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Abstract—The estimation of the human applying torque is
critical in many applications, especially in the dsign of assistive
exoskeleton. The most common approaches are the esdtion
by the inverse dynamics or by the EMG signal. Howevgthe
EMG-based torque estimation is not always stable owg to the
sweats of skin, the noise from posture change, atite nonlinear
mapping between the EMG signal and the human torqueln
addition, the estimation based on the dynamic modé$ unstable
in the multi-DOFs system and especially in the exisnce of
exogenous disturbance, such as ground reaction fac
Therefore, we propose the Bayesian human intentiorsgémator
and the graphical model of human-exoskeleton systetn solve
these issues. Through the experiments, the proposetthod can
merge the information from both the EMG signal and ¢ynamic
model, and can make the estimated torque more stahl

. INTRODUCTION

The estimation of the human applying torque indésign
of assistive exoskeleton is critical. Most of theogkeleton
systems can be regarded as the human torque anplii
Since the estimation of human applying torque ficdilt in
general, various assumptions and models have beposed
during last decades. One approach is to implemertef
sensor on the exoskeleton to directly measurentegaiction
force between the operator and the exoskeletorrsysthe
extra force sensors, however, increase the cosistlam

weight, and decrease the compactness of the ewtskel

system, making the design impractical. Another apph is

control system, but the main drawbacks are the éede
precise modeling and expensive sensors and acsuaturto
mention the time delay due to the stability anddaesality,
since the disturbance comes into the system onknvthe
operator has already moved. The biosignal modeliafles
the complexity of the dynamic model, and uses dhby
biosignals such as the electromyography (EMG) signthe
electroencephalography (EEG) signal to estimate

operator’s intention directly [6-8]. Moreover, EMEBd EEG
signal activates before the actual movement ofoftwerator
and is directly related to the intention of the igper. As the
result, a real-time system is possible. Many biwsignodels
have been proposed, including the linear modelntimdinear
physiology model, and the fuzzy-neural networks, &, 10].
Due to the low signal-to-noise-ratio (SNR) naturetloe
biosignals, the methods with only biosignal motielvever,
can only perform simple or
Kawamoto et al. [11] used the clinical databasérprove
the estimation results, and the others used thte fstate
machine [12], or hybrid control scheme [13]. Theulés are
not satisfactory for general tasks and the freeddnthe
movement is limited.

In this paper, we proposed the Bayesian humantioten
estimator based on the probabilistic graphical rmtaléuse

the

predefined movements.

the information from both the dynamic model and the

biosighals model. By human intention, we mean tierided
applying torque of the operator, which is denotsdhianan

the model-based method that estimates the humayim®p applying torque herein. We treat all the measurements, the

torque under the modeling assumption. We roughdgsify

biosignals and the states of the dynamics modealamdom

them into two categories: dynamics model and biedig \gariables, and use the graphical model to modeljdire

model. In [2], they derived the dynamic model o th hropapility. In machine learning, the graphical rebdan
exoskeleton system and used the positive feedback Help the user visualize the structure and the ciomai

increase the sensitivity to the disturbance ofdystem. The

independence of the joint probability, and can sifyghe

unknown parameters of the dynamic model are caélirin  Bayesian reasoning required to perform inference an

the experiments [3] and the exoskeleton can amglify
disturbance that comes into the system — even ithend
impact force. They claimed “which does not stabilize, will

learning. With the graphical model, the interactmetween
the biosignal model and the dynamic model is claad the
Bayesian reasoning can be performed to estimate

only make us stronger.” The real question is whether theserator's intention. Inheriting the advantagehaf biosignal

sensitivity design is stable for all the users rdigss of the
fitness and whether the calibration can be carnéth
different subjects efficiently. The stability issugf the
sensitivity increasing design was addressed in J4ley
applied the band-pass filter to guarantee the tadtability of
the overall system. Further, they proposed a stipaied
smart shoe [5] to estimate the ground reactioneforiche
dynamic model design is standard in the communiitthe
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feedback, our system can improve the stability &mel
causality problem in the system with only dynamizdel.

