
中國機械工程學會第二十七屆全國學術研討會論文集                           國立台北科技大學 台北市 

中華民國九十九年十二月十日、十一日                                       Paper number: EE08-009 

 

 

Motor Imagery Recognition for Brain-Computer Interfaces Using Hilbert- 

Huang Transform and Effective Event-Related-Desynchronization Features 

 

Ching-An Cheng1, Han-Pang Huang1*, and Yi-Hung Liu2 
 

1 Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 
2 Department of Mechanical Engineering, Chung Yuan Christian University, Chungli, Taiwan 

Tel: (02)33662700, Email: hanpang@ntu.edu.tw 

 

Abstract  
Motor imagery recognition has been considered an 

important topic in the brain-computer interface (BCI) 

community. Due to noises and artifacts in signals, how 

to gain satisfactory classification accuracy is still a 

critical issue. We propose in this paper a novel method 

to address this issue. The method consists of three steps. 

Firstly, EEG signals from different electrodes are 

transformed into Hilbert spectrums by Hilbert-Huang 

Transform (HHT). A set of features are then extracted 

from the spectrums by the proposed feature extraction 

method. The features can effectively represent the 

event-related-desynchronization (ERD) during motor 

imagery. Finally, two different classification schemes 

are employed to accomplish the task of Motor imagery 

recognition. Experiments on the BCI 2003 competition 

data set indicate that our method achieve better 

classification accuracy and higher mutual information 

(MI) than the winner of the BCI 2003 competition. 
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Hilbert-Huang transform, mutual information, event 

related desynchronization 

1. Introduction  
The Brain Computer Interface (BCI) is an interface 

technique between human and computer which can help 

severely motor-disabled patients to communicate and 

control the environment [6], [7]. Usually the EEG 

signals are preprocessed to improve performance. 

High-Pass Filter and Low-Pass Filter are used to 

eliminate the noise and artifacts (EOG or EMG). 

However, the artifacts and the desired EEG are usually 

in the same frequency range. Various feature extraction 

methods have been proposed, such as ICA and PCA, etc. 

However the results are not satisfactory due to the 

non-stationary characteristics of EEG and the limited 

knowledge to the brain function. Therefore, how to 

extract distinguishing features from EEG becomes 

critical for motor imagery recognition. 

During the imaginary movement, the energy of mu 

wave (8~12Hz) varies [2] [9]. Ideally, the Event-Related 

Desynchronization (ERD) should be found significantly 

in the electrode C3 and C4. However in practice, the 

ERD is not easy to detect due to low SNR, making the 

problem of motor imagery recognition intractable. 

Previously, the raw EEG data is transformed into 

frequency domain by methods like Fourier Transform [8] 

and Wavelet Transform. Recently, some researches used 

the Hilbert-Huang Transform (HHT) [1]. The Hilbert 

spectrum in HHT provides a better transient response 

than that of Fourier Transform and Wavelet Transform. 

However the question lies on whether a better transient 

resolution provides us a better view for imaginary 

movement detection. Hilbert spectrum is more discrete 

than the frequency spectrum of Fourier Transform and 

Wavelet Transform. On the other hand, the ERD effect 

is a macroscopic phenomenon to time, while Hilbert 

spectrum shows as a microscopic view. Thus some 

modification must be made to suit for the classification 

of imaginary movement when using HHT. In this paper, 

we devise a method based on HHT. This method can 

effectively detect the ERD during motor imagery, 

thereby improving the classification performance. 

This paper is organized as follows. In Section 2, we 

first describe the EEG data set used in this work. Then 

the HHT and analysis on EEG are given in Section 3. 

Section 4 introduces our method in detail. Experimental 

results are presented in Section 5. Conclusions are 

drawn in Section 6. 

2. Data Description 
The data used in this work are those from the Graz 

BCI competition III, 2003 [4]. The data were from a 

normal subject, a 25 years old female, during a feedback 

session. The session consists of 7 runs with 40 trials 

each. Each trial is of 9 s, and is illustrated in the 

paradigm as Fig. 1. In the period of 0-2 s, the subject 

was asked to relax. At 2=t s, an acoustic stimulus 

indicates that a motor imaginary task is ready to start, 

and then the symbol “+” is displayed on the screen for 1 

s. Next, an arrow (left or right) is displayed as a cue, 

which lasts for 6s ( 3=t  to 9=t ). During the 

feedback period, the subject was asked to imagine a 

right or left hand movement. During the 9s-length trial, 

the EEG signals, recorded from C3, Cz, and C4, where 

Cz is a reference, were collected with a sampling rate of 

128 Hz and filtered between 0.5 and 30 Hz. 
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Fig.1 The paradigm of the Graz BCI competition III, 2003. 

