton system can be derived 
based on Euler-Lagrange equation [15], and it can be 
identified that the total joint torque is linear in terms of the 
unknown parameters. Therefore, we can build a linear 

Gaussian process model as mentioned in the previous section. 
In the experiments, the operator is asked to wear the 
exoskeleton and to relax. The controller of the exoskeleton is 
set in position control mode to track some predefined 
trajectories. If the trajectories are sufficient rich [16], then the 
underlying model can be identifying by the feedback of the 
torque sensor information and the current state of the 
exoskeleton to build the model of the conditional probability

( | , , )p Στ q q qɺ ɺɺ .  

3) The Exogenous Disturbance Model 

As mentioned in previous section, we do not assume the 
specific form of the exogenous force sensor. In general, the 
exogenous disturbance in the exoskeleton system is the 
ground reaction force, and the force sensor is footpad. The 
proposed method, however, are not limited to this sensor. 
Other types of the force sensors, even the footswitch in the 
worst case, can also be adopted to improve the overall 
accuracy.  

Two scenarios of the experiment are both possible to learn 
the conditional probability ( | , )Dp τ q d .  In the first case, the 
operator is asked to wear the exoskeleton and relaxed, and the 
controller of the exoskeleton is set to position regularization 
with different postures. In each posture, disturbances are 
injected artificially, and the sensor feedback of the exogenous 
senor, torque sensor, and the angular position are used to 
learn the Gaussian process model.  

In the second case, we collect the data based on the 
learned inverse dynamics model and the measurement of the 
torque sensor. We design this scenario because it is 
sometimes more convenient for the experimenter to collect 
the data while not constraining the movement of the 
exoskeleton. This is can be done by using the learned model 
of the inverse dynamics. From the dynamic equation, we 
know that ( + )D H E= Σ −τ τ τ τ . Since knowing the human 
applying torque is generally impossible, we can, however, ask 
the operator to relax the muscles during the data collection as 
the trick in the previous experiments. With the learned 
inverse dynamics model at hand, the noise model in the 
Gaussian process (1) depends on the prediction of the inverse 
dynamics model, that is to set 1= + inv β −+C K Σ I in (2). Since 

the measurement ofDτ is depending on the estimation ofΣτ , 
the learned Gaussian process model couples with the 
uncertainty of ( | , , )p Στ q q qɺ ɺɺ . In summary, during the 
experiment, the operator is asked to wear the exoskeleton in 
relaxation. The controller is then set to be position controller 
to track some predefined trajectories. The computer collects 
the data of the torque sensor, the exogenous disturbance 
sensor, and the states of the exoskeleton. The conditional 
probability ( | , )Dp τ q d is modeled by the Gaussian regression 

to learn the mapping from q and d to D E= Σ −τ τ τ .  



  

 

Fig. 2. Exploded view of the proposed backdrivable torsion spring actuator, 
Knee orthosis, and Backdrivable torsion spring actuator 

Fig. 3. Measured and estimated human applying torque by biosignal  model 

Fig. 4. Measured and estimated torque of dynamic  model 
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IV.  EXPERIMENTS 

In the following experiments, the data acquisition and the 
controller are implemented on a sbRIO-9642 embedded 
control and acquisition system (National Instrument Inc.) 
with sampling rate 250 Hz. To train each Gaussian process 
model, 6000 training data are sampled uniformly randomly 
from the recorded data in the previously described 
experiments. The EMG signals are measured by the active 
surface EMG electrode with pre-amplifier (B&L Engineering, 
Inc.) placed on the quadriceps femoris and hamstring muscle, 
which is later rectified and the DC-component is removed; 
the states of the exoskeleton systems are calculated by 
numerical difference; the exoskeleton torqueEτ is measured 
by the backdrivable spring torsion actuator (BTSA) described 
below. In addition, all the measurements are filtered by a 
second-order Butterworth filter with cutoff frequency 15 Hz. 

A. Backdrivable Spring Torsion Actuator (BSTA) 

In order to collect the sufficient data for building the 
dynamic model, the biosignal model, and therefore the 
Bayesian human intention estimator, a BTSA system is 
constructed using a simple torsion spring, bevel gears, and an 
actuator. The soft stiffness of the BTSA provides 
mechanically intrinsic safety and measures the torque 
between the human and the actuator. Fig. 2 shows the 
exploded view of the BTSA. Two potentiometers are used. 
Inside, one potentiometer is inserted into the spring to 
measure the deflection of the torsion spring, which can be 
used to calculate the output torque via Hooke’s law. The knee 
angle q is measured by the other potentiometer via the belt 
transmission between the output joint and the input shaft of 
the potentiometer. For the specification of the BTSA, please 
refer to [13].  Finally, we note that with the BTSA the angular 
positoin of the output linke can be measured directly, so the 
effect of the spring can be neglected. 