the

We use the Guassian process regression to model the

conditional probabilities. That is, the conditiomabbability
of the human applying torque given the biosignal] #he
conditional probability of the human applying toeqgiven
the states of the dynamics. By adopting the NaiageBian
assumption, the two conditional probabilities aedi to
inference the human applying torque with Bayesbthen.
Consequently, the estimator can adapt itself ifedbift
operation zones and trusts the model with moreidente.
This can be viewed as a smooth switching estimatbe
estimator biases more to the biosignal model whermtirrent
SNR is large for instance, and relies on the infdiom



provided by the dynamical model conversely. Thighod, in the learning. This is called maximum a posterior
therefore, takes the advantage of both the models. estimation (MAP). Given thea priori probability, the
algorithm returns the model that maximizes ¢éhposterior

The paper is organized as follows. Section Il githes probability after observing the outcomes.

brief reminder of the graphical model and the Giaumss

process model. In Section Ill, we described thenéaork of B. Gaussian Process Regression

the Bayesian human intention estimator, and we show Gaussian process model is one of the Bayesian m&chi

the Gaussian process can be learned in the expeEN@ |earming methods, which incorporates the prior kieclge

Section IV, we verify the performance of the prapibsnodel ang can inference the probability distribution diet

in the experiments, and discuss the results ini@eot. ;e giction directlylt assumes that the measurement najses

Finally, we conclude the contributions and give fheure i=1 ind d G . d iabl

works in Section VI. i=1,.,n, gre independent aussian - random  variables
N(nm|0,871), and8>0. Under the noise assumption and

L . the linear model assumption, each of the randonalias in
in Fig. 1. The bold uppercase denotes the matni, tiold the model can be modeled by the Gaussian distoibuti

lowercase _denotes th_e v_ector, and . the _oth_ers_ aaiarsc Therefore, the learning and the inference problaresequal
N(x|p,X) is the multivariate Gaussian distribution ®f ¢, 5o|ying the conditional distribution of the Gaia random
with meanp and covariance matr® . P(X) is the probability variables.

of the sefX and thep(x) is the probability density function of
the random variable.

For clarity, we summarize the symbols used in plaiger

Given the N training samplesZ = X xY , where
X={ x, OR" ;i=1,...N}, Y={ vy =f(x,)+7 ,i=1,...N},and
ll.  PRELIMINARIES f:RY - R, the conditional probability is then

In this section, we review the essence of the decaph
model and Gaussian process regression that willsee in p(Y [ X)=N(Y |[®ow,57), 1)
the following section. Please refer to [14] for thetails.

A. Bayesian Networks and Graphical Model

The Bayesian network is known as the directed dcaph
models in which the links has particular directiitya p(w)=N(w|0,a07'l) , we know that the marginal
indicated by the arrows. The directed link indisatite probapility oft := ®wis given asN(t |0,K ), wherea >0,
factorization of joint probability and each diredtdink T . o . )
represents the conditional probability. If thereaidink that =a ®® is the Gramian matrix with entries defined as
goes form noda to nodeb, we saya is the parent db, andb  K;, =k(x;,x,) = <(/)(xi),qo(xj )>H the inner product in the
is the child ofa. Also, the joint probability can be factorized
into p(a,b) = p(b|a)p(a). We say a graph is fully-connected

wherew OR™ | @:R® - R™ | N,, is the dimension of the
feature space ambl=[g(x,) - @(x,)]" . Assuming that

feature space. The marginal probabilityvas given by

if there is a link between every pair of nodeganticular, we p(y) = j p(y [t)pt)d =N |0.C), (2)
consider here the directed acyclic graphs, whighésgraph
with no directed cycles. whereC : =K +874 any :=[y,,...,y, ' . Finally, the Gaussian

One of the features of the directed graphical mixitat Process regression model can be obtained by dgritfie
it represents the conditional independence. Tha#i c conditional probability of the new query poky,, given the
d-separation, shorted for directed separationvendive the training datay, that is
definition as follows.

P(Viar Kna) 1Y) = N Yy IMKy21),07 K1)

Definition 1. K'CYy
M(Xy4) = B 3
Let A, B, and C be arbitrary non-inter secting sets of nodes 5 ) . ®
in a directed acyclic graph. A path from A to B is blockedif 0% (Xy.y) =C—k'C7k
one of the following holds: where k = [KOws1X1) ... Kowsixy]', and c=

(1) the arrows on the path meet either head-to-tail or  K(Xn+1,Xn+1)+52
tail-to-tail at the node, and the nodeisin the set C, or

(2) the arrows meet head-to-head at the node, and neither
the node, nor any of its descendants, isin the set C.