3. HHT and Analysis on EEG 

The HHT consists of two parts: empirical mode 

decomposition (EMD), and Hilbert transform. First, the 

EMD decomposes an EEG signal )(tx  into intrinsic 

mode functions (IMFs) )(tc j , nj ,...,1= . The original 

signal can thus be expressed as 
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where )(trn  is the residue signal, which is a monotonic 

function and it stands for the mean trend of the original 

signal )(tx . In the EMD, the IMFs are generated by 

using a sifting process (please refer to [3] for more 

details on the sifting process), and the obtained IMFs 

will be almost adaptive, orthogonal, and complete. 
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Fig. 2 EMD result on an EEG signal from C3 during one trial of 9 s. 
The left-hand imaginary movement was performed during 3-9 s. 

Fig. 2 shows the EMD result on a 9s EEG signal from 

C3 during one trial, where the task of left-hand 

imaginary movement was performed within 3-9 s. The 

top subfigure shows the original EEG signal. Note that 

only six IMFs were extracted and shown in Fig. 2 

because the remaining IMFs are close to useless: they 

have almost no contribution to the detection of ERD. 

Namely, the bottom signal is not the real residue since it 

is not monotonic. It can be observed from Fig. 2 that the 

first two IMFs have higher frequency components than 

the other four. 

After performing the EMD on )(tx , we obtain a set 

of IMFs. The Hilbert transform is then performed on 

each IMF )(tc j  to compute its Hilbert spectrum, 
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where PV denotes the Cauchy principal value. With the 

Hilbert spectrum, the analytic signal )(tz j  is defined 

as the following complex series, 
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where 
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amplitude of )(tc j , and )/(tan)( 1

jjj cyt −=  is the 

phase function. Finally, the instantaneous frequency 
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can be obtained. The advantage of the Hilbert transform 

over the fast Fourier transform (FFT) is clear: Hilbert 

spectrum can represent the time-frequency-magnitude 

variations, whereas the FFT spectrum can present only 

frequency-magnitude variations. Fig. 3 shows the 

Hilbert spectrums of the IMFs from the C3 and C4 EEG 

during left-hand imaginary movement, respectively. It 

can be observed from Fig. 3 that in 3-9 s, the alpha-band 

energy of C3 is relatively higher, which indicates that 

the C4 Hilbert spectrum can effectively reflect the ERD 

result during left-hand motor imagery. 

 

 
Fig. 3. The Hilbert spectrums of C3 (top) and C4 (bottom).  
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4. Method 

4.1 Choice of IMFs 

While HHT appears to be effective in detecting ERD, 

it is computationally expensive. A large number of 

iterations will be required in generating each IMF, 

making the EMD process time-consuming. As defined, 

the EMD process is stopped until a monotonic function 

(the residue) is obtained. However, one does not need to 

accomplish the whole EMD process in practice. In other 

words, even if all IMFs of an EEG signal are found, not 

all of them will be useful for the detection of ERD. Fig. 

4 summarizes the energy contribution of the IMFs 

shown in Fig. 2. The sum of the energy of the first three 

IMFs contributes more than 80% of the total energy of 

the raw EEG signal, and the other part of the energy is 

almost equally distributed over the rest.  
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Fig. 4. The contribution of different IMFs of EEG signals. The label 1 

in the x axis denotes the first IMF, and label 2 denotes the percentage 
of the energy contributed by the 1st and the 2nd IMFs and so on. 

 

Fig. 5. The top left figure shows the averaged Hilbert spectrum of the 
first IMFs of the 140 EEG signals recorded from 140 trials of motor 

imagery, and so on. The frequency range of each IMF is different from 
each other. 

Fig. 5 gives another view of how different IMFs take 

part in an EEG signal. Fig. 5 is the averaged Hilbert 

spectrum of 140 different EEG signals of imaginary 

movement, where the numbers of right-hand and 

left-hand imaginary movements are equal. It shows that 

the first IMF stochastically well distributed over the 

frequency range from DC to 32Hz, the second IMF 

focuses on the frequency range from 8 to 13Hz, the third 

IMF occupies the frequency range from DC to 10Hz, 

and the frequency ranges of the other IMFs mainly lie 

near DC. It follows that the first three IMFs have 

already enough information needed for ERD detection. 

Therefore, in this work each EEG signal is decomposed 

six IMFs by EMD, and the first three of them are used 

to generate the Hilbert spectrum. Next, we introduce 

how to extract features from the Hilbert spectrum. 

4.2 Feature Extraction on the Hilbert spectrum 

Our method extracts features from a moving window 

over the Hilbert spectrum. For a time point t , its 

corresponding moving window is within the interval of 

],[ ttt + , where t  is the size of the window. As 

mentioned, the ERD occurs on the contralateral side of 

the brain when performing a right-hand or left-hand 

motor imagery task. We therefore propose a new feature 

extraction method which can effectively represent the 

energy difference in alpha band between the signals 

from channels C3 and C4.  
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Fig. 6. The sum of top energy peaks (STEP) in the Hilbert spectrum 

(HS) over time as a feature during the left-hand imaginary movement. 