B. Experimental Setting and Procedures 

Here, the knee swing motion is used as a toy example to 
demonstrate the Bayesian human intention estimator for the 
limited space. In this experiment, the subject was a 
31-years-old and healthy male, who was asked to sit on a 
chair and to drape his foot over the floor. The data collection 
processes are described in the previous section, although we 
do not consider the exogenous disturbance sensor in this 
preliminary stage. By those data, the Bayesian human 
intention estimator can be learned, and the results suggest the 
benefit of this approach. Although this is a simple 
demonstration without the exogenous disturbance, the 
proposed model can be generalized to any other human 
motions and situations.  

In the task for testing the Bayesian human intention 
estimator, the subject is asked perform voluntary movements 
with the exoskeleton. In this experiment, there is no assistive 
torque provided by the exoskeleton. The purpose of this 
simple example is to demonstrate the characteristics of the 
proposed estimator. 

V. EXPERIMENTAL RESULTS 

A. Results of EMG Model 

The collected data and the biosiganl model are shown in 
Fig. 3. The solid black line is the measurement, the solid blue 
line is the estimation, and the dash blue indicated the interval 
within two standard deviations.  It reveals that the variance of 
the prediction is different in different regions. The regions in 
which the variance is small mean more reliable prediction. 
The measured torque and estimated torque have the same 
tendency, and their values are similar. 

B. Results of the Inverse Dynamics Model 

Fig. 4 shows the estimated torque of the dynamic model 
and the measured torque, which are used to verify the inverse 
dynamics model, since no exogenous disturbance model are 
used in this simple experiment. Despite of inconsistency in 
the extreme values, they still share the same tendency, and 
their values are similar. In addition, the result dynamic model 
in this experiment is much better than that of the biosignal 
model in terms of both accuracy and prediction variance, 
because there is no exogenous disturbance is this experiment, 
and that the linear biosignal model is only an approximation 
of the true mapping. 

C. Results of Graphical Model 

The comparison of the estimation of the Bayesian human 
intention estimator, the dynamic model, and the biosignal 
model is shown in Fig. 5. Note that this is the swing motion 
without the assistance of the exoskeleton, so the exoskeleton 
torque is caused by the mechanical impedance between the 



  

 

(a) 

 

(b) 

 

(c) 

Fig.5. Comparison of the biosignal model, the dynamic model and the 
Bayesian human intention estimator. (a) the comparison of three models in a 
trial. (b) the exoskeleton and the angular position. (c) the average 
performance of the three models. 
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operator and the exoskeleton. It is not surprising that the 
estimation of the Bayesian estimator always lies between the 
estimation of the other two models. Also, since there is no 
exogenous disturbance in this experiment, the Bayesian 
estimator bias to the dynamic model almost consistently. 

VI.  DISCUSSION 

In the toy example, we can observe that the Bayesian 
estimator is indeed the weighted sum of the two models 
according to prediction confidence. Although the Bayesian 
estimator biases consistently to dynamic model in this simple 
demonstration, it is suppose the result will change 
dramatically once the exogenous disturbance comes in, since 
the dynamic model fails when the torque generated by the 
exogenous disturbance in (5) cannot by properly estimated, 
which is the major disadvantage of the dynamics model. The 
variance of the prediction of the dynamic model will increase 
significant in the presence of the disturbance, e.g. stepping on 
the floor. In contrast, the biosignal model, despite less 
accurate, is more consistent in the sense it is not affected by 
the presence of the exogenous disturbance. Therefore, if the 
prediction variance induced by both the exogenous 
disturbance and the dynamic model is at the same level as that 

of the biosignal model, the fusion of two models becomes 
critical and meaningful. In particular, if the exogenous force 
disturbance is the simple footswitch, which causes largest 
prediction variance, we suppose the Bayesian estimator may 
bias to the biosignal model once the exogenous disturbance 
comes in. 

In conclusion, the proposed graphical model for the 
human-exoskeleton system is general, since it does not limit 
the source of sensory information. As in the previous 
discussion, we will implement the exogenous disturbance 
sensor into our exoskeleton system to verify the proposed 
estimator in the near future. In particular, we are interested in 
the case when the exogenous force sensor is just a simple 
footswitch. Also, the assistive control experiments should be 
conducted to verify the estimation in tasks such as walking 
and the climbing stairs.  
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