I1l.  BAYESIAN HUMAN INTENTION ESTIMATOR

A. Graphical Model for Exoskeleton System

) In this section, we model the joint probability tdisution

If all paths from A to B are blocked observing C, thenwe sy f the exoskeleton system using the graphical matlel use

A :jsg-separa(ljt_?_cﬂrorn B bg C, j‘j”dtthfe graé)h_ impliesthat A 1o EMG signaefor the biosignal model, and the angular

and b are condtionally independent given &, 1.€. positionq, angular velocity, angular acceleratidapn, and the

P(A,B|C) = P(A|C)P(B|C) exogenous disturbance sendtor the dynamic model. Note

that we do not assume the specific form or theityuaf the

sensors in this model. The estimator describedchén riext

I.,gection can automatically optimize the use of imfation by
djusting the weighting of different models. Theref the

Once the factorization of the joint distributionoistained
from the graph, the inference is easy by using Bayeorem.
Bayes’ theorem is commonly used in machine learni
algorithms, because it can incorporates the pmawkedge



exogenous disturbance sensor can even be simply the
foot-switch.

Notation
T, -human applying torque

In the proposed method, we made the following _ e: EMG signal

I
I
I
assumpti (z.) | : isti
ption. I\‘\rH/Il I ‘tD/I | 7. :exoskeleton assisting torq
Assumption. o | d: exogz?nous disturbance fo
| | 7, : effective exogenous torqu

The total torquet applied on each joints and the EMG | (2 | St :total joint torque
signal eare d-separated by the human applying torquet,, , o | : q: angular position
i.e. the random variables are conditionally independent on Biosignal | g: angular velocity

I

. Model
the true human applying torque. §: angular acceleration

P(e, ZT |TH ):P (e |TH )P (ZT |TH ) (4) Dynamic Model

This assumption is critical to build following gaipal 91 Graphical model of the human-exoskeletotesys

model. We argue this is a reasonable assumpticauise we

know the contribution of the operator into the sysionce we

know the true human applying torque, and the valuthe P(€,9,0,9,d,7, ,T¢ ;75 2T)

EMG signal becomes irrelevant. The contributiontioé = pe|t,)pEr T, T 1 P, Dot Eraqg) (7)

EMG signal to the total torque is blocked when lhenan .
applying torque is known. p(r,,) p(z¢) p(d) P(a) P(€)

We show the graphical model in Fig. 1, where theegr The objective is to estimate the conditional proligiof the
nodes denote the random variables that can beasssém human applying torque given the sensor information,
exoskeleton system and the others are the latemitora o7 - ‘N
variables. We explain the connection of the graghicodel P(ry [€0.047: d)~Plu BPE BAQT D, (8)

in the following. We assume that the operator i @track which is the direct result from Bayes’s theorem dhd
any intended force, so the human applying torgye d-separation. The two parts correspond to the ¢masimodel

determines the value of the EMG-sig@alThe total torque and the dynamic model respectively. The estimateque
St applying on each joints is the summation of the anm then can be computed as the torque that maximizes t
applying torquer,, , torque provided by the exoskeletgn ~ conditional probability.

and the torque, is passed by the exogenous disturbasice ~ The two conditional probability distribution are

via the transpose of the Jacobian, which is detechby the €ssentially two Gaussian distributions with meags, o,
angular positiorg ; The total torqueer then affects the and covariance matric&s, , =

angular acceleratioijgiven the current angular positign B
and the angular velocityusing the dynamics equation. In P(ry 1€)= Ny I1ao T ) ©)

summary, the graphical models shows the causdiae&hip  and
of the dynamics system of the exoskeleton given by

M@)+B@.d)X +tK@)=Zr =1+t +1,  (5)

Dyn !

p(ty 19.9.4,7 d)=N(, IMDyn ’ZDyn )