However, different from the conventional methods 

which consider the total energy in the alpha band, our 

method considers only the sum of some highest 

time-frequency components in the alpha band. For 

example, on the Hilbert spectrum, if there are m 

time-frequency components falling into the alpha band 

within the moving window, we do not consider all of 

them but select some components which have higher 

energy. Note that the number m is determined by the 

window size t . Hence, only top %p  energy peaks, 

i.e., top m  energy peaks where %pmm = , will be 
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chosen. By doing so, the noises will be eliminated for 

their energy is relatively lower. At each time point, the 

sum of top energy peaks ( )(tSTEP ) is calculated as a 

feature for each channel. With the feature STEP, ERD 

during left-hand imaginary movement can be easily 

detected, as indicated in Fig. 6, where the STEP of C3 is 

significantly larger than that of C4 at all time points, 

except for the time point st 4.5= . Based on the feature 

STEP, we further devise two kinds of classification 

schemes for comparison. 

4.3 Classification Schemes 

⚫ Classification Scheme I 

To facilitate the following description, we first define 

two terminologies. (1) Starting time st : it is the time 

point that the classification task starts. For BCI 2003 

competition data set, 3st  because the motor imagery 

tasks were performed at st 3= . (2) Classification time 

interval (CTI): it denotes the interval from st  to the 

time point that the classification task ends. Clearly, for 

BCI 2003 competition data set, sCTI 6  because all 

the motor imagery tasks lasted for 6s. Moreover, the 

CTI should be much longer than the window size t . 

Suppose that there are k  time points within the 

classification time interval. Clearly, tCTIk = / . Our 

scheme compares the STEPs between C3 and C4 each 

of the k time points. For a time point, if the STEP of C3 

is larger than that of C4, the time point is classified as 

left-hand imaginary movement (positive); right-hand 

imaginary movement (negative) otherwise. After the k 

time points are classified, we get k results. Then, the 

final classification is determined by using majority 

voting strategy: if the number of positive results is 

larger than that of negative results, we say that the EEG 

signals of C3 and C4 within the classification time 

interval belongs to the left-hand imaginary movement; 

right-hand imaginary movement otherwise. Moreover, if 

the true class label for this time interval is positive, i.e., 

the EEG signals within this time interval were actually 

recorded from a left-hand imaginary movement, we say 

that the classification result on this time interval is 

correct; otherwise it is a classification error. Therefore, 

for a specific classification time interval, an average 

classification rate is obtained since the BCI 2003 

competition data set contains 140-trial signals. 

In addition to the number of top energy peaks (i.e., 

the percentage of the energy peaks selected p ) and size 

of the moving window t , the starting time st  and 

the CTI are also free parameters, provided that in the 9s 

EEG, when the classification starts and how long it lasts 

affect largely the classification accuracy and MI [4][5]. 

The goal is to obtain the best starting time point with the 

shortest classification time interval. 
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(d) 

Fig. 7. The classification accuracy ((a) and (c)) and MI ((b) and (d)) 

obtained from scheme I. In the accuracy plots, the points with 
accuracy higher than 87% are marked red and the others are mared 

blue. The window sizes in (a) and (b) are 0.05 s, while in (c) and (d) 
the window sizes are set as 0.1 s. When extracting the feature STEP at 

each time point, the top 5% energy peaks were chosen. 
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Fig. 7 shows the results of classification accuracy and 

MI with different parameter combinations. As shown in 

Fig. 7, different combinations of st  and CTI result in 

different classification accuracy and MI. The best CTI 

can be obtained by chosing the CTI with the highest MI.  

⚫ Classification Scheme II 

In scheme II, the only difference is that the areas 

under surrogate signals are considered not the 

amplitudes. This scheme is physically an alternative 

opinion how ERD occurs. Unlike the first scheme the 

information of the past is considered, which makes this 

algorithm a casual MA model. 

The second scheme gains a prospect of ERD. In Fig.  

8 (the same trial as in Fig. 6), the area under the 

surrogate signals increases with time, which is a 

function of time )(ts . Thus two features can be 

obtained in this scheme. The first feature is how the area 

)(ts  varies with time. For each time point, the 

magnitude of two )(ts  (C3, C4) is compared, if )(ts  

of C3 is larger than it’s classified as left side imaginary 

movement, and vice versa. The second feature is the 

total area under the surrogate signal during a specific 

time interval, which is the final value of )(ts . This 

feature can be interpreted as the total effective energy 

difference during the time. If the final value of C3 is 

higher, then it is classified as left-side imaginary 

movement, and vice versa.  