T "lDyn = EDW(EIHV +ZD)_1(uinv _TE _I'ID) ! (10)
ro=l@rd, © Eo, = (51 +(5, +55) )
whereM (@) OR™" is the mass matrig(q,q) OR™ is the \yhere
Coriolis matrixK (q) is the gravity force](q) is the Jacobian o=t [9,4.d)= N Er | . ) (11)

matrix of the current configuration, amdis the number of
joints. p(t, 19,d)=N(r; |pp Zp) (12)
From the rules of graphical model, the path frora th
sensor information of the dynamic modklg,q, ., to the
node of the human applying toratjeis unblocked when the and N(t,, |pg, . Zg5,) » P(ET]0.6.d) , p(r, |0.,d) are the
angular acceleratidijis observed. In this case,posteriori ~ Gaussian process models of the biosignal, the sever
probability of the human applying torque can beirgd, and dynamics, and the exogenous disturbance forceecésply,
the estimated torque is the torque that maximizegposterior With the mean and the covariance matrix expressed (&),
probability. Then again, the EMG sigrakan influence the andp(r,)=N(r,, |0,X, )is thea priori probability of the
human applying torque, since it is its descendent. human applying torque with covariance maftix . The

. P . ; conditional probabilities can be easily derivedusing the
B. Human [ntention _Est|mat|on b_y Ba_lyesuan Reasoning properties of the Gaussian distribution; we leavéoi the
__ From the graphical model in Fig.1, we can factotize jnterested readers due to the limited space.

joint probability distribution into

p(ry) =N(r, [O.Zy), (13)



We use three Gaussian process models in the frarkew@aussian process model as mentioned in the presemni®on.
of the proposed Bayesian human torque estimatdrafirof In the experiments, the operator is asked to wéar t
them can be learned by MAP in the experiments wiéh exoskeleton and to relax. The controller of theskebeton is
proposed exoskeleton system, which will be detaitethe set in position control mode to track some precsfin
next section. With the Gaussian process modelgdtimator trajectories. If the trajectories are sufficiemtr{16], then the
is the MAP solution of the Gaussian distributioattgoverns underlying model can be identifying by the feedbatkhe

all the equations given by torque sensor information and the current statethsf
o . exoskeleton to build the model of the conditionallability

p(t, le,q.a.9,7c d)=N, 1, X, ) p(Zt]d,9,4).
~ — 2 _1 _1 ~
Py = Zy (Zgokao * Zopbon) (14) " 3) The Exogenous Disturbance Model
X, = (g tEg) " As mentioned in previous section, we do not asstirae
. L . specific form of the exogenous force sensor. Inegaln the
T, margmaxp €, PAAAT: d Fpy, (15)  exogenous disturbance in the exoskeleton systertheds

ground reaction force, and the force sensor ispimt The
roposed method, however, are not limited to tleisser.
ther types of the force sensors, even the foathwit the
worst case, can also be adopted to improve theabhver
accuracy.

From (14), the estimator is the weighted mean &eint
models by the precision matrices (the inverse of t
covariance matrix). Given the current state, themegor
trusts the estimation of the model with the higpegcision
more. This can only be accomplished by the usehef t
Gaussian process model. The estimator will condistbias Two scenarios of the experiment are both possiblearn
to one of the models if the traditional regressfonsed. Also, the conditional probabilitp(t,, |q,d). In the first case, the

YV? ”Ot,?‘ Lhat thg ?'_""Pe computation of trf\ekga_us.pimcess operator is asked to wear the exoskeleton anded|and the
IS asbtl the mode |sd|near, since many of thetix INVerses ., niroller of the exoskeleton is set to positiogularization
can be pre-computed. with different postures. In each posture, distudesnare
C. Learning the Gaussian Process Regression Model injected artificially, and the sensor feedbackief éxogenous

In this section we give the design of the experiisda senor, torque sensor, and the angular positionuseel to

learn the Gaussian process models in the propoagédsin learn the Gaussian process model.
human torque estimation framework. We want to lesbke In the second case, we collect the data based @n th
hardware requirement of the exoskeleton system Hgy tlearned inverse dynamics model and the measureoh¢ne
sophisticated computing. The only required hardwaréne torque sensor. We design this scenario becauses it i
proposed estimator is the torque control loop &edobsition sometimes more convenient for the experimenterottect
control loop in the exoskeleton system, the bicai@edback, the data while not constraining the movement of the
such as the EMG sensor, and the exogenous dist&baaxoskeleton. This is can be done by using the ésamodel
sensor of any form. These are more feasible intipec of the inverse dynamics. From the dynamic equatise,
1) The Biosignal Model know thatr, = >t -(t,+t:) . Since knowing the human
. » applying torque is generally impossible, we canyéwer, ask

To learn the conditional probabilit(t,, |€), we take use the operator to relax the muscles during the daitaction as
of the joint force sensor in the exoskeleton inftree control the trick in the previous experiments. With the rieal
loop. In the experiments, the operator is askeddar the inverse dynamics model at hand, the noise modehén
exoskeleton with the EMG sensors. Then the coetrolf the Gaussian process (1) depends on the predictidredhverse
exoskeleton is set to position regularization mosli¢h dynamics model, that is to €@tK +X, + 7' in (2). Since

different postures, rejecting any disturbance tleatiates the . . Lo
mechanism from the current position. The operagothen the measurement of, is depending on the estimationZf,

asked to try to move his leg with arbitrary foremd the the learned Gaussian process model couples with the
computer records the EMG signals and the torqusisgn uncertainty of p(Zt|q.,4,4) . In summary, during the
value of the motors. Assuming that the positiontaler can  experiment, the operator is asked to wear the etedan in

fix the current position, the Gaussian process hode be relaxation. The controller is then set to be poagiitontroller
performed to learn the mapping between the EMGadignd to track some predefined trajectories. The compediects
the torque, that ip(t,, |€). Without loss of generality, we the data of the torque sensor, the exogenous bigstoe
use the simple linear model to model the mappinghia ~ S€NSOr, and the states of the exoskeleton. Theitzoral
paper. Linear model in our experience is sufficienmodel Pprobability p(t;, |g,d)is modeled by the Gaussian regression
relationship in most postures. A more complex modeb |earn the mapping fromandd tot, =3t-1,.

considering the current angular positgpoan also be used to

obtain a more accurate model, we left it for thieifer works.

2) The Inverse Dynamics Model

The dynamics of the exoskeleton system can be abkriv
based on Euler-Lagrange equation [15], and it can b
identified that the total joint torque is linear terms of the
unknown parameters. Therefore, we can build a finea
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Fig. 2. Exploded view of the proposed backdrivabtsion spring actuator,
Knee orthosis, and Backdrivable torsion spring atctu

IV. EXPERIMENTS

In the following experiments, the data acquisitzon the

controller are implemented on a sbRIO-9642 embedded

control and acquisition system (National Instrumémt.)
with sampling rate 250 Hz. To train each Gaussiatgss
model, 6000 training data are sampled uniformlydcanly
from the recorded data

surface EMG electrode with pre-amplifier (B&L Engaring,
Inc.) placed on the quadriceps femoris and hangstrinscle,
which is later rectified and the DC-component imoged;

the states of the exoskeleton systems are caldulbie
numerical difference; the exoskeleton torqus measured
by the backdrivable spring torsion actuator (BTS£3cribed
below. In addition, all the measurements are #iteby a
second-order Butterworth filter with cutoff frequesnl5 Hz.

A. Backdrivable Spring Torsion Actuator (BSTA)
In order to collect the sufficient data for buildinthe

in the previously described
experiments. The EMG signals are measured by ttieeac
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Fig. 3. Measured and estimated human applying sbybiosignal model

T T T
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Fig. 4. Measured and estimated torque of dynamacieh

In the task for testing the Bayesian human intentio
estimator, the subject is asked perform voluntaoy@ments
with the exoskeleton. In this experiment, theredsassistive
torque provided by the exoskeleton. The purposehi
simple example is to demonstrate the charactesisticthe

dynamic model, the biosignal model, and therefdie t yoposed estimator.
Bayesian human intention estimator, a BTSA system |

constructed using a simple torsion spring, bevatgeand an
actuator.