In practice, this scheme performs in a cumulative 

manner. The optimized classification time interval is 

calculated in the similar way as the first scheme to 

obtain the best performance, and a tradeoff between 

time delay and MI should also be made. 

4 4.5 5 5.5 6 6.5 7

5

10

15

20

25

30

Time (sec)

E
n
e
rg

y
 s

u
m

 o
f 

th
e
 s

e
le

c
te

d
 p

e
a
k
s

Comulative Algorithm

s(t) as a function of time

 

 

C3

C4

 

Fig. 8. This figure represents how the area under the two surrogates 

varies with time. Two features are gained with this figure. First, the 
amplitude of each time instants can be compared. Second, the final 

value, i.e. the total area, can be compared. 

5. Experimental Results 

The two classification schemes are tested with the test 

data provided by Graz in order to compare with the 

results of the competition. Table 1 lists the results of the 

two classification schemes with optimized CTI obtained 

by the MI tables, and Table 2 shows the top 4 results of 

the Graz BCI competition 2003. The first column in 

Table 1 is described as follows. 

- A is the first scheme with window size 0.05 s, top 

10% peaks, and classification time interval 2.6 s. 

- B is the first scheme with window size 0.05 s, top 

10% peaks, classification time interval 1.7 s. 

- C is the second scheme with window size 0.05s, top 

10% peaks, and classification time interval 3.7 s. 

The first feature is used. 

- D is the second scheme with window size 0.05s, top 

10% peaks, and classification time interval 2.6 s. 

The second feature is used. 

- E is the second scheme with window size 0.05s, top 

10% peaks, and classification time interval 1.1 s. 

The second feature is used. 

 

Table 1. The results of the proposed method using HHT. 

Method Min Error (%) Max MI (bit) Time (s) 

A 11.43 0.63 6.4 

B 13.57 0.58 5.6 

C 12.14 0.69 7.5 

D 10.71 0.68 6.4 

E 17.86 0.48 5.1 

Table 2. The top 4 results of the BCI competition 2003 [4]. 

Ranking Min Error (%) Max MI (bit) Time (s) 

1 10.71 0.61 7.59 

2 15.71 0.46 5.05 

3 17.14 0.45 6.70 

4 13.57 0.44 4.18 

 

It is noticed that all the methods in Table 1 are our 

proposed method. The optimal classification time 

intervals (CTIs) of A, C and D are determined according 

to the MI table of the training data. The CTIs of B and E 

are arbitrarily chosen. Namely, the CTIs for B and E are 

not optimum actually: they were chosen for comparison. 

Though both B and E have lower maximum MIs than A, 

C and D, they still perform better than the second 

ranking of the BCI 2003 competition in terms of MI. 

Moreover, according to Table 1, the best method is D, 

which has high MI and the smallest classification error 

rate. Also, its minimum error is the same as the first 

ranking (i.e., the winner) of the competition; however, 

its MI is much higher and its time delay is shorter.  

To further compare method D with the top 4 winners 
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of the competition, Fig. 9(a) shows the variation of MI 

of D with different time instants, and Fig. 9(b) shows 

the results of the competition. The top four winners of 

the competition in Table 2 are C, F, B, and A in Fig. 9(b), 

respectively. As can be seen from Fig. 10, our method 

(method D) outperforms all the winners of the BCI 2003 

competition. The effectiveness of the proposed method 

in improving the performance of motor imagery 

recognition has been demonstrated. 
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Fig. 9. Comparision of the mutual information bettwen (a) our method 

and (b) the weinners of BCI 2003 competition. 

6. Conclusion 
In this paper, we have presented a novel method to 

improve the performance of motor imagery recognition. 

The results carried out on the EEG data provided by the 

BCI 2003 competition has indicated the effectiveness of 

the proposed method. Compared with the winner of the 

competition, our method achieves higher mutual 

information and shorter time delay. The success of our 

method should be attributed to the use of HHT and a 

robust feature extraction method, which is capable of 

extracting discriminating features from the Hilbert 

spectrum such that the ERD is effectively detected. 

During the imaginary movement it’s impossible to 

ensure that he subject is really performing the right 

imagination. In the Hilbert Spectrums of the subjects, 

we can observe that ERD does not occur all the time, 

and the mostly during 3.8 to 6 sec. Thus when using this 

method in real online BCI, some consideration must be 

made. The classification algorithm for this paradigm is 

suited for a clock-like BCI. For example, the EEG 

signal is scanned each 6 seconds and the result presents 

the decision of the time period. However a 6-second 

interval is too long for online BCI, a shorter period 

paradigm has to be made to obtain the optimized 

parameters for an online BCI using these algorithms. 

In the presented method, the classification strategy is 

quite simple. In the future, we will involve more 

sophisticated classifiers, such as support vector 

machines (SVMs), for comparison. 
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