V. EXPERIMENTAL RESULTS

The soft stiffness of the BTSA provides

mechanically intrinsic safety and measures the uergA. Results of EMG Model

between the human and the actuator. Fig. 2 shows th The collected data and the biosiganl model are shiow
exploded view of the BTSA. Two potentiometers asedl  Fig. 3. The solid black line is the measuremer,slid blue
Inside, one potentiometer is inserted into the ngprto  |ine is the estimation, and the dash blue indicétednterval
measure the deflection of the torsion spring, whieh be  wjithin two standard deviations. It reveals that #ariance of
used to calculate the output torque via Hooke's lBie knee  the prediction is different in different regionshdregions in

angleq is measured by the other potentiometer via the beyhich the variance is small mean more reliable jot&zh.

transmission between the output joint and the irgaift of
the potentiometer. For the specification of the BT Blease
refer to [13]. Finally, we note that with the BT $#e angular
positoin of the output linke can be measured diyesb the
effect of the spring can be neglected.

B. Experimental Setting and Procedures

Here, the knee swing motion is used as a toy examapl
demonstrate the Bayesian human intention estinfatathe
limited space. In this experiment, the subject was
31-years-old and healthy male, who was asked torsia
chair and to drape his foot over the floor. Theadadllection
processes are described in the previous sectithgualh we
do not consider the exogenous disturbance sensdiisn

The measured torque and estimated torque haveathe s
tendency, and their values are similar.

B. Results of the Inverse Dynamics Model

Fig. 4 shows the estimated torque of the dynamideho
and the measured torque, which are used to véwfyriverse
dynamics model, since no exogenous disturbance Inaoee
used in this simple experiment. Despite of incdesisy in
the extreme values, they still share the same tenygeand
their values are similar. In addition, the resyihamic model
in this experiment is much better than that of biesignal
model in terms of both accuracy and prediction arzoe,
because there is no exogenous disturbance isxgpésieent,
and that the linear biosignal model is only an agpnation

preliminary stage. By those data, the Bayesian Mmumaf the true mapping.

intention estimator can be learned, and the resuligest the

benefit of this approach. Although this is a simplé>- Resultsof Graphical Model
demonstration without the exogenous disturbances th The comparison of the estimation of the Bayesiamdm
proposed model can be generalized to any other humiatention estimator, the dynamic model, and thesigioal

motions and situations.

model is shown in Fig. 5. Note that this is thergyvimotion
without the assistance of the exoskeleton, so tbhekeleton
torque is caused by the mechanical impedance battee
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Fig.5. Comparison of the biosignal model, the dyitamodel and the
Bayesian human intention estimator. (a) the corsparof three models in a
trial. (b) the exoskeleton and the angular positi¢c) the average
nerformance of the three mos

operator and the exoskeleton. It is not surpridimgt the
estimation of the Bayesian estimator always ligsveen the
estimation of the other two models. Also, sincer¢his no
exogenous disturbance in this experiment, the Bamyes
estimator bias to the dynamic model almost consilste

VI. DISCUSSION

In the toy example, we can observe that the Bagesia

estimator is indeed the weighted sum of the two ef®d
according to prediction confidence. Although they®&san
estimator biases consistently to dynamic modehiggimple
demonstration, it is suppose the result will
dramatically once the exogenous disturbance comesrice
the dynamic model fails when the torque generatedhb
exogenous disturbance in (5) cannot by properlynased,
which is the major disadvantage of the dynamicsehodthe
variance of the prediction of the dynamic model imitrease
significant in the presence of the disturbance,sapping on
the floor. In contrast, the biosignal model, despiéss
accurate, is more consistent in the sense it iaafietted by
the presence of the exogenous disturbance. Therdfdhe
prediction variance induced by both the exogeno
disturbance and the dynamic model is at the sanet e that

change

of the biosignal model, the fusion of two modelsdraes
critical and meaningful. In particular, if the exawus force
disturbance is the simple footswitch, which caukegest
prediction variance, we suppose the Bayesian estimnaay
bias to the biosignal model once the exogenousirtiahce
comes in.

In conclusion, the proposed graphical model for the

human-exoskeleton system is general, since it doefimit

the source of sensory information. As in the prasio
discussion, we will implement the exogenous disinde
sensor into our exoskeleton system to verify theppsed
estimator in the near future. In particular, weiaterested in
the case when the exogenous force sensor is jeshae
footswitch. Also, the assistive control experimestisuld be
conducted to verify the estimation in tasks suctwalkking
and the climbing stairs.
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